Revised API implementation and added more tests for segment_for_video and segment_async
This commit is contained in:
		
							parent
							
								
									36ac0689d7
								
							
						
					
					
						commit
						f84e0bc1c6
					
				| 
						 | 
					@ -47,7 +47,7 @@ py_test(
 | 
				
			||||||
    deps = [
 | 
					    deps = [
 | 
				
			||||||
        "//mediapipe/python:_framework_bindings",
 | 
					        "//mediapipe/python:_framework_bindings",
 | 
				
			||||||
        "//mediapipe/tasks/python/core:base_options",
 | 
					        "//mediapipe/tasks/python/core:base_options",
 | 
				
			||||||
        "//mediapipe/tasks/python/test:test_util",
 | 
					        "//mediapipe/tasks/python/test:test_utils",
 | 
				
			||||||
        "//mediapipe/tasks/python/components/proto:segmenter_options",
 | 
					        "//mediapipe/tasks/python/components/proto:segmenter_options",
 | 
				
			||||||
        "//mediapipe/tasks/python/vision:image_segmenter",
 | 
					        "//mediapipe/tasks/python/vision:image_segmenter",
 | 
				
			||||||
        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
					        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -16,6 +16,8 @@
 | 
				
			||||||
import enum
 | 
					import enum
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import cv2
 | 
					import cv2
 | 
				
			||||||
 | 
					from typing import List
 | 
				
			||||||
 | 
					from unittest import mock
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from absl.testing import absltest
 | 
					from absl.testing import absltest
 | 
				
			||||||
from absl.testing import parameterized
 | 
					from absl.testing import parameterized
 | 
				
			||||||
| 
						 | 
					@ -24,7 +26,7 @@ from mediapipe.python._framework_bindings import image as image_module
 | 
				
			||||||
from mediapipe.python._framework_bindings import image_frame as image_frame_module
 | 
					from mediapipe.python._framework_bindings import image_frame as image_frame_module
 | 
				
			||||||
from mediapipe.tasks.python.components.proto import segmenter_options
 | 
					from mediapipe.tasks.python.components.proto import segmenter_options
 | 
				
			||||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
					from mediapipe.tasks.python.core import base_options as base_options_module
 | 
				
			||||||
from mediapipe.tasks.python.test import test_util
 | 
					from mediapipe.tasks.python.test import test_utils
 | 
				
			||||||
from mediapipe.tasks.python.vision import image_segmenter
 | 
					from mediapipe.tasks.python.vision import image_segmenter
 | 
				
			||||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
					from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -42,7 +44,22 @@ _MODEL_FILE = 'deeplabv3.tflite'
 | 
				
			||||||
_IMAGE_FILE = 'segmentation_input_rotation0.jpg'
 | 
					_IMAGE_FILE = 'segmentation_input_rotation0.jpg'
 | 
				
			||||||
_SEGMENTATION_FILE = 'segmentation_golden_rotation0.png'
 | 
					_SEGMENTATION_FILE = 'segmentation_golden_rotation0.png'
 | 
				
			||||||
_MASK_MAGNIFICATION_FACTOR = 10
 | 
					_MASK_MAGNIFICATION_FACTOR = 10
 | 
				
			||||||
_MATCH_PIXELS_THRESHOLD = 0.01
 | 
					_MASK_SIMILARITY_THRESHOLD = 0.98
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _similar_to_uint8_mask(actual_mask, expected_mask):
 | 
				
			||||||
 | 
					  actual_mask_pixels = actual_mask.numpy_view().flatten()
 | 
				
			||||||
 | 
					  expected_mask_pixels = expected_mask.numpy_view().flatten()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  consistent_pixels = 0
 | 
				
			||||||
 | 
					  num_pixels = len(expected_mask_pixels)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for index in range(num_pixels):
 | 
				
			||||||
 | 
					    consistent_pixels += (
 | 
				
			||||||
 | 
					        actual_mask_pixels[index] * _MASK_MAGNIFICATION_FACTOR ==
 | 
				
			||||||
 | 
					        expected_mask_pixels[index])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return consistent_pixels / num_pixels >= _MASK_SIMILARITY_THRESHOLD
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class ModelFileType(enum.Enum):
 | 
					class ModelFileType(enum.Enum):
 | 
				
			||||||
| 
						 | 
					@ -54,10 +71,14 @@ class ImageSegmenterTest(parameterized.TestCase):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  def setUp(self):
 | 
					  def setUp(self):
 | 
				
			||||||
    super().setUp()
 | 
					    super().setUp()
 | 
				
			||||||
    self.test_image = test_util.read_test_image(
 | 
					    # Load the test input image.
 | 
				
			||||||
        test_util.get_test_data_path(_IMAGE_FILE))
 | 
					    self.test_image = _Image.create_from_file(
 | 
				
			||||||
    self.test_seg_path = test_util.get_test_data_path(_SEGMENTATION_FILE)
 | 
					        test_utils.get_test_data_path(_IMAGE_FILE))
 | 
				
			||||||
    self.model_path = test_util.get_test_data_path(_MODEL_FILE)
 | 
					    # Loads ground truth segmentation file.
 | 
				
			||||||
 | 
					    gt_segmentation_data = cv2.imread(
 | 
				
			||||||
 | 
					      test_utils.get_test_data_path(_SEGMENTATION_FILE), cv2.IMREAD_GRAYSCALE)
 | 
				
			||||||
 | 
					    self.test_seg_image = _Image(_ImageFormat.GRAY8, gt_segmentation_data)
 | 
				
			||||||
 | 
					    self.model_path = test_utils.get_test_data_path(_MODEL_FILE)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  def test_create_from_file_succeeds_with_valid_model_path(self):
 | 
					  def test_create_from_file_succeeds_with_valid_model_path(self):
 | 
				
			||||||
    # Creates with default option and valid model file successfully.
 | 
					    # Creates with default option and valid model file successfully.
 | 
				
			||||||
| 
						 | 
					@ -76,7 +97,7 @@ class ImageSegmenterTest(parameterized.TestCase):
 | 
				
			||||||
    with self.assertRaisesRegex(
 | 
					    with self.assertRaisesRegex(
 | 
				
			||||||
        ValueError,
 | 
					        ValueError,
 | 
				
			||||||
        r"ExternalFile must specify at least one of 'file_content', "
 | 
					        r"ExternalFile must specify at least one of 'file_content', "
 | 
				
			||||||
        r"'file_name' or 'file_descriptor_meta'."):
 | 
					        r"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."):
 | 
				
			||||||
      base_options = _BaseOptions(model_asset_path='')
 | 
					      base_options = _BaseOptions(model_asset_path='')
 | 
				
			||||||
      options = _ImageSegmenterOptions(base_options=base_options)
 | 
					      options = _ImageSegmenterOptions(base_options=base_options)
 | 
				
			||||||
      _ImageSegmenter.create_from_options(options)
 | 
					      _ImageSegmenter.create_from_options(options)
 | 
				
			||||||
| 
						 | 
					@ -112,34 +133,16 @@ class ImageSegmenterTest(parameterized.TestCase):
 | 
				
			||||||
    # Performs image segmentation on the input.
 | 
					    # Performs image segmentation on the input.
 | 
				
			||||||
    category_masks = segmenter.segment(self.test_image)
 | 
					    category_masks = segmenter.segment(self.test_image)
 | 
				
			||||||
    self.assertEqual(len(category_masks), 1)
 | 
					    self.assertEqual(len(category_masks), 1)
 | 
				
			||||||
    result_pixels = category_masks[0].numpy_view().flatten()
 | 
					    category_mask = category_masks[0]
 | 
				
			||||||
 | 
					    result_pixels = category_mask.numpy_view().flatten()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Check if data type of `category_masks` is correct.
 | 
					    # Check if data type of `category_mask` is correct.
 | 
				
			||||||
    self.assertEqual(result_pixels.dtype, np.uint8)
 | 
					    self.assertEqual(result_pixels.dtype, np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Loads ground truth segmentation file.
 | 
					    self.assertTrue(
 | 
				
			||||||
    image_data = cv2.imread(self.test_seg_path, cv2.IMREAD_GRAYSCALE)
 | 
					      _similar_to_uint8_mask(category_masks[0], self.test_seg_image),
 | 
				
			||||||
    gt_segmentation = _Image(_ImageFormat.GRAY8, image_data)
 | 
					 | 
				
			||||||
    gt_segmentation_array = gt_segmentation.numpy_view()
 | 
					 | 
				
			||||||
    gt_segmentation_shape = gt_segmentation_array.shape
 | 
					 | 
				
			||||||
    num_pixels = gt_segmentation_shape[0] * gt_segmentation_shape[1]
 | 
					 | 
				
			||||||
    ground_truth_pixels = gt_segmentation_array.flatten()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    self.assertEqual(
 | 
					 | 
				
			||||||
      len(result_pixels), len(ground_truth_pixels),
 | 
					 | 
				
			||||||
      'Segmentation mask size does not match the ground truth mask size.')
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    inconsistent_pixels = 0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for index in range(num_pixels):
 | 
					 | 
				
			||||||
      inconsistent_pixels += (
 | 
					 | 
				
			||||||
          result_pixels[index] * _MASK_MAGNIFICATION_FACTOR !=
 | 
					 | 
				
			||||||
          ground_truth_pixels[index])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    self.assertLessEqual(
 | 
					 | 
				
			||||||
      inconsistent_pixels / num_pixels, _MATCH_PIXELS_THRESHOLD,
 | 
					 | 
				
			||||||
      f'Number of pixels in the candidate mask differing from that of the '
 | 
					      f'Number of pixels in the candidate mask differing from that of the '
 | 
				
			||||||
      f'ground truth mask exceeds {_MATCH_PIXELS_THRESHOLD}.')
 | 
					      f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Closes the segmenter explicitly when the segmenter is not used in
 | 
					    # Closes the segmenter explicitly when the segmenter is not used in
 | 
				
			||||||
    # a context.
 | 
					    # a context.
 | 
				
			||||||
| 
						 | 
					@ -188,6 +191,174 @@ class ImageSegmenterTest(parameterized.TestCase):
 | 
				
			||||||
    # a context.
 | 
					    # a context.
 | 
				
			||||||
    segmenter.close()
 | 
					    segmenter.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters(
 | 
				
			||||||
 | 
					    (ModelFileType.FILE_NAME,),
 | 
				
			||||||
 | 
					    (ModelFileType.FILE_CONTENT,))
 | 
				
			||||||
 | 
					  def test_segment_in_context(self, model_file_type):
 | 
				
			||||||
 | 
					    if model_file_type is ModelFileType.FILE_NAME:
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(model_asset_path=self.model_path)
 | 
				
			||||||
 | 
					    elif model_file_type is ModelFileType.FILE_CONTENT:
 | 
				
			||||||
 | 
					      with open(self.model_path, 'rb') as f:
 | 
				
			||||||
 | 
					        model_contents = f.read()
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(model_asset_buffer=model_contents)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					      # Should never happen
 | 
				
			||||||
 | 
					      raise ValueError('model_file_type is invalid.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    segmenter_options = _SegmenterOptions(output_type=_OutputType.CATEGORY_MASK)
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(base_options=base_options,
 | 
				
			||||||
 | 
					                                     segmenter_options=segmenter_options)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      # Performs image segmentation on the input.
 | 
				
			||||||
 | 
					      category_masks = segmenter.segment(self.test_image)
 | 
				
			||||||
 | 
					      self.assertEqual(len(category_masks), 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      self.assertTrue(
 | 
				
			||||||
 | 
					        _similar_to_uint8_mask(category_masks[0], self.test_seg_image),
 | 
				
			||||||
 | 
					        f'Number of pixels in the candidate mask differing from that of the '
 | 
				
			||||||
 | 
					        f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_missing_result_callback(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM)
 | 
				
			||||||
 | 
					    with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                r'result callback must be provided'):
 | 
				
			||||||
 | 
					      with _ImageSegmenter.create_from_options(options) as unused_segmenter:
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
 | 
				
			||||||
 | 
					  def test_illegal_result_callback(self, running_mode):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=running_mode,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock())
 | 
				
			||||||
 | 
					    with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                r'result callback should not be provided'):
 | 
				
			||||||
 | 
					      with _ImageSegmenter.create_from_options(options) as unused_segmenter:
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_for_video_in_image_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.IMAGE)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the video mode'):
 | 
				
			||||||
 | 
					        segmenter.segment_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_async_in_image_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.IMAGE)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the live stream mode'):
 | 
				
			||||||
 | 
					        segmenter.segment_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_in_video_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.VIDEO)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the image mode'):
 | 
				
			||||||
 | 
					        segmenter.segment(self.test_image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_async_in_video_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.VIDEO)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the live stream mode'):
 | 
				
			||||||
 | 
					        segmenter.segment_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_detect_for_video_with_out_of_order_timestamp(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.VIDEO)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      unused_result = segmenter.segment_for_video(self.test_image, 1)
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'Input timestamp must be monotonically increasing'):
 | 
				
			||||||
 | 
					        segmenter.segment_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_segment_for_video(self):
 | 
				
			||||||
 | 
					    segmenter_options = _SegmenterOptions(output_type=_OutputType.CATEGORY_MASK)
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      segmenter_options=segmenter_options,
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.VIDEO)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      for timestamp in range(0, 300, 30):
 | 
				
			||||||
 | 
					        category_masks = segmenter.segment_for_video(self.test_image, timestamp)
 | 
				
			||||||
 | 
					        self.assertEqual(len(category_masks), 1)
 | 
				
			||||||
 | 
					        self.assertTrue(
 | 
				
			||||||
 | 
					          _similar_to_uint8_mask(category_masks[0], self.test_seg_image),
 | 
				
			||||||
 | 
					          f'Number of pixels in the candidate mask differing from that of the '
 | 
				
			||||||
 | 
					          f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_in_live_stream_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock())
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the image mode'):
 | 
				
			||||||
 | 
					        segmenter.segment(self.test_image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_segment_for_video_in_live_stream_mode(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock())
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(ValueError,
 | 
				
			||||||
 | 
					                                  r'not initialized with the video mode'):
 | 
				
			||||||
 | 
					        segmenter.segment_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_segment_async_calls_with_illegal_timestamp(self):
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock())
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      segmenter.segment_async(self.test_image, 100)
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'Input timestamp must be monotonically increasing'):
 | 
				
			||||||
 | 
					        segmenter.segment_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_segment_async_calls(self):
 | 
				
			||||||
 | 
					    observed_timestamp_ms = -1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def check_result(result: List[image_module.Image],
 | 
				
			||||||
 | 
					                     output_image: _Image,
 | 
				
			||||||
 | 
					                     timestamp_ms: int):
 | 
				
			||||||
 | 
					      # Get the output category mask.
 | 
				
			||||||
 | 
					      category_mask = result[0]
 | 
				
			||||||
 | 
					      self.assertEqual(output_image.width, self.test_image.width)
 | 
				
			||||||
 | 
					      self.assertEqual(output_image.height, self.test_image.height)
 | 
				
			||||||
 | 
					      self.assertEqual(output_image.width, self.test_seg_image.width)
 | 
				
			||||||
 | 
					      self.assertEqual(output_image.height, self.test_seg_image.height)
 | 
				
			||||||
 | 
					      self.assertTrue(
 | 
				
			||||||
 | 
					        _similar_to_uint8_mask(category_mask, self.test_seg_image),
 | 
				
			||||||
 | 
					        f'Number of pixels in the candidate mask differing from that of the '
 | 
				
			||||||
 | 
					        f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.')
 | 
				
			||||||
 | 
					      self.assertLess(observed_timestamp_ms, timestamp_ms)
 | 
				
			||||||
 | 
					      self.observed_timestamp_ms = timestamp_ms
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    segmenter_options = _SegmenterOptions(output_type=_OutputType.CATEGORY_MASK)
 | 
				
			||||||
 | 
					    options = _ImageSegmenterOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      segmenter_options=segmenter_options,
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=check_result)
 | 
				
			||||||
 | 
					    with _ImageSegmenter.create_from_options(options) as segmenter:
 | 
				
			||||||
 | 
					      for timestamp in range(0, 300, 30):
 | 
				
			||||||
 | 
					        segmenter.segment_async(self.test_image, timestamp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
  absltest.main()
 | 
					  absltest.main()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -42,6 +42,7 @@ _IMAGE_IN_STREAM_NAME = 'image_in'
 | 
				
			||||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
 | 
					_IMAGE_OUT_STREAM_NAME = 'image_out'
 | 
				
			||||||
_IMAGE_TAG = 'IMAGE'
 | 
					_IMAGE_TAG = 'IMAGE'
 | 
				
			||||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.ImageSegmenterGraph'
 | 
					_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.ImageSegmenterGraph'
 | 
				
			||||||
 | 
					_MICRO_SECONDS_PER_MILLISECOND = 1000
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@dataclasses.dataclass
 | 
					@dataclasses.dataclass
 | 
				
			||||||
| 
						 | 
					@ -52,9 +53,9 @@ class ImageSegmenterOptions:
 | 
				
			||||||
    base_options: Base options for the image segmenter task.
 | 
					    base_options: Base options for the image segmenter task.
 | 
				
			||||||
    running_mode: The running mode of the task. Default to the image mode.
 | 
					    running_mode: The running mode of the task. Default to the image mode.
 | 
				
			||||||
      Image segmenter task has three running modes:
 | 
					      Image segmenter task has three running modes:
 | 
				
			||||||
      1) The image mode for detecting objects on single image inputs.
 | 
					      1) The image mode for segmenting objects on single image inputs.
 | 
				
			||||||
      2) The video mode for detecting objects on the decoded frames of a video.
 | 
					      2) The video mode for segmenting objects on the decoded frames of a video.
 | 
				
			||||||
      3) The live stream mode for detecting objects on a live stream of input
 | 
					      3) The live stream mode for segmenting objects on a live stream of input
 | 
				
			||||||
         data, such as from camera.
 | 
					         data, such as from camera.
 | 
				
			||||||
    segmenter_options: Options for the image segmenter task.
 | 
					    segmenter_options: Options for the image segmenter task.
 | 
				
			||||||
    result_callback: The user-defined result callback for processing live stream
 | 
					    result_callback: The user-defined result callback for processing live stream
 | 
				
			||||||
| 
						 | 
					@ -86,7 +87,8 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @classmethod
 | 
					  @classmethod
 | 
				
			||||||
  def create_from_model_path(cls, model_path: str) -> 'ImageSegmenter':
 | 
					  def create_from_model_path(cls, model_path: str) -> 'ImageSegmenter':
 | 
				
			||||||
    """Creates an `ImageSegmenter` object from a TensorFlow Lite model and the default `ImageSegmenterOptions`.
 | 
					    """Creates an `ImageSegmenter` object from a TensorFlow Lite model and the
 | 
				
			||||||
 | 
					    default `ImageSegmenterOptions`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Note that the created `ImageSegmenter` instance is in image mode, for
 | 
					    Note that the created `ImageSegmenter` instance is in image mode, for
 | 
				
			||||||
    performing image segmentation on single image inputs.
 | 
					    performing image segmentation on single image inputs.
 | 
				
			||||||
| 
						 | 
					@ -131,8 +133,9 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
 | 
				
			||||||
      segmentation_result = packet_getter.get_image_list(
 | 
					      segmentation_result = packet_getter.get_image_list(
 | 
				
			||||||
          output_packets[_SEGMENTATION_OUT_STREAM_NAME])
 | 
					          output_packets[_SEGMENTATION_OUT_STREAM_NAME])
 | 
				
			||||||
      image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
 | 
					      image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
 | 
				
			||||||
      timestamp = output_packets[_IMAGE_OUT_STREAM_NAME].timestamp
 | 
					      timestamp = output_packets[_SEGMENTATION_OUT_STREAM_NAME].timestamp
 | 
				
			||||||
      options.result_callback(segmentation_result, image, timestamp)
 | 
					      options.result_callback(segmentation_result, image,
 | 
				
			||||||
 | 
					                              timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    task_info = _TaskInfo(
 | 
					    task_info = _TaskInfo(
 | 
				
			||||||
        task_graph=_TASK_GRAPH_NAME,
 | 
					        task_graph=_TASK_GRAPH_NAME,
 | 
				
			||||||
| 
						 | 
					@ -148,7 +151,6 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
 | 
				
			||||||
            _RunningMode.LIVE_STREAM), options.running_mode,
 | 
					            _RunningMode.LIVE_STREAM), options.running_mode,
 | 
				
			||||||
        packets_callback if options.result_callback else None)
 | 
					        packets_callback if options.result_callback else None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  # TODO: Create an Image class for MediaPipe Tasks.
 | 
					 | 
				
			||||||
  def segment(self,
 | 
					  def segment(self,
 | 
				
			||||||
              image: image_module.Image) -> List[image_module.Image]:
 | 
					              image: image_module.Image) -> List[image_module.Image]:
 | 
				
			||||||
    """Performs the actual segmentation task on the provided MediaPipe Image.
 | 
					    """Performs the actual segmentation task on the provided MediaPipe Image.
 | 
				
			||||||
| 
						 | 
					@ -162,10 +164,74 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Raises:
 | 
					    Raises:
 | 
				
			||||||
      ValueError: If any of the input arguments is invalid.
 | 
					      ValueError: If any of the input arguments is invalid.
 | 
				
			||||||
      RuntimeError: If object detection failed to run.
 | 
					      RuntimeError: If image segmentation failed to run.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    output_packets = self._process_image_data(
 | 
					    output_packets = self._process_image_data(
 | 
				
			||||||
        {_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image)})
 | 
					        {_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image)})
 | 
				
			||||||
    segmentation_result = packet_getter.get_image_list(
 | 
					    segmentation_result = packet_getter.get_image_list(
 | 
				
			||||||
        output_packets[_SEGMENTATION_OUT_STREAM_NAME])
 | 
					        output_packets[_SEGMENTATION_OUT_STREAM_NAME])
 | 
				
			||||||
    return segmentation_result
 | 
					    return segmentation_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def segment_for_video(self, image: image_module.Image,
 | 
				
			||||||
 | 
					                        timestamp_ms: int) -> List[image_module.Image]:
 | 
				
			||||||
 | 
					    """Performs segmentation on the provided video frames.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Only use this method when the ImageSegmenter is created with the video
 | 
				
			||||||
 | 
					    running mode. It's required to provide the video frame's timestamp (in
 | 
				
			||||||
 | 
					    milliseconds) along with the video frame. The input timestamps should be
 | 
				
			||||||
 | 
					    monotonically increasing for adjacent calls of this method.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					      image: MediaPipe Image.
 | 
				
			||||||
 | 
					      timestamp_ms: The timestamp of the input video frame in milliseconds.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					      A segmentation result object that contains a list of segmentation masks
 | 
				
			||||||
 | 
					      as images.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Raises:
 | 
				
			||||||
 | 
					      ValueError: If any of the input arguments is invalid.
 | 
				
			||||||
 | 
					      RuntimeError: If image segmentation failed to run.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    output_packets = self._process_video_data({
 | 
				
			||||||
 | 
					      _IMAGE_IN_STREAM_NAME:
 | 
				
			||||||
 | 
					        packet_creator.create_image(image).at(
 | 
				
			||||||
 | 
					          timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
 | 
				
			||||||
 | 
					    })
 | 
				
			||||||
 | 
					    segmentation_result = packet_getter.get_image_list(
 | 
				
			||||||
 | 
					      output_packets[_SEGMENTATION_OUT_STREAM_NAME])
 | 
				
			||||||
 | 
					    return segmentation_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def segment_async(self, image: image_module.Image, timestamp_ms: int) -> None:
 | 
				
			||||||
 | 
					    """Sends live image data (an Image with a unique timestamp) to perform
 | 
				
			||||||
 | 
					    image segmentation.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Only use this method when the ImageSegmenter is created with the live stream
 | 
				
			||||||
 | 
					    running mode. The input timestamps should be monotonically increasing for
 | 
				
			||||||
 | 
					    adjacent calls of this method. This method will return immediately after the
 | 
				
			||||||
 | 
					    input image is accepted. The results will be available via the
 | 
				
			||||||
 | 
					    `result_callback` provided in the `ImageSegmenterOptions`. The
 | 
				
			||||||
 | 
					    `segment_async` method is designed to process live stream data such as
 | 
				
			||||||
 | 
					    camera input. To lower the overall latency, image segmenter may drop the
 | 
				
			||||||
 | 
					    input images if needed. In other words, it's not guaranteed to have output
 | 
				
			||||||
 | 
					    per input image.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    The `result_callback` prvoides:
 | 
				
			||||||
 | 
					      - A segmentation result object that contains a list of segmentation masks
 | 
				
			||||||
 | 
					        as images.
 | 
				
			||||||
 | 
					      - The input image that the image segmenter runs on.
 | 
				
			||||||
 | 
					      - The input timestamp in milliseconds.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					      image: MediaPipe Image.
 | 
				
			||||||
 | 
					      timestamp_ms: The timestamp of the input image in milliseconds.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Raises:
 | 
				
			||||||
 | 
					      ValueError: If the current input timestamp is smaller than what the image
 | 
				
			||||||
 | 
					        segmenter has already processed.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    self._send_live_stream_data({
 | 
				
			||||||
 | 
					      _IMAGE_IN_STREAM_NAME:
 | 
				
			||||||
 | 
					        packet_creator.create_image(image).at(
 | 
				
			||||||
 | 
					          timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
 | 
				
			||||||
 | 
					    })
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user