Merge branch 'google:master' into image-classification-python

This commit is contained in:
Kinar R 2022-09-10 16:34:42 +05:30 committed by GitHub
commit f2e42d16bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
55 changed files with 2115 additions and 503 deletions

View File

@ -51,6 +51,7 @@ RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 100 --slave /u
RUN pip3 install --upgrade setuptools
RUN pip3 install wheel
RUN pip3 install future
RUN pip3 install absl-py numpy opencv-contrib-python protobuf==3.20.1
RUN pip3 install six==1.14.0
RUN pip3 install tensorflow==2.2.0
RUN pip3 install tf_slim

View File

@ -4,7 +4,7 @@ title: Home
nav_order: 1
---
![MediaPipe](images/mediapipe_small.png)
![MediaPipe](https://mediapipe.dev/images/mediapipe_small.png)
--------------------------------------------------------------------------------
@ -13,21 +13,21 @@ nav_order: 1
[MediaPipe](https://google.github.io/mediapipe/) offers cross-platform, customizable
ML solutions for live and streaming media.
![accelerated.png](images/accelerated_small.png) | ![cross_platform.png](images/cross_platform_small.png)
![accelerated.png](https://mediapipe.dev/images/accelerated_small.png) | ![cross_platform.png](https://mediapipe.dev/images/cross_platform_small.png)
:------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------:
***End-to-End acceleration***: *Built-in fast ML inference and processing accelerated even on common hardware* | ***Build once, deploy anywhere***: *Unified solution works across Android, iOS, desktop/cloud, web and IoT*
![ready_to_use.png](images/ready_to_use_small.png) | ![open_source.png](images/open_source_small.png)
![ready_to_use.png](https://mediapipe.dev/images/ready_to_use_small.png) | ![open_source.png](https://mediapipe.dev/images/open_source_small.png)
***Ready-to-use solutions***: *Cutting-edge ML solutions demonstrating full power of the framework* | ***Free and open source***: *Framework and solutions both under Apache 2.0, fully extensible and customizable*
## ML solutions in MediaPipe
Face Detection | Face Mesh | Iris | Hands | Pose | Holistic
:----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------: | :------:
[![face_detection](images/mobile/face_detection_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/face_detection) | [![face_mesh](images/mobile/face_mesh_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/face_mesh) | [![iris](images/mobile/iris_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/iris) | [![hand](images/mobile/hand_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/hands) | [![pose](images/mobile/pose_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/pose) | [![hair_segmentation](images/mobile/holistic_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/holistic)
[![face_detection](https://mediapipe.dev/images/mobile/face_detection_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/face_detection) | [![face_mesh](https://mediapipe.dev/images/mobile/face_mesh_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/face_mesh) | [![iris](https://mediapipe.dev/images/mobile/iris_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/iris) | [![hand](https://mediapipe.dev/images/mobile/hand_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/hands) | [![pose](https://mediapipe.dev/images/mobile/pose_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/pose) | [![hair_segmentation](https://mediapipe.dev/images/mobile/holistic_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/holistic)
Hair Segmentation | Object Detection | Box Tracking | Instant Motion Tracking | Objectron | KNIFT
:-------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------: | :---:
[![hair_segmentation](images/mobile/hair_segmentation_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/hair_segmentation) | [![object_detection](images/mobile/object_detection_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/object_detection) | [![box_tracking](images/mobile/object_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/box_tracking) | [![instant_motion_tracking](images/mobile/instant_motion_tracking_android_small.gif)](https://google.github.io/mediapipe/solutions/instant_motion_tracking) | [![objectron](images/mobile/objectron_chair_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/objectron) | [![knift](images/mobile/template_matching_android_cpu_small.gif)](https://google.github.io/mediapipe/solutions/knift)
[![hair_segmentation](https://mediapipe.dev/images/mobile/hair_segmentation_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/hair_segmentation) | [![object_detection](https://mediapipe.dev/images/mobile/object_detection_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/object_detection) | [![box_tracking](https://mediapipe.dev/images/mobile/object_tracking_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/box_tracking) | [![instant_motion_tracking](https://mediapipe.dev/images/mobile/instant_motion_tracking_android_small.gif)](https://google.github.io/mediapipe/solutions/instant_motion_tracking) | [![objectron](https://mediapipe.dev/images/mobile/objectron_chair_android_gpu_small.gif)](https://google.github.io/mediapipe/solutions/objectron) | [![knift](https://mediapipe.dev/images/mobile/template_matching_android_cpu_small.gif)](https://google.github.io/mediapipe/solutions/knift)
<!-- []() in the first cell is needed to preserve table formatting in GitHub Pages. -->
<!-- Whenever this table is updated, paste a copy to solutions/solutions.md. -->

View File

@ -216,6 +216,50 @@ cc_library(
alwayslink = 1,
)
cc_library(
name = "inference_runner",
hdrs = ["inference_runner.h"],
copts = select({
# TODO: fix tensor.h not to require this, if possible
"//mediapipe:apple": [
"-x objective-c++",
"-fobjc-arc", # enable reference-counting
],
"//conditions:default": [],
}),
visibility = ["//visibility:public"],
deps = [
"//mediapipe/framework/formats:tensor",
"@com_google_absl//absl/status:statusor",
],
)
cc_library(
name = "inference_interpreter_delegate_runner",
srcs = ["inference_interpreter_delegate_runner.cc"],
hdrs = ["inference_interpreter_delegate_runner.h"],
copts = select({
# TODO: fix tensor.h not to require this, if possible
"//mediapipe:apple": [
"-x objective-c++",
"-fobjc-arc", # enable reference-counting
],
"//conditions:default": [],
}),
visibility = ["//visibility:public"],
deps = [
":inference_runner",
"//mediapipe/framework/api2:packet",
"//mediapipe/framework/formats:tensor",
"//mediapipe/framework/port:ret_check",
"//mediapipe/util/tflite:tflite_model_loader",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@org_tensorflow//tensorflow/lite:framework_stable",
"@org_tensorflow//tensorflow/lite/core/api:op_resolver",
],
)
cc_library(
name = "inference_calculator_cpu",
srcs = [
@ -232,22 +276,64 @@ cc_library(
visibility = ["//visibility:public"],
deps = [
":inference_calculator_interface",
":inference_calculator_utils",
":inference_interpreter_delegate_runner",
":inference_runner",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@org_tensorflow//tensorflow/lite/delegates/xnnpack:xnnpack_delegate",
"@org_tensorflow//tensorflow/lite:framework_stable",
"@org_tensorflow//tensorflow/lite/c:c_api_types",
] + select({
"//conditions:default": [
"//mediapipe/util:cpu_util",
],
}) + select({
"//conditions:default": [],
"//mediapipe:android": ["@org_tensorflow//tensorflow/lite/delegates/nnapi:nnapi_delegate"],
}),
alwayslink = 1,
)
cc_library(
name = "inference_calculator_utils",
srcs = ["inference_calculator_utils.cc"],
hdrs = ["inference_calculator_utils.h"],
deps = [
":inference_calculator_cc_proto",
"//mediapipe/framework:port",
] + select({
"//conditions:default": [
"//mediapipe/util:cpu_util",
],
}),
alwayslink = 1,
)
cc_library(
name = "inference_calculator_xnnpack",
srcs = [
"inference_calculator_xnnpack.cc",
],
copts = select({
# TODO: fix tensor.h not to require this, if possible
"//mediapipe:apple": [
"-x objective-c++",
"-fobjc-arc", # enable reference-counting
],
"//conditions:default": [],
}),
visibility = ["//visibility:public"],
deps = [
":inference_calculator_interface",
":inference_calculator_utils",
":inference_interpreter_delegate_runner",
":inference_runner",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@org_tensorflow//tensorflow/lite:framework_stable",
"@org_tensorflow//tensorflow/lite/delegates/xnnpack:xnnpack_delegate",
],
alwayslink = 1,
)
cc_library(
name = "inference_calculator_gl_if_compute_shader_available",
visibility = ["//visibility:public"],

View File

@ -59,6 +59,7 @@ class InferenceCalculatorSelectorImpl
}
}
impls.emplace_back("Cpu");
impls.emplace_back("Xnnpack");
for (const auto& suffix : impls) {
const auto impl = absl::StrCat("InferenceCalculator", suffix);
if (!mediapipe::CalculatorBaseRegistry::IsRegistered(impl)) continue;

View File

@ -141,6 +141,10 @@ struct InferenceCalculatorCpu : public InferenceCalculator {
static constexpr char kCalculatorName[] = "InferenceCalculatorCpu";
};
struct InferenceCalculatorXnnpack : public InferenceCalculator {
static constexpr char kCalculatorName[] = "InferenceCalculatorXnnpack";
};
} // namespace api2
} // namespace mediapipe

View File

@ -18,78 +18,21 @@
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "mediapipe/calculators/tensor/inference_calculator.h"
#include "mediapipe/calculators/tensor/inference_calculator_utils.h"
#include "mediapipe/calculators/tensor/inference_interpreter_delegate_runner.h"
#include "mediapipe/calculators/tensor/inference_runner.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/interpreter_builder.h"
#if defined(MEDIAPIPE_ANDROID)
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
#endif // ANDROID
#if !defined(__EMSCRIPTEN__) || defined(__EMSCRIPTEN_PTHREADS__)
#include "mediapipe/util/cpu_util.h"
#endif // !__EMSCRIPTEN__ || __EMSCRIPTEN_PTHREADS__
#include "tensorflow/lite/c/c_api_types.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
namespace mediapipe {
namespace api2 {
namespace {
int GetXnnpackDefaultNumThreads() {
#if defined(MEDIAPIPE_ANDROID) || defined(MEDIAPIPE_IOS) || \
defined(__EMSCRIPTEN_PTHREADS__)
constexpr int kMinNumThreadsByDefault = 1;
constexpr int kMaxNumThreadsByDefault = 4;
return std::clamp(NumCPUCores() / 2, kMinNumThreadsByDefault,
kMaxNumThreadsByDefault);
#else
return 1;
#endif // MEDIAPIPE_ANDROID || MEDIAPIPE_IOS || __EMSCRIPTEN_PTHREADS__
}
// Returns number of threads to configure XNNPACK delegate with.
// Returns user provided value if specified. Otherwise, tries to choose optimal
// number of threads depending on the device.
int GetXnnpackNumThreads(
const bool opts_has_delegate,
const mediapipe::InferenceCalculatorOptions::Delegate& opts_delegate) {
static constexpr int kDefaultNumThreads = -1;
if (opts_has_delegate && opts_delegate.has_xnnpack() &&
opts_delegate.xnnpack().num_threads() != kDefaultNumThreads) {
return opts_delegate.xnnpack().num_threads();
}
return GetXnnpackDefaultNumThreads();
}
template <typename T>
void CopyTensorBufferToInterpreter(const Tensor& input_tensor,
tflite::Interpreter* interpreter,
int input_tensor_index) {
auto input_tensor_view = input_tensor.GetCpuReadView();
auto input_tensor_buffer = input_tensor_view.buffer<T>();
T* local_tensor_buffer =
interpreter->typed_input_tensor<T>(input_tensor_index);
std::memcpy(local_tensor_buffer, input_tensor_buffer, input_tensor.bytes());
}
template <typename T>
void CopyTensorBufferFromInterpreter(tflite::Interpreter* interpreter,
int output_tensor_index,
Tensor* output_tensor) {
auto output_tensor_view = output_tensor->GetCpuWriteView();
auto output_tensor_buffer = output_tensor_view.buffer<T>();
T* local_tensor_buffer =
interpreter->typed_output_tensor<T>(output_tensor_index);
std::memcpy(output_tensor_buffer, local_tensor_buffer,
output_tensor->bytes());
}
} // namespace
class InferenceCalculatorCpuImpl
: public NodeImpl<InferenceCalculatorCpu, InferenceCalculatorCpuImpl> {
public:
@ -100,16 +43,11 @@ class InferenceCalculatorCpuImpl
absl::Status Close(CalculatorContext* cc) override;
private:
absl::Status InitInterpreter(CalculatorContext* cc);
absl::Status LoadDelegate(CalculatorContext* cc,
tflite::InterpreterBuilder* interpreter_builder);
absl::Status AllocateTensors();
absl::StatusOr<std::unique_ptr<InferenceRunner>> CreateInferenceRunner(
CalculatorContext* cc);
absl::StatusOr<TfLiteDelegatePtr> MaybeCreateDelegate(CalculatorContext* cc);
// TfLite requires us to keep the model alive as long as the interpreter is.
Packet<TfLiteModelPtr> model_packet_;
std::unique_ptr<tflite::Interpreter> interpreter_;
TfLiteDelegatePtr delegate_;
TfLiteType input_tensor_type_ = TfLiteType::kTfLiteNoType;
std::unique_ptr<InferenceRunner> inference_runner_;
};
absl::Status InferenceCalculatorCpuImpl::UpdateContract(
@ -122,7 +60,8 @@ absl::Status InferenceCalculatorCpuImpl::UpdateContract(
}
absl::Status InferenceCalculatorCpuImpl::Open(CalculatorContext* cc) {
return InitInterpreter(cc);
ASSIGN_OR_RETURN(inference_runner_, CreateInferenceRunner(cc));
return absl::OkStatus();
}
absl::Status InferenceCalculatorCpuImpl::Process(CalculatorContext* cc) {
@ -131,123 +70,32 @@ absl::Status InferenceCalculatorCpuImpl::Process(CalculatorContext* cc) {
}
const auto& input_tensors = *kInTensors(cc);
RET_CHECK(!input_tensors.empty());
auto output_tensors = absl::make_unique<std::vector<Tensor>>();
if (input_tensor_type_ == kTfLiteNoType) {
input_tensor_type_ = interpreter_->tensor(interpreter_->inputs()[0])->type;
}
// Read CPU input into tensors.
for (int i = 0; i < input_tensors.size(); ++i) {
switch (input_tensor_type_) {
case TfLiteType::kTfLiteFloat16:
case TfLiteType::kTfLiteFloat32: {
CopyTensorBufferToInterpreter<float>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteUInt8: {
CopyTensorBufferToInterpreter<uint8>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteInt8: {
CopyTensorBufferToInterpreter<int8>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteInt32: {
CopyTensorBufferToInterpreter<int32_t>(input_tensors[i],
interpreter_.get(), i);
break;
}
default:
return absl::InvalidArgumentError(
absl::StrCat("Unsupported input tensor type:", input_tensor_type_));
}
}
// Run inference.
RET_CHECK_EQ(interpreter_->Invoke(), kTfLiteOk);
// Output result tensors (CPU).
const auto& tensor_indexes = interpreter_->outputs();
output_tensors->reserve(tensor_indexes.size());
for (int i = 0; i < tensor_indexes.size(); ++i) {
TfLiteTensor* tensor = interpreter_->tensor(tensor_indexes[i]);
Tensor::Shape shape{std::vector<int>{
tensor->dims->data, tensor->dims->data + tensor->dims->size}};
switch (tensor->type) {
case TfLiteType::kTfLiteFloat16:
case TfLiteType::kTfLiteFloat32:
output_tensors->emplace_back(Tensor::ElementType::kFloat32, shape);
CopyTensorBufferFromInterpreter<float>(interpreter_.get(), i,
&output_tensors->back());
break;
case TfLiteType::kTfLiteUInt8:
output_tensors->emplace_back(
Tensor::ElementType::kUInt8, shape,
Tensor::QuantizationParameters{tensor->params.scale,
tensor->params.zero_point});
CopyTensorBufferFromInterpreter<uint8>(interpreter_.get(), i,
&output_tensors->back());
break;
case TfLiteType::kTfLiteInt8:
output_tensors->emplace_back(
Tensor::ElementType::kInt8, shape,
Tensor::QuantizationParameters{tensor->params.scale,
tensor->params.zero_point});
CopyTensorBufferFromInterpreter<int8>(interpreter_.get(), i,
&output_tensors->back());
break;
case TfLiteType::kTfLiteInt32:
output_tensors->emplace_back(Tensor::ElementType::kInt32, shape);
CopyTensorBufferFromInterpreter<int32_t>(interpreter_.get(), i,
&output_tensors->back());
break;
default:
return absl::InvalidArgumentError(
absl::StrCat("Unsupported output tensor type:",
TfLiteTypeGetName(tensor->type)));
}
}
ASSIGN_OR_RETURN(std::vector<Tensor> output_tensors,
inference_runner_->Run(input_tensors));
kOutTensors(cc).Send(std::move(output_tensors));
return absl::OkStatus();
}
absl::Status InferenceCalculatorCpuImpl::Close(CalculatorContext* cc) {
interpreter_ = nullptr;
delegate_ = nullptr;
inference_runner_ = nullptr;
return absl::OkStatus();
}
absl::Status InferenceCalculatorCpuImpl::InitInterpreter(
CalculatorContext* cc) {
ASSIGN_OR_RETURN(model_packet_, GetModelAsPacket(cc));
const auto& model = *model_packet_.Get();
absl::StatusOr<std::unique_ptr<InferenceRunner>>
InferenceCalculatorCpuImpl::CreateInferenceRunner(CalculatorContext* cc) {
ASSIGN_OR_RETURN(auto model_packet, GetModelAsPacket(cc));
ASSIGN_OR_RETURN(auto op_resolver_packet, GetOpResolverAsPacket(cc));
const auto& op_resolver = op_resolver_packet.Get();
tflite::InterpreterBuilder interpreter_builder(model, op_resolver);
MP_RETURN_IF_ERROR(LoadDelegate(cc, &interpreter_builder));
#if defined(__EMSCRIPTEN__)
interpreter_builder.SetNumThreads(1);
#else
interpreter_builder.SetNumThreads(
cc->Options<mediapipe::InferenceCalculatorOptions>().cpu_num_thread());
#endif // __EMSCRIPTEN__
RET_CHECK_EQ(interpreter_builder(&interpreter_), kTfLiteOk);
RET_CHECK(interpreter_);
return AllocateTensors();
const int interpreter_num_threads =
cc->Options<mediapipe::InferenceCalculatorOptions>().cpu_num_thread();
ASSIGN_OR_RETURN(TfLiteDelegatePtr delegate, MaybeCreateDelegate(cc));
return CreateInferenceInterpreterDelegateRunner(
std::move(model_packet), std::move(op_resolver_packet),
std::move(delegate), interpreter_num_threads);
}
absl::Status InferenceCalculatorCpuImpl::AllocateTensors() {
RET_CHECK_EQ(interpreter_->AllocateTensors(), kTfLiteOk);
return absl::OkStatus();
}
absl::Status InferenceCalculatorCpuImpl::LoadDelegate(
CalculatorContext* cc, tflite::InterpreterBuilder* interpreter_builder) {
absl::StatusOr<TfLiteDelegatePtr>
InferenceCalculatorCpuImpl::MaybeCreateDelegate(CalculatorContext* cc) {
const auto& calculator_opts =
cc->Options<mediapipe::InferenceCalculatorOptions>();
auto opts_delegate = calculator_opts.delegate();
@ -268,7 +116,7 @@ absl::Status InferenceCalculatorCpuImpl::LoadDelegate(
calculator_opts.has_delegate() || !kDelegate(cc).IsEmpty();
if (opts_has_delegate && opts_delegate.has_tflite()) {
// Default tflite inference requeqsted - no need to modify graph.
return absl::OkStatus();
return nullptr;
}
#if defined(MEDIAPIPE_ANDROID)
@ -288,10 +136,8 @@ absl::Status InferenceCalculatorCpuImpl::LoadDelegate(
options.accelerator_name = nnapi.has_accelerator_name()
? nnapi.accelerator_name().c_str()
: nullptr;
delegate_ = TfLiteDelegatePtr(new tflite::StatefulNnApiDelegate(options),
[](TfLiteDelegate*) {});
interpreter_builder->AddDelegate(delegate_.get());
return absl::OkStatus();
return TfLiteDelegatePtr(new tflite::StatefulNnApiDelegate(options),
[](TfLiteDelegate*) {});
}
#endif // MEDIAPIPE_ANDROID
@ -305,12 +151,11 @@ absl::Status InferenceCalculatorCpuImpl::LoadDelegate(
auto xnnpack_opts = TfLiteXNNPackDelegateOptionsDefault();
xnnpack_opts.num_threads =
GetXnnpackNumThreads(opts_has_delegate, opts_delegate);
delegate_ = TfLiteDelegatePtr(TfLiteXNNPackDelegateCreate(&xnnpack_opts),
&TfLiteXNNPackDelegateDelete);
interpreter_builder->AddDelegate(delegate_.get());
return TfLiteDelegatePtr(TfLiteXNNPackDelegateCreate(&xnnpack_opts),
&TfLiteXNNPackDelegateDelete);
}
return absl::OkStatus();
return nullptr;
}
} // namespace api2

View File

@ -0,0 +1,53 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/calculators/tensor/inference_calculator_utils.h"
#include "mediapipe/calculators/tensor/inference_calculator.pb.h"
#include "mediapipe/framework/port.h" // NOLINT: provides MEDIAPIPE_ANDROID/IOS
#if !defined(__EMSCRIPTEN__) || defined(__EMSCRIPTEN_PTHREADS__)
#include "mediapipe/util/cpu_util.h"
#endif // !__EMSCRIPTEN__ || __EMSCRIPTEN_PTHREADS__
namespace mediapipe {
namespace {
int GetXnnpackDefaultNumThreads() {
#if defined(MEDIAPIPE_ANDROID) || defined(MEDIAPIPE_IOS) || \
defined(__EMSCRIPTEN_PTHREADS__)
constexpr int kMinNumThreadsByDefault = 1;
constexpr int kMaxNumThreadsByDefault = 4;
return std::clamp(NumCPUCores() / 2, kMinNumThreadsByDefault,
kMaxNumThreadsByDefault);
#else
return 1;
#endif // MEDIAPIPE_ANDROID || MEDIAPIPE_IOS || __EMSCRIPTEN_PTHREADS__
}
} // namespace
int GetXnnpackNumThreads(
const bool opts_has_delegate,
const mediapipe::InferenceCalculatorOptions::Delegate& opts_delegate) {
static constexpr int kDefaultNumThreads = -1;
if (opts_has_delegate && opts_delegate.has_xnnpack() &&
opts_delegate.xnnpack().num_threads() != kDefaultNumThreads) {
return opts_delegate.xnnpack().num_threads();
}
return GetXnnpackDefaultNumThreads();
}
} // namespace mediapipe

View File

@ -0,0 +1,31 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_CALCULATOR_UTILS_H_
#define MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_CALCULATOR_UTILS_H_
#include "mediapipe/calculators/tensor/inference_calculator.pb.h"
namespace mediapipe {
// Returns number of threads to configure XNNPACK delegate with.
// Returns user provided value if specified. Otherwise, tries to choose optimal
// number of threads depending on the device.
int GetXnnpackNumThreads(
const bool opts_has_delegate,
const mediapipe::InferenceCalculatorOptions::Delegate& opts_delegate);
} // namespace mediapipe
#endif // MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_CALCULATOR_UTILS_H_

View File

@ -0,0 +1,122 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <cstring>
#include <memory>
#include <string>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "mediapipe/calculators/tensor/inference_calculator.h"
#include "mediapipe/calculators/tensor/inference_calculator_utils.h"
#include "mediapipe/calculators/tensor/inference_interpreter_delegate_runner.h"
#include "mediapipe/calculators/tensor/inference_runner.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
#include "tensorflow/lite/interpreter.h"
namespace mediapipe {
namespace api2 {
class InferenceCalculatorXnnpackImpl
: public NodeImpl<InferenceCalculatorXnnpack,
InferenceCalculatorXnnpackImpl> {
public:
static absl::Status UpdateContract(CalculatorContract* cc);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
absl::StatusOr<std::unique_ptr<InferenceRunner>> CreateInferenceRunner(
CalculatorContext* cc);
absl::StatusOr<TfLiteDelegatePtr> CreateDelegate(CalculatorContext* cc);
std::unique_ptr<InferenceRunner> inference_runner_;
};
absl::Status InferenceCalculatorXnnpackImpl::UpdateContract(
CalculatorContract* cc) {
const auto& options = cc->Options<mediapipe::InferenceCalculatorOptions>();
RET_CHECK(!options.model_path().empty() ^ kSideInModel(cc).IsConnected())
<< "Either model as side packet or model path in options is required.";
return absl::OkStatus();
}
absl::Status InferenceCalculatorXnnpackImpl::Open(CalculatorContext* cc) {
ASSIGN_OR_RETURN(inference_runner_, CreateInferenceRunner(cc));
return absl::OkStatus();
}
absl::Status InferenceCalculatorXnnpackImpl::Process(CalculatorContext* cc) {
if (kInTensors(cc).IsEmpty()) {
return absl::OkStatus();
}
const auto& input_tensors = *kInTensors(cc);
RET_CHECK(!input_tensors.empty());
ASSIGN_OR_RETURN(std::vector<Tensor> output_tensors,
inference_runner_->Run(input_tensors));
kOutTensors(cc).Send(std::move(output_tensors));
return absl::OkStatus();
}
absl::Status InferenceCalculatorXnnpackImpl::Close(CalculatorContext* cc) {
inference_runner_ = nullptr;
return absl::OkStatus();
}
absl::StatusOr<std::unique_ptr<InferenceRunner>>
InferenceCalculatorXnnpackImpl::CreateInferenceRunner(CalculatorContext* cc) {
ASSIGN_OR_RETURN(auto model_packet, GetModelAsPacket(cc));
ASSIGN_OR_RETURN(auto op_resolver_packet, GetOpResolverAsPacket(cc));
const int interpreter_num_threads =
cc->Options<mediapipe::InferenceCalculatorOptions>().cpu_num_thread();
ASSIGN_OR_RETURN(TfLiteDelegatePtr delegate, CreateDelegate(cc));
return CreateInferenceInterpreterDelegateRunner(
std::move(model_packet), std::move(op_resolver_packet),
std::move(delegate), interpreter_num_threads);
}
absl::StatusOr<TfLiteDelegatePtr>
InferenceCalculatorXnnpackImpl::CreateDelegate(CalculatorContext* cc) {
const auto& calculator_opts =
cc->Options<mediapipe::InferenceCalculatorOptions>();
auto opts_delegate = calculator_opts.delegate();
if (!kDelegate(cc).IsEmpty()) {
const mediapipe::InferenceCalculatorOptions::Delegate&
input_side_packet_delegate = kDelegate(cc).Get();
RET_CHECK(
input_side_packet_delegate.has_xnnpack() ||
input_side_packet_delegate.delegate_case() ==
mediapipe::InferenceCalculatorOptions::Delegate::DELEGATE_NOT_SET)
<< "inference_calculator_cpu only supports delegate input side packet "
<< "for TFLite, XNNPack";
opts_delegate.MergeFrom(input_side_packet_delegate);
}
const bool opts_has_delegate =
calculator_opts.has_delegate() || !kDelegate(cc).IsEmpty();
auto xnnpack_opts = TfLiteXNNPackDelegateOptionsDefault();
xnnpack_opts.num_threads =
GetXnnpackNumThreads(opts_has_delegate, opts_delegate);
return TfLiteDelegatePtr(TfLiteXNNPackDelegateCreate(&xnnpack_opts),
&TfLiteXNNPackDelegateDelete);
}
} // namespace api2
} // namespace mediapipe

View File

@ -0,0 +1,181 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/calculators/tensor/inference_interpreter_delegate_runner.h"
#include <memory>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/ret_check.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/interpreter_builder.h"
namespace mediapipe {
namespace {
template <typename T>
void CopyTensorBufferToInterpreter(const Tensor& input_tensor,
tflite::Interpreter* interpreter,
int input_tensor_index) {
auto input_tensor_view = input_tensor.GetCpuReadView();
auto input_tensor_buffer = input_tensor_view.buffer<T>();
T* local_tensor_buffer =
interpreter->typed_input_tensor<T>(input_tensor_index);
std::memcpy(local_tensor_buffer, input_tensor_buffer, input_tensor.bytes());
}
template <typename T>
void CopyTensorBufferFromInterpreter(tflite::Interpreter* interpreter,
int output_tensor_index,
Tensor* output_tensor) {
auto output_tensor_view = output_tensor->GetCpuWriteView();
auto output_tensor_buffer = output_tensor_view.buffer<T>();
T* local_tensor_buffer =
interpreter->typed_output_tensor<T>(output_tensor_index);
std::memcpy(output_tensor_buffer, local_tensor_buffer,
output_tensor->bytes());
}
} // namespace
class InferenceInterpreterDelegateRunner : public InferenceRunner {
public:
InferenceInterpreterDelegateRunner(
api2::Packet<TfLiteModelPtr> model,
std::unique_ptr<tflite::Interpreter> interpreter,
TfLiteDelegatePtr delegate)
: model_(std::move(model)),
interpreter_(std::move(interpreter)),
delegate_(std::move(delegate)) {}
absl::StatusOr<std::vector<Tensor>> Run(
const std::vector<Tensor>& input_tensors) override;
private:
api2::Packet<TfLiteModelPtr> model_;
std::unique_ptr<tflite::Interpreter> interpreter_;
TfLiteDelegatePtr delegate_;
};
absl::StatusOr<std::vector<Tensor>> InferenceInterpreterDelegateRunner::Run(
const std::vector<Tensor>& input_tensors) {
// Read CPU input into tensors.
RET_CHECK_EQ(interpreter_->inputs().size(), input_tensors.size());
for (int i = 0; i < input_tensors.size(); ++i) {
const TfLiteType input_tensor_type =
interpreter_->tensor(interpreter_->inputs()[i])->type;
switch (input_tensor_type) {
case TfLiteType::kTfLiteFloat16:
case TfLiteType::kTfLiteFloat32: {
CopyTensorBufferToInterpreter<float>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteUInt8: {
CopyTensorBufferToInterpreter<uint8>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteInt8: {
CopyTensorBufferToInterpreter<int8>(input_tensors[i],
interpreter_.get(), i);
break;
}
case TfLiteType::kTfLiteInt32: {
CopyTensorBufferToInterpreter<int32_t>(input_tensors[i],
interpreter_.get(), i);
break;
}
default:
return absl::InvalidArgumentError(
absl::StrCat("Unsupported input tensor type:", input_tensor_type));
}
}
// Run inference.
RET_CHECK_EQ(interpreter_->Invoke(), kTfLiteOk);
// Output result tensors (CPU).
const auto& tensor_indexes = interpreter_->outputs();
std::vector<Tensor> output_tensors;
output_tensors.reserve(tensor_indexes.size());
for (int i = 0; i < tensor_indexes.size(); ++i) {
TfLiteTensor* tensor = interpreter_->tensor(tensor_indexes[i]);
Tensor::Shape shape{std::vector<int>{
tensor->dims->data, tensor->dims->data + tensor->dims->size}};
switch (tensor->type) {
case TfLiteType::kTfLiteFloat16:
case TfLiteType::kTfLiteFloat32:
output_tensors.emplace_back(Tensor::ElementType::kFloat32, shape);
CopyTensorBufferFromInterpreter<float>(interpreter_.get(), i,
&output_tensors.back());
break;
case TfLiteType::kTfLiteUInt8:
output_tensors.emplace_back(
Tensor::ElementType::kUInt8, shape,
Tensor::QuantizationParameters{tensor->params.scale,
tensor->params.zero_point});
CopyTensorBufferFromInterpreter<uint8>(interpreter_.get(), i,
&output_tensors.back());
break;
case TfLiteType::kTfLiteInt8:
output_tensors.emplace_back(
Tensor::ElementType::kInt8, shape,
Tensor::QuantizationParameters{tensor->params.scale,
tensor->params.zero_point});
CopyTensorBufferFromInterpreter<int8>(interpreter_.get(), i,
&output_tensors.back());
break;
case TfLiteType::kTfLiteInt32:
output_tensors.emplace_back(Tensor::ElementType::kInt32, shape);
CopyTensorBufferFromInterpreter<int32_t>(interpreter_.get(), i,
&output_tensors.back());
break;
default:
return absl::InvalidArgumentError(
absl::StrCat("Unsupported output tensor type:",
TfLiteTypeGetName(tensor->type)));
}
}
return output_tensors;
}
absl::StatusOr<std::unique_ptr<InferenceRunner>>
CreateInferenceInterpreterDelegateRunner(
api2::Packet<TfLiteModelPtr> model,
api2::Packet<tflite::OpResolver> op_resolver, TfLiteDelegatePtr delegate,
int interpreter_num_threads) {
tflite::InterpreterBuilder interpreter_builder(*model.Get(),
op_resolver.Get());
if (delegate) {
interpreter_builder.AddDelegate(delegate.get());
}
#if defined(__EMSCRIPTEN__)
interpreter_builder.SetNumThreads(1);
#else
interpreter_builder.SetNumThreads(interpreter_num_threads);
#endif // __EMSCRIPTEN__
std::unique_ptr<tflite::Interpreter> interpreter;
RET_CHECK_EQ(interpreter_builder(&interpreter), kTfLiteOk);
RET_CHECK(interpreter);
RET_CHECK_EQ(interpreter->AllocateTensors(), kTfLiteOk);
return std::make_unique<InferenceInterpreterDelegateRunner>(
std::move(model), std::move(interpreter), std::move(delegate));
}
} // namespace mediapipe

View File

@ -0,0 +1,46 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_INTERPRETER_DELEGATE_RUNNER_H_
#define MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_INTERPRETER_DELEGATE_RUNNER_H_
#include <memory>
#include <vector>
#include "absl/status/statusor.h"
#include "mediapipe/calculators/tensor/inference_runner.h"
#include "mediapipe/framework/api2/packet.h"
#include "mediapipe/util/tflite/tflite_model_loader.h"
#include "tensorflow/lite/core/api/op_resolver.h"
#include "tensorflow/lite/interpreter.h"
namespace mediapipe {
using TfLiteDelegatePtr =
std::unique_ptr<TfLiteDelegate, std::function<void(TfLiteDelegate*)>>;
// Creates inference runner which run inference using newly initialized
// interpreter and provided `delegate`.
//
// `delegate` can be nullptr, in that case newly initialized interpreter will
// use what is available by default.
absl::StatusOr<std::unique_ptr<InferenceRunner>>
CreateInferenceInterpreterDelegateRunner(
api2::Packet<TfLiteModelPtr> model,
api2::Packet<tflite::OpResolver> op_resolver, TfLiteDelegatePtr delegate,
int interpreter_num_threads);
} // namespace mediapipe
#endif // MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_INTERPRETER_DELEGATE_RUNNER_H_

View File

@ -0,0 +1,19 @@
#ifndef MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_RUNNER_H_
#define MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_RUNNER_H_
#include "absl/status/statusor.h"
#include "mediapipe/framework/formats/tensor.h"
namespace mediapipe {
// Common interface to implement inference runners in MediaPipe.
class InferenceRunner {
public:
virtual ~InferenceRunner() = default;
virtual absl::StatusOr<std::vector<Tensor>> Run(
const std::vector<Tensor>& inputs) = 0;
};
} // namespace mediapipe
#endif // MEDIAPIPE_CALCULATORS_TENSOR_INFERENCE_RUNNER_H_

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@ -84,6 +84,7 @@
{
"idiom" : "ipad",
"size" : "76x76",
"filename" : "76_c_Ipad_2x.png",
"scale" : "2x"
},
{

View File

@ -324,6 +324,63 @@ TEST(BuilderTest, GraphIndexes) {
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
}
class AnyAndSameTypeCalculator : public NodeIntf {
public:
static constexpr Input<AnyType> kAnyTypeInput{"INPUT"};
static constexpr Output<AnyType> kAnyTypeOutput{"ANY_OUTPUT"};
static constexpr Output<SameType<kAnyTypeInput>> kSameTypeOutput{
"SAME_OUTPUT"};
static constexpr Input<int> kIntInput{"INT_INPUT"};
// `SameType` usage for this output is only for testing purposes.
//
// `SameType` is designed to work with inputs of `AnyType` and, normally, you
// would not use `Output<SameType<kIntInput>>` in a real calculator. You
// should write `Output<int>` instead, since the type is known.
static constexpr Output<SameType<kIntInput>> kSameIntOutput{
"SAME_INT_OUTPUT"};
MEDIAPIPE_NODE_INTERFACE(AnyTypeCalculator, kAnyTypeInput, kAnyTypeOutput,
kSameTypeOutput);
};
TEST(BuilderTest, AnyAndSameTypeHandledProperly) {
builder::Graph graph;
builder::Source<internal::Generic> any_input =
graph[Input<AnyType>{"GRAPH_ANY_INPUT"}];
builder::Source<int> int_input = graph[Input<int>{"GRAPH_INT_INPUT"}];
auto& node = graph.AddNode("AnyAndSameTypeCalculator");
any_input >> node[AnyAndSameTypeCalculator::kAnyTypeInput];
int_input >> node[AnyAndSameTypeCalculator::kIntInput];
builder::Source<internal::Generic> any_type_output =
node[AnyAndSameTypeCalculator::kAnyTypeOutput];
any_type_output.SetName("any_type_output");
builder::Source<internal::Generic> same_type_output =
node[AnyAndSameTypeCalculator::kSameTypeOutput];
same_type_output.SetName("same_type_output");
builder::Source<internal::Generic> same_int_output =
node[AnyAndSameTypeCalculator::kSameIntOutput];
same_int_output.SetName("same_int_output");
CalculatorGraphConfig expected =
mediapipe::ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
node {
calculator: "AnyAndSameTypeCalculator"
input_stream: "INPUT:__stream_0"
input_stream: "INT_INPUT:__stream_1"
output_stream: "ANY_OUTPUT:any_type_output"
output_stream: "SAME_INT_OUTPUT:same_int_output"
output_stream: "SAME_OUTPUT:same_type_output"
}
input_stream: "GRAPH_ANY_INPUT:__stream_0"
input_stream: "GRAPH_INT_INPUT:__stream_1"
)pb");
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
}
} // namespace test
} // namespace api2
} // namespace mediapipe

View File

@ -27,6 +27,12 @@ using HolderBase = mediapipe::packet_internal::HolderBase;
template <typename T>
class Packet;
struct DynamicType {};
struct AnyType : public DynamicType {
AnyType() = delete;
};
// Type-erased packet.
class PacketBase {
public:
@ -148,9 +154,8 @@ inline void CheckCompatibleType(const HolderBase& holder,
<< " was requested.";
}
struct Generic {
Generic() = delete;
};
// TODO: remove usage of internal::Generic and simply use AnyType.
using Generic = ::mediapipe::api2::AnyType;
template <class V, class U>
struct IsCompatibleType : std::false_type {};

View File

@ -77,10 +77,6 @@ struct NoneType {
NoneType() = delete;
};
struct DynamicType {};
struct AnyType : public DynamicType {};
template <auto& P>
class SameType : public DynamicType {
public:

View File

@ -103,6 +103,18 @@ public class ExternalTextureConverter implements TextureFrameProducer {
}
}
/**
* Re-renders the current frame. Notifies all consumers as if it were a new frame. This should not
* typically be used but can be useful for cases where the consumer has lost ownership of the most
* recent frame and needs to get it again. This does nothing if no frame has yet been received.
*/
public void rerenderCurrentFrame() {
SurfaceTexture surfaceTexture = getSurfaceTexture();
if (thread != null && surfaceTexture != null && thread.getHasReceivedFirstFrame()) {
thread.onFrameAvailable(surfaceTexture);
}
}
/**
* Sets the new buffer pool size. This is safe to set at any time.
*
@ -278,6 +290,7 @@ public class ExternalTextureConverter implements TextureFrameProducer {
private volatile SurfaceTexture internalSurfaceTexture = null;
private int[] textures = null;
private final List<TextureFrameConsumer> consumers;
private volatile boolean hasReceivedFirstFrame = false;
private final Queue<PoolTextureFrame> framesAvailable = new ArrayDeque<>();
private int framesInUse = 0;
@ -335,6 +348,7 @@ public class ExternalTextureConverter implements TextureFrameProducer {
}
public void setSurfaceTexture(SurfaceTexture texture, int width, int height) {
hasReceivedFirstFrame = false;
if (surfaceTexture != null) {
surfaceTexture.setOnFrameAvailableListener(null);
}
@ -381,6 +395,10 @@ public class ExternalTextureConverter implements TextureFrameProducer {
return surfaceTexture != null ? surfaceTexture : internalSurfaceTexture;
}
public boolean getHasReceivedFirstFrame() {
return hasReceivedFirstFrame;
}
@Override
public void onFrameAvailable(SurfaceTexture surfaceTexture) {
handler.post(() -> renderNext(surfaceTexture));
@ -427,6 +445,7 @@ public class ExternalTextureConverter implements TextureFrameProducer {
// pending on the handler. When that happens, we should simply disregard the call.
return;
}
hasReceivedFirstFrame = true;
try {
synchronized (consumers) {
boolean frameUpdated = false;

View File

@ -69,7 +69,8 @@ objc_library(
"-Wno-shorten-64-to-32",
],
sdk_frameworks = ["Accelerate"],
visibility = ["//mediapipe/framework:mediapipe_internal"],
# This build rule is public to allow external customers to build their own iOS apps.
visibility = ["//visibility:public"],
deps = [
":CFHolder",
":util",
@ -124,7 +125,8 @@ objc_library(
"CoreVideo",
"Foundation",
],
visibility = ["//mediapipe/framework:mediapipe_internal"],
# This build rule is public to allow external customers to build their own iOS apps.
visibility = ["//visibility:public"],
)
objc_library(
@ -166,7 +168,8 @@ objc_library(
"Foundation",
"GLKit",
],
visibility = ["//mediapipe/framework:mediapipe_internal"],
# This build rule is public to allow external customers to build their own iOS apps.
visibility = ["//visibility:public"],
deps = [
":mediapipe_framework_ios",
":mediapipe_gl_view_renderer",

View File

@ -23,7 +23,7 @@
@property(nonatomic, getter=isAuthorized, readonly) BOOL authorized;
/// Session preset to use for capturing.
@property(nonatomic) NSString *sessionPreset;
@property(nonatomic, nullable) NSString *sessionPreset;
/// Which camera on an iOS device to use, assuming iOS device with more than one camera.
@property(nonatomic) AVCaptureDevicePosition cameraPosition;

View File

@ -17,21 +17,21 @@ import os
import shutil
import urllib.request
_OSS_URL_PREFIX = 'https://github.com/google/mediapipe/raw/master/'
_GCS_URL_PREFIX = 'https://storage.googleapis.com/mediapipe-assets/'
def download_oss_model(model_path: str):
"""Downloads the oss model from the MediaPipe GitHub repo if it doesn't exist in the package."""
"""Downloads the oss model from Google Cloud Storage if it doesn't exist in the package."""
mp_root_path = os.sep.join(os.path.abspath(__file__).split(os.sep)[:-4])
model_abspath = os.path.join(mp_root_path, model_path)
if os.path.exists(model_abspath):
return
model_url = _OSS_URL_PREFIX + model_path
model_url = _GCS_URL_PREFIX + model_path.split('/')[-1]
print('Downloading model to ' + model_abspath)
with urllib.request.urlopen(model_url) as response, open(model_abspath,
'wb') as out_file:
if response.code != 200:
raise ConnectionError('Cannot download ' + model_path +
' from the MediaPipe Github repo.')
' from Google Cloud Storage.')
shutil.copyfileobj(response, out_file)

View File

@ -25,7 +25,7 @@ message AudioClassifierOptions {
extend mediapipe.CalculatorOptions {
optional AudioClassifierOptions ext = 451755788;
}
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;

View File

@ -43,3 +43,73 @@ cc_library(
],
alwayslink = 1,
)
mediapipe_proto_library(
name = "score_calibration_calculator_proto",
srcs = ["score_calibration_calculator.proto"],
deps = [
"//mediapipe/framework:calculator_options_proto",
"//mediapipe/framework:calculator_proto",
],
)
cc_library(
name = "score_calibration_calculator",
srcs = ["score_calibration_calculator.cc"],
deps = [
":score_calibration_calculator_cc_proto",
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework/api2:node",
"//mediapipe/framework/api2:port",
"//mediapipe/framework/formats:tensor",
"//mediapipe/framework/port:ret_check",
"//mediapipe/tasks/cc:common",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@com_google_absl//absl/strings:str_format",
],
alwayslink = 1,
)
cc_test(
name = "score_calibration_calculator_test",
srcs = ["score_calibration_calculator_test.cc"],
deps = [
":score_calibration_calculator",
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework:calculator_runner",
"//mediapipe/framework/formats:tensor",
"//mediapipe/framework/port:gtest_main",
"//mediapipe/framework/port:parse_text_proto",
"@com_google_absl//absl/status",
"@com_google_absl//absl/strings:str_format",
],
)
cc_library(
name = "score_calibration_utils",
srcs = ["score_calibration_utils.cc"],
hdrs = ["score_calibration_utils.h"],
deps = [
":score_calibration_calculator_cc_proto",
"//mediapipe/framework/port:status",
"//mediapipe/tasks/cc:common",
"//mediapipe/tasks/metadata:metadata_schema_cc",
"@com_google_absl//absl/status",
"@com_google_absl//absl/strings",
"@com_google_absl//absl/strings:str_format",
],
)
cc_test(
name = "score_calibration_utils_test",
srcs = ["score_calibration_utils_test.cc"],
deps = [
":score_calibration_calculator_cc_proto",
":score_calibration_utils",
"//mediapipe/framework/port:gtest_main",
"//mediapipe/framework/port:parse_text_proto",
"//mediapipe/tasks/metadata:metadata_schema_cc",
"@com_google_absl//absl/strings",
],
)

View File

@ -0,0 +1,259 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <functional>
#include <memory>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "mediapipe/framework/api2/node.h"
#include "mediapipe/framework/api2/port.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/tasks/cc/common.h"
#include "mediapipe/tasks/cc/components/calculators/score_calibration_calculator.pb.h"
namespace mediapipe {
namespace api2 {
using ::absl::StatusCode;
using ::mediapipe::tasks::CreateStatusWithPayload;
using ::mediapipe::tasks::MediaPipeTasksStatus;
using ::mediapipe::tasks::ScoreCalibrationCalculatorOptions;
namespace {
// Used to prevent log(<=0.0) in ClampedLog() calls.
constexpr float kLogScoreMinimum = 1e-16;
// Returns the following, depending on x:
// x => threshold: log(x)
// x < threshold: 2 * log(thresh) - log(2 * thresh - x)
// This form (a) is anti-symmetric about the threshold and (b) has continuous
// value and first derivative. This is done to prevent taking the log of values
// close to 0 which can lead to floating point errors and is better than simple
// clamping since it preserves order for scores less than the threshold.
float ClampedLog(float x, float threshold) {
if (x < threshold) {
return 2.0 * std::log(static_cast<double>(threshold)) -
log(2.0 * threshold - x);
}
return std::log(static_cast<double>(x));
}
} // namespace
// Applies score calibration to a tensor of score predictions, typically applied
// to the output of a classification or object detection model.
//
// See corresponding options for more details on the score calibration
// parameters and formula.
//
// Inputs:
// SCORES - std::vector<Tensor>
// A vector containing a single Tensor `x` of type kFloat32, representing
// the scores to calibrate. By default (i.e. if INDICES is not connected),
// x[i] will be calibrated using the sigmoid provided at index i in the
// options.
// INDICES - std::vector<Tensor> @Optional
// An optional vector containing a single Tensor `y` of type kFloat32 and
// same size as `x`. If provided, x[i] will be calibrated using the sigmoid
// provided at index y[i] (casted as an integer) in the options. `x` and `y`
// must contain the same number of elements. Typically used for object
// detection models.
//
// Outputs:
// CALIBRATED_SCORES - std::vector<Tensor>
// A vector containing a single Tensor of type kFloat32 and of the same size
// as the input tensors. Contains the output calibrated scores.
class ScoreCalibrationCalculator : public Node {
public:
static constexpr Input<std::vector<Tensor>> kScoresIn{"SCORES"};
static constexpr Input<std::vector<Tensor>>::Optional kIndicesIn{"INDICES"};
static constexpr Output<std::vector<Tensor>> kScoresOut{"CALIBRATED_SCORES"};
MEDIAPIPE_NODE_CONTRACT(kScoresIn, kIndicesIn, kScoresOut);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
private:
ScoreCalibrationCalculatorOptions options_;
std::function<float(float)> score_transformation_;
// Computes the calibrated score for the provided index. Does not check for
// out-of-bounds index.
float ComputeCalibratedScore(int index, float score);
// Same as above, but does check for out-of-bounds index.
absl::StatusOr<float> SafeComputeCalibratedScore(int index, float score);
};
absl::Status ScoreCalibrationCalculator::Open(CalculatorContext* cc) {
options_ = cc->Options<ScoreCalibrationCalculatorOptions>();
// Sanity checks.
if (options_.sigmoids_size() == 0) {
return CreateStatusWithPayload(StatusCode::kInvalidArgument,
"Expected at least one sigmoid, found none.",
MediaPipeTasksStatus::kInvalidArgumentError);
}
for (const auto& sigmoid : options_.sigmoids()) {
if (sigmoid.has_scale() && sigmoid.scale() < 0.0) {
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat("The scale parameter of the sigmoids must be "
"positive, found %f.",
sigmoid.scale()),
MediaPipeTasksStatus::kInvalidArgumentError);
}
}
// Set score transformation function once and for all.
switch (options_.score_transformation()) {
case tasks::ScoreCalibrationCalculatorOptions::IDENTITY:
score_transformation_ = [](float x) { return x; };
break;
case tasks::ScoreCalibrationCalculatorOptions::LOG:
score_transformation_ = [](float x) {
return ClampedLog(x, kLogScoreMinimum);
};
break;
case tasks::ScoreCalibrationCalculatorOptions::INVERSE_LOGISTIC:
score_transformation_ = [](float x) {
return (ClampedLog(x, kLogScoreMinimum) -
ClampedLog(1.0 - x, kLogScoreMinimum));
};
break;
default:
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat(
"Unsupported ScoreTransformation type: %s",
ScoreCalibrationCalculatorOptions::ScoreTransformation_Name(
options_.score_transformation())),
MediaPipeTasksStatus::kInvalidArgumentError);
}
return absl::OkStatus();
}
absl::Status ScoreCalibrationCalculator::Process(CalculatorContext* cc) {
RET_CHECK_EQ(kScoresIn(cc)->size(), 1);
const auto& scores = (*kScoresIn(cc))[0];
RET_CHECK(scores.element_type() == Tensor::ElementType::kFloat32);
auto scores_view = scores.GetCpuReadView();
const float* raw_scores = scores_view.buffer<float>();
int num_scores = scores.shape().num_elements();
auto output_tensors = std::make_unique<std::vector<Tensor>>();
output_tensors->reserve(1);
output_tensors->emplace_back(scores.element_type(), scores.shape());
auto calibrated_scores = &output_tensors->back();
auto calibrated_scores_view = calibrated_scores->GetCpuWriteView();
float* raw_calibrated_scores = calibrated_scores_view.buffer<float>();
if (kIndicesIn(cc).IsConnected()) {
RET_CHECK_EQ(kIndicesIn(cc)->size(), 1);
const auto& indices = (*kIndicesIn(cc))[0];
RET_CHECK(indices.element_type() == Tensor::ElementType::kFloat32);
if (num_scores != indices.shape().num_elements()) {
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat("Mismatch between number of elements in the input "
"scores tensor (%d) and indices tensor (%d).",
num_scores, indices.shape().num_elements()),
MediaPipeTasksStatus::kMetadataInconsistencyError);
}
auto indices_view = indices.GetCpuReadView();
const float* raw_indices = indices_view.buffer<float>();
for (int i = 0; i < num_scores; ++i) {
// Use the "safe" flavor as we need to check that the externally provided
// indices are not out-of-bounds.
ASSIGN_OR_RETURN(raw_calibrated_scores[i],
SafeComputeCalibratedScore(
static_cast<int>(raw_indices[i]), raw_scores[i]));
}
} else {
if (num_scores != options_.sigmoids_size()) {
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat("Mismatch between number of sigmoids (%d) and number "
"of elements in the input scores tensor (%d).",
options_.sigmoids_size(), num_scores),
MediaPipeTasksStatus::kMetadataInconsistencyError);
}
for (int i = 0; i < num_scores; ++i) {
// Use the "unsafe" flavor as we have already checked for out-of-bounds
// issues.
raw_calibrated_scores[i] = ComputeCalibratedScore(i, raw_scores[i]);
}
}
kScoresOut(cc).Send(std::move(output_tensors));
return absl::OkStatus();
}
float ScoreCalibrationCalculator::ComputeCalibratedScore(int index,
float score) {
const auto& sigmoid = options_.sigmoids(index);
bool is_empty =
!sigmoid.has_scale() || !sigmoid.has_offset() || !sigmoid.has_slope();
bool is_below_min_score =
sigmoid.has_min_score() && score < sigmoid.min_score();
if (is_empty || is_below_min_score) {
return options_.default_score();
}
float transformed_score = score_transformation_(score);
float scale_shifted_score =
transformed_score * sigmoid.slope() + sigmoid.offset();
// For numerical stability use 1 / (1+exp(-x)) when scale_shifted_score >= 0
// and exp(x) / (1+exp(x)) when scale_shifted_score < 0.
float calibrated_score;
if (scale_shifted_score >= 0.0) {
calibrated_score =
sigmoid.scale() /
(1.0 + std::exp(static_cast<double>(-scale_shifted_score)));
} else {
float score_exp = std::exp(static_cast<double>(scale_shifted_score));
calibrated_score = sigmoid.scale() * score_exp / (1.0 + score_exp);
}
// Scale is non-negative (checked in SigmoidFromLabelAndLine),
// thus calibrated_score should be in the range of [0, scale]. However, due to
// numberical stability issue, it may fall out of the boundary. Cap the value
// to [0, scale] instead.
return std::max(std::min(calibrated_score, sigmoid.scale()), 0.0f);
}
absl::StatusOr<float> ScoreCalibrationCalculator::SafeComputeCalibratedScore(
int index, float score) {
if (index < 0) {
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat("Expected positive indices, found %d.", index),
MediaPipeTasksStatus::kInvalidArgumentError);
}
if (index > options_.sigmoids_size()) {
return CreateStatusWithPayload(
StatusCode::kInvalidArgument,
absl::StrFormat("Unable to get score calibration parameters for index "
"%d : only %d sigmoids were provided.",
index, options_.sigmoids_size()),
MediaPipeTasksStatus::kMetadataInconsistencyError);
}
return ComputeCalibratedScore(index, score);
}
MEDIAPIPE_REGISTER_NODE(ScoreCalibrationCalculator);
} // namespace api2
} // namespace mediapipe

View File

@ -0,0 +1,67 @@
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
syntax = "proto2";
package mediapipe.tasks;
import "mediapipe/framework/calculator.proto";
message ScoreCalibrationCalculatorOptions {
extend mediapipe.CalculatorOptions {
optional ScoreCalibrationCalculatorOptions ext = 470204318;
}
// Score calibration parameters for one individual category. The formula used
// to transform the uncalibrated score `x` is:
// * `f(x) = scale / (1 + e^-(slope * g(x) + offset))` if `x > min_score` or
// if no min_score has been specified,
// * `f(x) = default_score` otherwise or if no scale, slope or offset have
// been specified.
//
// Where:
// * scale must be positive,
// * g(x) is a global (i.e. category independent) transform specified using
// the score_transformation field,
// * default_score is a global parameter defined below.
//
// There should be exactly one sigmoid per number of supported output
// categories in the model, with either:
// * no fields set,
// * scale, slope and offset set,
// * all fields set.
message Sigmoid {
optional float scale = 1;
optional float slope = 2;
optional float offset = 3;
optional float min_score = 4;
}
repeated Sigmoid sigmoids = 1;
// Score transformation that defines the `g(x)` function in the above formula.
enum ScoreTransformation {
UNSPECIFIED = 0;
// g(x) = x.
IDENTITY = 1;
// g(x) = log(x).
LOG = 2;
// g(x) = log(x) - log(1 - x).
INVERSE_LOGISTIC = 3;
}
optional ScoreTransformation score_transformation = 2 [default = IDENTITY];
// Default score.
optional float default_score = 3;
}

View File

@ -0,0 +1,309 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <memory>
#include <optional>
#include <vector>
#include "absl/status/status.h"
#include "absl/strings/str_format.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_runner.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/gmock.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status_matchers.h"
namespace mediapipe {
namespace {
using ::mediapipe::ParseTextProtoOrDie;
using ::testing::HasSubstr;
using ::testing::TestParamInfo;
using ::testing::TestWithParam;
using ::testing::Values;
using Node = ::mediapipe::CalculatorGraphConfig::Node;
// Builds the graph and feeds inputs.
void BuildGraph(CalculatorRunner* runner, std::vector<float> scores,
std::optional<std::vector<int>> indices = std::nullopt) {
auto scores_tensors = std::make_unique<std::vector<Tensor>>();
scores_tensors->emplace_back(
Tensor::ElementType::kFloat32,
Tensor::Shape{1, static_cast<int>(scores.size())});
auto scores_view = scores_tensors->back().GetCpuWriteView();
float* scores_buffer = scores_view.buffer<float>();
ASSERT_NE(scores_buffer, nullptr);
for (int i = 0; i < scores.size(); ++i) {
scores_buffer[i] = scores[i];
}
auto& input_scores_packets = runner->MutableInputs()->Tag("SCORES").packets;
input_scores_packets.push_back(
mediapipe::Adopt(scores_tensors.release()).At(mediapipe::Timestamp(0)));
if (indices.has_value()) {
auto indices_tensors = std::make_unique<std::vector<Tensor>>();
indices_tensors->emplace_back(
Tensor::ElementType::kFloat32,
Tensor::Shape{1, static_cast<int>(indices->size())});
auto indices_view = indices_tensors->back().GetCpuWriteView();
float* indices_buffer = indices_view.buffer<float>();
ASSERT_NE(indices_buffer, nullptr);
for (int i = 0; i < indices->size(); ++i) {
indices_buffer[i] = static_cast<float>((*indices)[i]);
}
auto& input_indices_packets =
runner->MutableInputs()->Tag("INDICES").packets;
input_indices_packets.push_back(mediapipe::Adopt(indices_tensors.release())
.At(mediapipe::Timestamp(0)));
}
}
// Compares the provided tensor contents with the expected values.
void ValidateResult(const Tensor& actual, const std::vector<float>& expected) {
EXPECT_EQ(actual.element_type(), Tensor::ElementType::kFloat32);
EXPECT_EQ(expected.size(), actual.shape().num_elements());
auto view = actual.GetCpuReadView();
auto buffer = view.buffer<float>();
for (int i = 0; i < expected.size(); ++i) {
EXPECT_FLOAT_EQ(expected[i], buffer[i]);
}
}
TEST(ScoreCalibrationCalculatorTest, FailsWithNoSigmoid) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {}
}
)pb"));
BuildGraph(&runner, {0.5, 0.5, 0.5});
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(),
HasSubstr("Expected at least one sigmoid, found none"));
}
TEST(ScoreCalibrationCalculatorTest, FailsWithNegativeScale) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { slope: 1 offset: 1 scale: -1 }
}
}
)pb"));
BuildGraph(&runner, {0.5, 0.5, 0.5});
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(
status.message(),
HasSubstr("The scale parameter of the sigmoids must be positive"));
}
TEST(ScoreCalibrationCalculatorTest, FailsWithUnspecifiedTransformation) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { slope: 1 offset: 1 scale: 1 }
score_transformation: UNSPECIFIED
}
}
)pb"));
BuildGraph(&runner, {0.5, 0.5, 0.5});
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(),
HasSubstr("Unsupported ScoreTransformation type"));
}
// Struct holding the parameters for parameterized tests below.
struct CalibrationTestParams {
// The score transformation to apply.
std::string score_transformation;
// The expected results.
std::vector<float> expected_results;
};
class CalibrationWithoutIndicesTest
: public TestWithParam<CalibrationTestParams> {};
TEST_P(CalibrationWithoutIndicesTest, Succeeds) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(absl::StrFormat(
R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.3 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.6 }
sigmoids {}
score_transformation: %s
default_score: 0.2
}
}
)pb",
GetParam().score_transformation)));
BuildGraph(&runner, {0.2, 0.3, 0.4, 0.5});
MP_ASSERT_OK(runner.Run());
const Tensor& results = runner.Outputs()
.Get("CALIBRATED_SCORES", 0)
.packets[0]
.Get<std::vector<Tensor>>()[0];
ValidateResult(results, GetParam().expected_results);
}
INSTANTIATE_TEST_SUITE_P(
ScoreCalibrationCalculatorTest, CalibrationWithoutIndicesTest,
Values(CalibrationTestParams{.score_transformation = "IDENTITY",
.expected_results = {0.4948505976,
0.5059588508, 0.2, 0.2}},
CalibrationTestParams{
.score_transformation = "LOG",
.expected_results = {0.2976901255, 0.3393665735, 0.2, 0.2}},
CalibrationTestParams{
.score_transformation = "INVERSE_LOGISTIC",
.expected_results = {0.3203217641, 0.3778080605, 0.2, 0.2}}),
[](const TestParamInfo<CalibrationWithoutIndicesTest::ParamType>& info) {
return info.param.score_transformation;
});
TEST(ScoreCalibrationCalculatorTest, FailsWithMissingSigmoids) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.3 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.6 }
sigmoids {}
score_transformation: LOG
default_score: 0.2
}
}
)pb"));
BuildGraph(&runner, {0.2, 0.3, 0.4, 0.5, 0.6});
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(),
HasSubstr("Mismatch between number of sigmoids"));
}
TEST(ScoreCalibrationCalculatorTest, SucceedsWithIndices) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
input_stream: "INDICES:indices"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.3 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.6 }
sigmoids {}
score_transformation: IDENTITY
default_score: 0.2
}
}
)pb"));
std::vector<int> indices = {1, 2, 3, 0};
BuildGraph(&runner, {0.3, 0.4, 0.5, 0.2}, indices);
MP_ASSERT_OK(runner.Run());
const Tensor& results = runner.Outputs()
.Get("CALIBRATED_SCORES", 0)
.packets[0]
.Get<std::vector<Tensor>>()[0];
ValidateResult(results, {0.5059588508, 0.2, 0.2, 0.4948505976});
}
TEST(ScoreCalibrationCalculatorTest, FailsWithNegativeIndex) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
input_stream: "INDICES:indices"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.3 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.6 }
sigmoids {}
score_transformation: IDENTITY
default_score: 0.2
}
}
)pb"));
std::vector<int> indices = {0, 1, 2, -1};
BuildGraph(&runner, {0.2, 0.3, 0.4, 0.5}, indices);
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(), HasSubstr("Expected positive indices"));
}
TEST(ScoreCalibrationCalculatorTest, FailsWithOutOfBoundsIndex) {
CalculatorRunner runner(ParseTextProtoOrDie<Node>(R"pb(
calculator: "ScoreCalibrationCalculator"
input_stream: "SCORES:scores"
input_stream: "INDICES:indices"
output_stream: "CALIBRATED_SCORES:calibrated_scores"
options {
[mediapipe.tasks.ScoreCalibrationCalculatorOptions.ext] {
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.3 }
sigmoids { scale: 0.9 slope: 0.5 offset: 0.1 min_score: 0.6 }
sigmoids {}
score_transformation: IDENTITY
default_score: 0.2
}
}
)pb"));
std::vector<int> indices = {0, 1, 5, 3};
BuildGraph(&runner, {0.2, 0.3, 0.4, 0.5}, indices);
auto status = runner.Run();
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(
status.message(),
HasSubstr("Unable to get score calibration parameters for index"));
}
} // namespace
} // namespace mediapipe

View File

@ -0,0 +1,115 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/tasks/cc/components/calculators/score_calibration_utils.h"
#include <vector>
#include "absl/status/status.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "mediapipe/framework/port/status_macros.h"
#include "mediapipe/tasks/cc/common.h"
#include "mediapipe/tasks/cc/components/calculators/score_calibration_calculator.pb.h"
#include "mediapipe/tasks/metadata/metadata_schema_generated.h"
namespace mediapipe {
namespace tasks {
namespace {
// Converts ScoreTransformation type from TFLite Metadata to calculator options.
ScoreCalibrationCalculatorOptions::ScoreTransformation
ConvertScoreTransformationType(tflite::ScoreTransformationType type) {
switch (type) {
case tflite::ScoreTransformationType_IDENTITY:
return ScoreCalibrationCalculatorOptions::IDENTITY;
case tflite::ScoreTransformationType_LOG:
return ScoreCalibrationCalculatorOptions::LOG;
case tflite::ScoreTransformationType_INVERSE_LOGISTIC:
return ScoreCalibrationCalculatorOptions::INVERSE_LOGISTIC;
}
}
// Parses a single line of the score calibration file into the provided sigmoid.
absl::Status FillSigmoidFromLine(
absl::string_view line,
ScoreCalibrationCalculatorOptions::Sigmoid* sigmoid) {
if (line.empty()) {
return absl::OkStatus();
}
std::vector<absl::string_view> str_params = absl::StrSplit(line, ',');
if (str_params.size() != 3 && str_params.size() != 4) {
return CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrFormat("Expected 3 or 4 parameters per line in score "
"calibration file, got %d.",
str_params.size()),
MediaPipeTasksStatus::kMetadataMalformedScoreCalibrationError);
}
std::vector<float> params(str_params.size());
for (int i = 0; i < str_params.size(); ++i) {
if (!absl::SimpleAtof(str_params[i], &params[i])) {
return CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrFormat(
"Could not parse score calibration parameter as float: %s.",
str_params[i]),
MediaPipeTasksStatus::kMetadataMalformedScoreCalibrationError);
}
}
if (params[0] < 0) {
return CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrFormat(
"The scale parameter of the sigmoids must be positive, found %f.",
params[0]),
MediaPipeTasksStatus::kMetadataMalformedScoreCalibrationError);
}
sigmoid->set_scale(params[0]);
sigmoid->set_slope(params[1]);
sigmoid->set_offset(params[2]);
if (params.size() == 4) {
sigmoid->set_min_score(params[3]);
}
return absl::OkStatus();
}
} // namespace
absl::Status ConfigureScoreCalibration(
tflite::ScoreTransformationType score_transformation, float default_score,
absl::string_view score_calibration_file,
ScoreCalibrationCalculatorOptions* calculator_options) {
calculator_options->set_score_transformation(
ConvertScoreTransformationType(score_transformation));
calculator_options->set_default_score(default_score);
if (score_calibration_file.empty()) {
return CreateStatusWithPayload(absl::StatusCode::kInvalidArgument,
"Expected non-empty score calibration file.",
MediaPipeTasksStatus::kInvalidArgumentError);
}
std::vector<absl::string_view> lines =
absl::StrSplit(score_calibration_file, '\n');
for (const auto& line : lines) {
auto* sigmoid = calculator_options->add_sigmoids();
MP_RETURN_IF_ERROR(FillSigmoidFromLine(line, sigmoid));
}
return absl::OkStatus();
}
} // namespace tasks
} // namespace mediapipe

View File

@ -0,0 +1,38 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_TASKS_CC_COMPONENTS_CALCULATORS_SCORE_CALIBRATION_UTILS_H_
#define MEDIAPIPE_TASKS_CC_COMPONENTS_CALCULATORS_SCORE_CALIBRATION_UTILS_H_
#include "absl/status/status.h"
#include "absl/strings/string_view.h"
#include "mediapipe/tasks/cc/components/calculators/score_calibration_calculator.pb.h"
#include "mediapipe/tasks/metadata/metadata_schema_generated.h"
namespace mediapipe {
namespace tasks {
// Populates ScoreCalibrationCalculatorOptions given a TFLite Metadata score
// transformation type, default threshold and score calibration AssociatedFile
// contents, as specified in `TENSOR_AXIS_SCORE_CALIBRATION`:
// https://github.com/google/mediapipe/blob/master/mediapipe/tasks/metadata/metadata_schema.fbs
absl::Status ConfigureScoreCalibration(
tflite::ScoreTransformationType score_transformation, float default_score,
absl::string_view score_calibration_file,
ScoreCalibrationCalculatorOptions* options);
} // namespace tasks
} // namespace mediapipe
#endif // MEDIAPIPE_TASKS_CC_COMPONENTS_CALCULATORS_SCORE_CALIBRATION_UTILS_H_

View File

@ -0,0 +1,130 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/tasks/cc/components/calculators/score_calibration_utils.h"
#include "absl/strings/str_cat.h"
#include "mediapipe/framework/port/gmock.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status_matchers.h"
#include "mediapipe/tasks/cc/components/calculators/score_calibration_calculator.pb.h"
#include "mediapipe/tasks/metadata/metadata_schema_generated.h"
namespace mediapipe {
namespace tasks {
namespace {
using ::testing::HasSubstr;
TEST(ConfigureScoreCalibrationTest, SucceedsWithoutTrailingNewline) {
ScoreCalibrationCalculatorOptions options;
std::string score_calibration_file =
absl::StrCat("\n", "0.1,0.2,0.3\n", "0.4,0.5,0.6,0.7");
MP_ASSERT_OK(ConfigureScoreCalibration(
tflite::ScoreTransformationType_IDENTITY,
/*default_score=*/0.5, score_calibration_file, &options));
EXPECT_THAT(
options,
EqualsProto(ParseTextProtoOrDie<ScoreCalibrationCalculatorOptions>(R"pb(
score_transformation: IDENTITY
default_score: 0.5
sigmoids {}
sigmoids { scale: 0.1 slope: 0.2 offset: 0.3 }
sigmoids { scale: 0.4 slope: 0.5 offset: 0.6 min_score: 0.7 }
)pb")));
}
TEST(ConfigureScoreCalibrationTest, SucceedsWithTrailingNewline) {
ScoreCalibrationCalculatorOptions options;
std::string score_calibration_file =
absl::StrCat("\n", "0.1,0.2,0.3\n", "0.4,0.5,0.6,0.7\n");
MP_ASSERT_OK(ConfigureScoreCalibration(tflite::ScoreTransformationType_LOG,
/*default_score=*/0.5,
score_calibration_file, &options));
EXPECT_THAT(
options,
EqualsProto(ParseTextProtoOrDie<ScoreCalibrationCalculatorOptions>(R"pb(
score_transformation: LOG
default_score: 0.5
sigmoids {}
sigmoids { scale: 0.1 slope: 0.2 offset: 0.3 }
sigmoids { scale: 0.4 slope: 0.5 offset: 0.6 min_score: 0.7 }
sigmoids {}
)pb")));
}
TEST(ConfigureScoreCalibrationTest, FailsWithEmptyFile) {
ScoreCalibrationCalculatorOptions options;
auto status =
ConfigureScoreCalibration(tflite::ScoreTransformationType_LOG,
/*default_score=*/0.5,
/*score_calibration_file=*/"", &options);
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(),
HasSubstr("Expected non-empty score calibration file"));
}
TEST(ConfigureScoreCalibrationTest, FailsWithInvalidNumParameters) {
ScoreCalibrationCalculatorOptions options;
std::string score_calibration_file = absl::StrCat("0.1,0.2,0.3\n", "0.1,0.2");
auto status = ConfigureScoreCalibration(tflite::ScoreTransformationType_LOG,
/*default_score=*/0.5,
score_calibration_file, &options);
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(status.message(),
HasSubstr("Expected 3 or 4 parameters per line"));
}
TEST(ConfigureScoreCalibrationTest, FailsWithNonParseableParameter) {
ScoreCalibrationCalculatorOptions options;
std::string score_calibration_file =
absl::StrCat("0.1,0.2,0.3\n", "0.1,foo,0.3\n");
auto status = ConfigureScoreCalibration(tflite::ScoreTransformationType_LOG,
/*default_score=*/0.5,
score_calibration_file, &options);
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(
status.message(),
HasSubstr("Could not parse score calibration parameter as float"));
}
TEST(ConfigureScoreCalibrationTest, FailsWithNegativeScaleParameter) {
ScoreCalibrationCalculatorOptions options;
std::string score_calibration_file =
absl::StrCat("0.1,0.2,0.3\n", "-0.1,0.2,0.3\n");
auto status = ConfigureScoreCalibration(tflite::ScoreTransformationType_LOG,
/*default_score=*/0.5,
score_calibration_file, &options);
EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(
status.message(),
HasSubstr("The scale parameter of the sigmoids must be positive"));
}
} // namespace
} // namespace tasks
} // namespace mediapipe

View File

@ -159,12 +159,12 @@ absl::Status TensorsToSegmentationCalculator::Process(
std::tie(output_width, output_height) = kOutputSizeIn(cc).Get();
}
Shape output_shape = {
.height = output_height,
.width = output_width,
.channels = options_.segmenter_options().output_type() ==
SegmenterOptions::CATEGORY_MASK
? 1
: input_shape.channels};
/* height= */ output_height,
/* width= */ output_width,
/* channels= */ options_.segmenter_options().output_type() ==
SegmenterOptions::CATEGORY_MASK
? 1
: input_shape.channels};
std::vector<Image> segmented_masks = GetSegmentationResult(
input_shape, output_shape, input_tensor.GetCpuReadView().buffer<float>());

View File

@ -148,8 +148,9 @@ absl::StatusOr<ClassificationHeadsProperties> GetClassificationHeadsProperties(
num_output_tensors, output_tensors_metadata->size()),
MediaPipeTasksStatus::kMetadataInconsistencyError);
}
return ClassificationHeadsProperties{.num_heads = num_output_tensors,
.quantized = num_quantized_tensors > 0};
return ClassificationHeadsProperties{
/* num_heads= */ num_output_tensors,
/* quantized= */ num_quantized_tensors > 0};
}
// Builds the label map from the tensor metadata, if available.

View File

@ -226,12 +226,14 @@ class ImagePreprocessingSubgraph : public Subgraph {
// Connect outputs.
return {
.tensors = image_to_tensor[Output<std::vector<Tensor>>(kTensorsTag)],
.matrix = image_to_tensor[Output<std::array<float, 16>>(kMatrixTag)],
.letterbox_padding =
image_to_tensor[Output<std::array<float, 4>>(kLetterboxPaddingTag)],
.image_size = image_size[Output<std::pair<int, int>>(kSizeTag)],
.image = pass_through[Output<Image>("")],
/* tensors= */ image_to_tensor[Output<std::vector<Tensor>>(
kTensorsTag)],
/* matrix= */
image_to_tensor[Output<std::array<float, 16>>(kMatrixTag)],
/* letterbox_padding= */
image_to_tensor[Output<std::array<float, 4>>(kLetterboxPaddingTag)],
/* image_size= */ image_size[Output<std::pair<int, int>>(kSizeTag)],
/* image= */ pass_through[Output<Image>("")],
};
}
};

View File

@ -18,8 +18,18 @@ limitations under the License.
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#ifdef ABSL_HAVE_MMAP
#include <sys/mman.h>
#endif
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#include <windows.h>
#else
#include <unistd.h>
#endif
#include <memory>
#include <string>
@ -44,12 +54,17 @@ using ::absl::StatusCode;
// file descriptor correctly, as according to mmap(2), the offset used in mmap
// must be a multiple of sysconf(_SC_PAGE_SIZE).
int64 GetPageSizeAlignedOffset(int64 offset) {
#ifdef _WIN32
// mmap is not used on Windows
return -1;
#else
int64 aligned_offset = offset;
int64 page_size = sysconf(_SC_PAGE_SIZE);
if (offset % page_size != 0) {
aligned_offset = offset / page_size * page_size;
}
return aligned_offset;
#endif
}
} // namespace
@ -69,6 +84,12 @@ ExternalFileHandler::CreateFromExternalFile(
}
absl::Status ExternalFileHandler::MapExternalFile() {
// TODO: Add Windows support
#ifdef _WIN32
return CreateStatusWithPayload(StatusCode::kFailedPrecondition,
"File loading is not yet supported on Windows",
MediaPipeTasksStatus::kFileReadError);
#else
if (!external_file_.file_content().empty()) {
return absl::OkStatus();
}
@ -169,6 +190,7 @@ absl::Status ExternalFileHandler::MapExternalFile() {
MediaPipeTasksStatus::kFileMmapError);
}
return absl::OkStatus();
#endif
}
absl::string_view ExternalFileHandler::GetFileContent() {
@ -182,9 +204,11 @@ absl::string_view ExternalFileHandler::GetFileContent() {
}
ExternalFileHandler::~ExternalFileHandler() {
#ifndef _WIN32
if (buffer_ != MAP_FAILED) {
munmap(buffer_, buffer_aligned_size_);
}
#endif
if (owned_fd_ >= 0) {
close(owned_fd_);
}

View File

@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// TODO Refactor naming and class structure of hand related Tasks.
syntax = "proto2";
package mediapipe.tasks.vision.hand_gesture_recognizer.proto;

View File

@ -388,13 +388,13 @@ class HandLandmarkDetectorGraph : public core::ModelTaskGraph {
hand_rect_transformation[Output<NormalizedRect>("")];
return {{
.hand_landmarks = projected_landmarks,
.world_hand_landmarks = projected_world_landmarks,
.hand_rect_next_frame = hand_rect_next_frame,
.hand_presence = hand_presence,
.hand_presence_score = hand_presence_score,
.handedness = handedness,
.image_size = image_size,
/* hand_landmarks= */ projected_landmarks,
/* world_hand_landmarks= */ projected_world_landmarks,
/* hand_rect_next_frame= */ hand_rect_next_frame,
/* hand_presence= */ hand_presence,
/* hand_presence_score= */ hand_presence_score,
/* handedness= */ handedness,
/* image_size= */ image_size,
}};
}
};

View File

@ -24,7 +24,7 @@ message HandLandmarkDetectorOptions {
extend mediapipe.CalculatorOptions {
optional HandLandmarkDetectorOptions ext = 462713202;
}
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;

View File

@ -25,7 +25,7 @@ message ImageClassifierOptions {
extend mediapipe.CalculatorOptions {
optional ImageClassifierOptions ext = 456383383;
}
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;

View File

@ -142,7 +142,7 @@ TEST_F(CreateTest, FailsWithSelectiveOpResolverMissingOps) {
// interpreter errors (e.g., "Encountered unresolved custom op").
EXPECT_EQ(image_classifier_or.status().code(), absl::StatusCode::kInternal);
EXPECT_THAT(image_classifier_or.status().message(),
HasSubstr("interpreter_builder(&interpreter_) == kTfLiteOk"));
HasSubstr("interpreter_builder(&interpreter) == kTfLiteOk"));
}
TEST_F(CreateTest, FailsWithMissingModel) {
auto image_classifier_or =

View File

@ -12,34 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
mediapipe_proto_library(
name = "image_segmenter_options_proto",
srcs = ["image_segmenter_options.proto"],
deps = [
"//mediapipe/framework:calculator_options_proto",
"//mediapipe/framework:calculator_proto",
"//mediapipe/tasks/cc/components:segmenter_options_proto",
"//mediapipe/tasks/cc/core/proto:base_options_proto",
],
)
cc_library(
name = "image_segmenter",
srcs = ["image_segmenter.cc"],
hdrs = ["image_segmenter.h"],
deps = [
":image_segmenter_graph",
":image_segmenter_options_cc_proto",
"//mediapipe/framework/api2:builder",
"//mediapipe/framework/formats:image",
"//mediapipe/tasks/cc/core:base_task_api",
"//mediapipe/tasks/cc/core:task_api_factory",
"//mediapipe/tasks/cc/components:segmenter_options_cc_proto",
"//mediapipe/tasks/cc/core:base_options",
"//mediapipe/tasks/cc/core:utils",
"//mediapipe/tasks/cc/vision/core:base_vision_task_api",
"//mediapipe/tasks/cc/vision/core:running_mode",
"//mediapipe/tasks/cc/vision/core:vision_task_api_factory",
"//mediapipe/tasks/cc/vision/image_segmenter/proto:image_segmenter_options_cc_proto",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/status:statusor",
"@org_tensorflow//tensorflow/lite/core/api:op_resolver",
@ -51,7 +42,6 @@ cc_library(
name = "image_segmenter_graph",
srcs = ["image_segmenter_graph.cc"],
deps = [
":image_segmenter_options_cc_proto",
"//mediapipe/calculators/core:merge_to_vector_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
@ -70,6 +60,7 @@ cc_library(
"//mediapipe/tasks/cc/core:model_task_graph",
"//mediapipe/tasks/cc/core/proto:inference_subgraph_cc_proto",
"//mediapipe/tasks/cc/metadata:metadata_extractor",
"//mediapipe/tasks/cc/vision/image_segmenter/proto:image_segmenter_options_cc_proto",
"//mediapipe/tasks/metadata:metadata_schema_cc",
"//mediapipe/util:label_map_cc_proto",
"//mediapipe/util:label_map_util",
@ -82,9 +73,9 @@ cc_library(
)
cc_library(
name = "custom_op_resolvers",
srcs = ["custom_op_resolvers.cc"],
hdrs = ["custom_op_resolvers.h"],
name = "image_segmenter_op_resolvers",
srcs = ["image_segmenter_op_resolvers.cc"],
hdrs = ["image_segmenter_op_resolvers.h"],
deps = [
"//mediapipe/util/tflite/operations:landmarks_to_transform_matrix",
"//mediapipe/util/tflite/operations:max_pool_argmax",

View File

@ -0,0 +1,134 @@
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "mediapipe/tasks/cc/vision/image_segmenter/image_segmenter.h"
#include "mediapipe/framework/api2/builder.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/tasks/cc/components/segmenter_options.pb.h"
#include "mediapipe/tasks/cc/core/utils.h"
#include "mediapipe/tasks/cc/vision/core/running_mode.h"
#include "mediapipe/tasks/cc/vision/core/vision_task_api_factory.h"
namespace mediapipe {
namespace tasks {
namespace vision {
namespace {
constexpr char kSegmentationStreamName[] = "segmented_mask_out";
constexpr char kGroupedSegmentationTag[] = "GROUPED_SEGMENTATION";
constexpr char kImageInStreamName[] = "image_in";
constexpr char kImageOutStreamName[] = "image_out";
constexpr char kImageTag[] = "IMAGE";
constexpr char kSubgraphTypeName[] =
"mediapipe.tasks.vision.ImageSegmenterGraph";
using ::mediapipe::CalculatorGraphConfig;
using ::mediapipe::Image;
using ImageSegmenterOptionsProto =
image_segmenter::proto::ImageSegmenterOptions;
// Creates a MediaPipe graph config that only contains a single subgraph node of
// "mediapipe.tasks.vision.ImageSegmenterGraph".
CalculatorGraphConfig CreateGraphConfig(
std::unique_ptr<ImageSegmenterOptionsProto> options,
bool enable_flow_limiting) {
api2::builder::Graph graph;
auto& task_subgraph = graph.AddNode(kSubgraphTypeName);
task_subgraph.GetOptions<ImageSegmenterOptionsProto>().Swap(options.get());
graph.In(kImageTag).SetName(kImageInStreamName);
task_subgraph.Out(kGroupedSegmentationTag).SetName(kSegmentationStreamName) >>
graph.Out(kGroupedSegmentationTag);
task_subgraph.Out(kImageTag).SetName(kImageOutStreamName) >>
graph.Out(kImageTag);
if (enable_flow_limiting) {
return tasks::core::AddFlowLimiterCalculator(
graph, task_subgraph, {kImageTag}, kGroupedSegmentationTag);
}
graph.In(kImageTag) >> task_subgraph.In(kImageTag);
return graph.GetConfig();
}
// Converts the user-facing ImageSegmenterOptions struct to the internal
// ImageSegmenterOptions proto.
std::unique_ptr<ImageSegmenterOptionsProto> ConvertImageSegmenterOptionsToProto(
ImageSegmenterOptions* options) {
auto options_proto = std::make_unique<ImageSegmenterOptionsProto>();
auto base_options_proto = std::make_unique<tasks::core::proto::BaseOptions>(
tasks::core::ConvertBaseOptionsToProto(&(options->base_options)));
options_proto->mutable_base_options()->Swap(base_options_proto.get());
options_proto->mutable_base_options()->set_use_stream_mode(
options->running_mode != core::RunningMode::IMAGE);
options_proto->set_display_names_locale(options->display_names_locale);
switch (options->output_type) {
case ImageSegmenterOptions::OutputType::CATEGORY_MASK:
options_proto->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CATEGORY_MASK);
break;
case ImageSegmenterOptions::OutputType::CONFIDENCE_MASK:
options_proto->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CONFIDENCE_MASK);
break;
}
switch (options->activation) {
case ImageSegmenterOptions::Activation::NONE:
options_proto->mutable_segmenter_options()->set_activation(
SegmenterOptions::NONE);
break;
case ImageSegmenterOptions::Activation::SIGMOID:
options_proto->mutable_segmenter_options()->set_activation(
SegmenterOptions::SIGMOID);
break;
case ImageSegmenterOptions::Activation::SOFTMAX:
options_proto->mutable_segmenter_options()->set_activation(
SegmenterOptions::SOFTMAX);
break;
}
return options_proto;
}
} // namespace
absl::StatusOr<std::unique_ptr<ImageSegmenter>> ImageSegmenter::Create(
std::unique_ptr<ImageSegmenterOptions> options) {
auto options_proto = ConvertImageSegmenterOptionsToProto(options.get());
tasks::core::PacketsCallback packets_callback = nullptr;
return core::VisionTaskApiFactory::Create<ImageSegmenter,
ImageSegmenterOptionsProto>(
CreateGraphConfig(
std::move(options_proto),
options->running_mode == core::RunningMode::LIVE_STREAM),
std::move(options->base_options.op_resolver), options->running_mode,
std::move(packets_callback));
}
absl::StatusOr<std::vector<Image>> ImageSegmenter::Segment(
mediapipe::Image image) {
if (image.UsesGpu()) {
return CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrCat("GPU input images are currently not supported."),
MediaPipeTasksStatus::kRunnerUnexpectedInputError);
}
ASSIGN_OR_RETURN(
auto output_packets,
ProcessImageData({{kImageInStreamName,
mediapipe::MakePacket<Image>(std::move(image))}}));
return output_packets[kSegmentationStreamName].Get<std::vector<Image>>();
}
} // namespace vision
} // namespace tasks
} // namespace mediapipe

View File

@ -0,0 +1,123 @@
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_H_
#define MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_H_
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/status/statusor.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/tasks/cc/core/base_options.h"
#include "mediapipe/tasks/cc/vision/core/base_vision_task_api.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/proto/image_segmenter_options.pb.h"
#include "tensorflow/lite/core/api/op_resolver.h"
#include "tensorflow/lite/kernels/register.h"
namespace mediapipe {
namespace tasks {
namespace vision {
// The options for configuring a mediapipe image segmenter task.
struct ImageSegmenterOptions {
// Base options for configuring MediaPipe Tasks, such as specifying the model
// file with metadata, accelerator options, op resolver, etc.
tasks::core::BaseOptions base_options;
// The running mode of the task. Default to the image mode.
// Image segmenter has three running modes:
// 1) The image mode for segmenting image on single image inputs.
// 2) The video mode for segmenting image on the decoded frames of a video.
// 3) The live stream mode for segmenting image on the live stream of input
// data, such as from camera. In this mode, the "result_callback" below must
// be specified to receive the segmentation results asynchronously.
core::RunningMode running_mode = core::RunningMode::IMAGE;
// The locale to use for display names specified through the TFLite Model
// Metadata, if any. Defaults to English.
std::string display_names_locale = "en";
// The output type of segmentation results.
enum OutputType {
// Gives a single output mask where each pixel represents the class which
// the pixel in the original image was predicted to belong to.
CATEGORY_MASK = 0,
// Gives a list of output masks where, for each mask, each pixel represents
// the prediction confidence, usually in the [0, 1] range.
CONFIDENCE_MASK = 1,
};
OutputType output_type = OutputType::CATEGORY_MASK;
// The activation function used on the raw segmentation model output.
enum Activation {
NONE = 0, // No activation function is used.
SIGMOID = 1, // Assumes 1-channel input tensor.
SOFTMAX = 2, // Assumes multi-channel input tensor.
};
Activation activation = Activation::NONE;
// The user-defined result callback for processing live stream data.
// The result callback should only be specified when the running mode is set
// to RunningMode::LIVE_STREAM.
std::function<void(absl::StatusOr<std::vector<mediapipe::Image>>,
const Image&, int64)>
result_callback = nullptr;
};
// Performs segmentation on images.
//
// The API expects a TFLite model with mandatory TFLite Model Metadata.
//
// Input tensor:
// (kTfLiteUInt8/kTfLiteFloat32)
// - image input of size `[batch x height x width x channels]`.
// - batch inference is not supported (`batch` is required to be 1).
// - RGB and greyscale inputs are supported (`channels` is required to be
// 1 or 3).
// - if type is kTfLiteFloat32, NormalizationOptions are required to be
// attached to the metadata for input normalization.
// Output tensors:
// (kTfLiteUInt8/kTfLiteFloat32)
// - list of segmented masks.
// - if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
// - if `output_type` is CONFIDENCE_MASK, float32 Image list of size
// `cahnnels`.
// - batch is always 1
// An example of such model can be found at:
// https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2
class ImageSegmenter : tasks::vision::core::BaseVisionTaskApi {
public:
using BaseVisionTaskApi::BaseVisionTaskApi;
// Creates an ImageSegmenter from the provided options. A non-default
// OpResolver can be specified in the BaseOptions of ImageSegmenterOptions,
// to support custom Ops of the segmentation model.
static absl::StatusOr<std::unique_ptr<ImageSegmenter>> Create(
std::unique_ptr<ImageSegmenterOptions> options);
// Runs the actual segmentation task.
absl::StatusOr<std::vector<mediapipe::Image>> Segment(mediapipe::Image image);
};
} // namespace vision
} // namespace tasks
} // namespace mediapipe
#endif // MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_H_

View File

@ -33,7 +33,7 @@ limitations under the License.
#include "mediapipe/tasks/cc/core/model_task_graph.h"
#include "mediapipe/tasks/cc/core/proto/inference_subgraph.pb.h"
#include "mediapipe/tasks/cc/metadata/metadata_extractor.h"
#include "mediapipe/tasks/cc/vision/segmentation/image_segmenter_options.pb.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/proto/image_segmenter_options.pb.h"
#include "mediapipe/tasks/metadata/metadata_schema_generated.h"
#include "mediapipe/util/label_map.pb.h"
#include "mediapipe/util/label_map_util.h"
@ -53,6 +53,7 @@ using ::mediapipe::api2::builder::MultiSource;
using ::mediapipe::api2::builder::Source;
using ::mediapipe::tasks::SegmenterOptions;
using ::mediapipe::tasks::metadata::ModelMetadataExtractor;
using ::mediapipe::tasks::vision::image_segmenter::proto::ImageSegmenterOptions;
using ::tflite::Tensor;
using ::tflite::TensorMetadata;
using LabelItems = mediapipe::proto_ns::Map<int64, ::mediapipe::LabelMapItem>;
@ -63,6 +64,14 @@ constexpr char kImageTag[] = "IMAGE";
constexpr char kTensorsTag[] = "TENSORS";
constexpr char kOutputSizeTag[] = "OUTPUT_SIZE";
// Struct holding the different output streams produced by the image segmenter
// subgraph.
struct ImageSegmenterOutputs {
std::vector<Source<Image>> segmented_masks;
// The same as the input image, mainly used for live stream mode.
Source<Image> image;
};
} // namespace
absl::Status SanityCheckOptions(const ImageSegmenterOptions& options) {
@ -140,6 +149,10 @@ absl::StatusOr<const Tensor*> GetOutputTensor(
// An "mediapipe.tasks.vision.ImageSegmenterGraph" performs semantic
// segmentation.
// Two kinds of outputs are provided: SEGMENTATION and GROUPED_SEGMENTATION.
// Users can retrieve segmented mask of only particular category/channel from
// SEGMENTATION, and users can also get all segmented masks from
// GROUPED_SEGMENTATION.
// - Accepts CPU input images and outputs segmented masks on CPU.
//
// Inputs:
@ -147,8 +160,13 @@ absl::StatusOr<const Tensor*> GetOutputTensor(
// Image to perform segmentation on.
//
// Outputs:
// SEGMENTATION - SEGMENTATION
// Segmented masks.
// SEGMENTATION - mediapipe::Image @Multiple
// Segmented masks for individual category. Segmented mask of single
// category can be accessed by index based output stream.
// GROUPED_SEGMENTATION - std::vector<mediapipe::Image>
// The output segmented masks grouped in a vector.
// IMAGE - mediapipe::Image
// The image that image segmenter runs on.
//
// Example:
// node {
@ -156,7 +174,8 @@ absl::StatusOr<const Tensor*> GetOutputTensor(
// input_stream: "IMAGE:image"
// output_stream: "SEGMENTATION:segmented_masks"
// options {
// [mediapipe.tasks.ImageSegmenterOptions.ext] {
// [mediapipe.tasks.vision.image_segmenter.proto.ImageSegmenterOptions.ext]
// {
// segmenter_options {
// output_type: CONFIDENCE_MASK
// activation: SOFTMAX
@ -171,20 +190,22 @@ class ImageSegmenterGraph : public core::ModelTaskGraph {
ASSIGN_OR_RETURN(const auto* model_resources,
CreateModelResources<ImageSegmenterOptions>(sc));
Graph graph;
ASSIGN_OR_RETURN(auto segmentations,
ASSIGN_OR_RETURN(auto output_streams,
BuildSegmentationTask(
sc->Options<ImageSegmenterOptions>(), *model_resources,
graph[Input<Image>(kImageTag)], graph));
auto& merge_images_to_vector =
graph.AddNode("MergeImagesToVectorCalculator");
for (int i = 0; i < segmentations.size(); ++i) {
segmentations[i] >> merge_images_to_vector[Input<Image>::Multiple("")][i];
segmentations[i] >> graph[Output<Image>::Multiple(kSegmentationTag)][i];
for (int i = 0; i < output_streams.segmented_masks.size(); ++i) {
output_streams.segmented_masks[i] >>
merge_images_to_vector[Input<Image>::Multiple("")][i];
output_streams.segmented_masks[i] >>
graph[Output<Image>::Multiple(kSegmentationTag)][i];
}
merge_images_to_vector.Out("") >>
graph[Output<std::vector<Image>>(kGroupedSegmentationTag)];
output_streams.image >> graph[Output<Image>(kImageTag)];
return graph.GetConfig();
}
@ -193,12 +214,12 @@ class ImageSegmenterGraph : public core::ModelTaskGraph {
// builder::Graph instance. The segmentation pipeline takes images
// (mediapipe::Image) as the input and returns segmented image mask as output.
//
// task_options: the mediapipe tasks ImageSegmenterOptions.
// task_options: the mediapipe tasks ImageSegmenterOptions proto.
// model_resources: the ModelSources object initialized from a segmentation
// model file with model metadata.
// image_in: (mediapipe::Image) stream to run segmentation on.
// graph: the mediapipe builder::Graph instance to be updated.
absl::StatusOr<std::vector<Source<Image>>> BuildSegmentationTask(
absl::StatusOr<ImageSegmenterOutputs> BuildSegmentationTask(
const ImageSegmenterOptions& task_options,
const core::ModelResources& model_resources, Source<Image> image_in,
Graph& graph) {
@ -246,7 +267,10 @@ class ImageSegmenterGraph : public core::ModelTaskGraph {
tensor_to_images[Output<Image>::Multiple(kSegmentationTag)][i]));
}
}
return segmented_masks;
return {{
.segmented_masks = segmented_masks,
.image = preprocessing[Output<Image>(kImageTag)],
}};
}
};

View File

@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "mediapipe/tasks/cc/vision/segmentation/custom_op_resolvers.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/image_segmenter_op_resolvers.h"
#include "mediapipe/util/tflite/operations/landmarks_to_transform_matrix.h"
#include "mediapipe/util/tflite/operations/max_pool_argmax.h"

View File

@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_CUSTOM_OP_RESOLVERS_H_
#define MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_CUSTOM_OP_RESOLVERS_H_
#ifndef MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_OP_RESOLVERS_H_
#define MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_OP_RESOLVERS_H_
#include "tensorflow/lite/kernels/register.h"
@ -34,4 +34,4 @@ class SelfieSegmentationModelOpResolver
} // namespace tasks
} // namespace mediapipe
#endif // MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_CUSTOM_OP_RESOLVERS_H_
#endif // MEDIAPIPE_TASKS_CC_VISION_IMAGE_SEGMENTER_IMAGE_SEGMENTER_OP_RESOLVERS_H_

View File

@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "mediapipe/tasks/cc/vision/segmentation/image_segmenter.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/image_segmenter.h"
#include <cstdint>
#include <memory>
@ -32,8 +32,8 @@ limitations under the License.
#include "mediapipe/tasks/cc/components/segmenter_options.pb.h"
#include "mediapipe/tasks/cc/core/proto/base_options.pb.h"
#include "mediapipe/tasks/cc/core/proto/external_file.pb.h"
#include "mediapipe/tasks/cc/vision/segmentation/custom_op_resolvers.h"
#include "mediapipe/tasks/cc/vision/segmentation/image_segmenter_options.pb.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/image_segmenter_op_resolvers.h"
#include "mediapipe/tasks/cc/vision/image_segmenter/proto/image_segmenter_options.pb.h"
#include "mediapipe/tasks/cc/vision/utils/image_utils.h"
#include "tensorflow/lite/core/shims/cc/shims_test_util.h"
#include "tensorflow/lite/kernels/builtin_op_kernels.h"
@ -46,11 +46,8 @@ namespace {
using ::mediapipe::Image;
using ::mediapipe::file::JoinPath;
using ::mediapipe::tasks::ImageSegmenterOptions;
using ::mediapipe::tasks::SegmenterOptions;
using ::testing::HasSubstr;
using ::testing::Optional;
using ::tflite::ops::builtin::BuiltinOpResolver;
constexpr char kTestDataDirectory[] = "/mediapipe/tasks/testdata/vision/";
constexpr char kDeeplabV3WithMetadata[] = "deeplabv3.tflite";
@ -167,25 +164,25 @@ class DeepLabOpResolverMissingOps : public ::tflite::MutableOpResolver {
TEST_F(CreateFromOptionsTest, SucceedsWithSelectiveOpResolver) {
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata));
MP_ASSERT_OK(ImageSegmenter::Create(std::move(options),
absl::make_unique<DeepLabOpResolver>()));
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata);
options->base_options.op_resolver = absl::make_unique<DeepLabOpResolver>();
MP_ASSERT_OK(ImageSegmenter::Create(std::move(options)));
}
TEST_F(CreateFromOptionsTest, FailsWithSelectiveOpResolverMissingOps) {
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata));
auto segmenter_or = ImageSegmenter::Create(
std::move(options), absl::make_unique<DeepLabOpResolverMissingOps>());
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata);
options->base_options.op_resolver =
absl::make_unique<DeepLabOpResolverMissingOps>();
auto segmenter_or = ImageSegmenter::Create(std::move(options));
// TODO: Make MediaPipe InferenceCalculator report the detailed
// interpreter errors (e.g., "Encountered unresolved custom op").
EXPECT_EQ(segmenter_or.status().code(), absl::StatusCode::kInternal);
EXPECT_THAT(
segmenter_or.status().message(),
testing::HasSubstr("interpreter_builder(&interpreter_) == kTfLiteOk"));
testing::HasSubstr("interpreter_builder(&interpreter) == kTfLiteOk"));
}
TEST_F(CreateFromOptionsTest, FailsWithMissingModel) {
@ -202,24 +199,6 @@ TEST_F(CreateFromOptionsTest, FailsWithMissingModel) {
MediaPipeTasksStatus::kRunnerInitializationError))));
}
TEST_F(CreateFromOptionsTest, FailsWithUnspecifiedOutputType) {
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata));
options->mutable_segmenter_options()->set_output_type(
SegmenterOptions::UNSPECIFIED);
auto segmenter_or = ImageSegmenter::Create(
std::move(options), absl::make_unique<DeepLabOpResolver>());
EXPECT_EQ(segmenter_or.status().code(), absl::StatusCode::kInvalidArgument);
EXPECT_THAT(segmenter_or.status().message(),
HasSubstr("`output_type` must not be UNSPECIFIED"));
EXPECT_THAT(segmenter_or.status().GetPayload(kMediaPipeTasksPayload),
Optional(absl::Cord(absl::StrCat(
MediaPipeTasksStatus::kRunnerInitializationError))));
}
class SegmentationTest : public tflite_shims::testing::Test {};
TEST_F(SegmentationTest, SucceedsWithCategoryMask) {
@ -228,10 +207,10 @@ TEST_F(SegmentationTest, SucceedsWithCategoryMask) {
DecodeImageFromFile(JoinPath("./", kTestDataDirectory,
"segmentation_input_rotation0.jpg")));
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CATEGORY_MASK);
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata));
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata);
options->output_type = ImageSegmenterOptions::OutputType::CATEGORY_MASK;
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(std::move(options)));
MP_ASSERT_OK_AND_ASSIGN(auto category_masks, segmenter->Segment(image));
@ -253,12 +232,11 @@ TEST_F(SegmentationTest, SucceedsWithConfidenceMask) {
Image image,
DecodeImageFromFile(JoinPath("./", kTestDataDirectory, "cat.jpg")));
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CONFIDENCE_MASK);
options->mutable_segmenter_options()->set_activation(
SegmenterOptions::SOFTMAX);
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata));
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kDeeplabV3WithMetadata);
options->output_type = ImageSegmenterOptions::OutputType::CONFIDENCE_MASK;
options->activation = ImageSegmenterOptions::Activation::SOFTMAX;
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(std::move(options)));
MP_ASSERT_OK_AND_ASSIGN(auto results, segmenter->Segment(image));
@ -281,17 +259,15 @@ TEST_F(SegmentationTest, SucceedsSelfie128x128Segmentation) {
Image image =
GetSRGBImage(JoinPath("./", kTestDataDirectory, "mozart_square.jpg"));
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CONFIDENCE_MASK);
options->mutable_segmenter_options()->set_activation(
SegmenterOptions::SOFTMAX);
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kSelfie128x128WithMetadata));
MP_ASSERT_OK_AND_ASSIGN(
std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(
std::move(options),
absl::make_unique<SelfieSegmentationModelOpResolver>()));
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kSelfie128x128WithMetadata);
options->base_options.op_resolver =
absl::make_unique<SelfieSegmentationModelOpResolver>();
options->output_type = ImageSegmenterOptions::OutputType::CONFIDENCE_MASK;
options->activation = ImageSegmenterOptions::Activation::SOFTMAX;
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(std::move(options)));
MP_ASSERT_OK_AND_ASSIGN(auto confidence_masks, segmenter->Segment(image));
EXPECT_EQ(confidence_masks.size(), 2);
@ -313,15 +289,14 @@ TEST_F(SegmentationTest, SucceedsSelfie144x256Segmentations) {
Image image =
GetSRGBImage(JoinPath("./", kTestDataDirectory, "mozart_square.jpg"));
auto options = std::make_unique<ImageSegmenterOptions>();
options->mutable_segmenter_options()->set_output_type(
SegmenterOptions::CONFIDENCE_MASK);
options->mutable_base_options()->mutable_model_file()->set_file_name(
JoinPath("./", kTestDataDirectory, kSelfie144x256WithMetadata));
MP_ASSERT_OK_AND_ASSIGN(
std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(
std::move(options),
absl::make_unique<SelfieSegmentationModelOpResolver>()));
options->base_options.model_file_name =
JoinPath("./", kTestDataDirectory, kSelfie144x256WithMetadata);
options->base_options.op_resolver =
absl::make_unique<SelfieSegmentationModelOpResolver>();
options->output_type = ImageSegmenterOptions::OutputType::CONFIDENCE_MASK;
options->activation = ImageSegmenterOptions::Activation::NONE;
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<ImageSegmenter> segmenter,
ImageSegmenter::Create(std::move(options)));
MP_ASSERT_OK_AND_ASSIGN(auto confidence_masks, segmenter->Segment(image));
EXPECT_EQ(confidence_masks.size(), 1);

View File

@ -0,0 +1,30 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
mediapipe_proto_library(
name = "image_segmenter_options_proto",
srcs = ["image_segmenter_options.proto"],
deps = [
"//mediapipe/framework:calculator_options_proto",
"//mediapipe/framework:calculator_proto",
"//mediapipe/tasks/cc/components:segmenter_options_proto",
"//mediapipe/tasks/cc/core/proto:base_options_proto",
],
)

View File

@ -15,7 +15,7 @@ limitations under the License.
syntax = "proto2";
package mediapipe.tasks;
package mediapipe.tasks.vision.image_segmenter.proto;
import "mediapipe/framework/calculator.proto";
import "mediapipe/tasks/cc/components/segmenter_options.proto";
@ -25,7 +25,7 @@ message ImageSegmenterOptions {
extend mediapipe.CalculatorOptions {
optional ImageSegmenterOptions ext = 458105758;
}
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;

View File

@ -36,10 +36,19 @@ namespace vision {
// The options for configuring a mediapipe object detector task.
struct ObjectDetectorOptions {
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, op resolver, etc.
tasks::core::BaseOptions base_options;
// The running mode of the task. Default to the image mode.
// Object detector has three running modes:
// 1) The image mode for detecting objects on single image inputs.
// 2) The video mode for detecting objects on the decoded frames of a video.
// 3) The live stream mode for detecting objects on the live stream of input
// data, such as from camera. In this mode, the "result_callback" below must
// be specified to receive the detection results asynchronously.
core::RunningMode running_mode = core::RunningMode::IMAGE;
// The locale to use for display names specified through the TFLite Model
// Metadata, if any. Defaults to English.
std::string display_names_locale = "en";
@ -65,15 +74,6 @@ struct ObjectDetectorOptions {
// category names are ignored. Mutually exclusive with category_allowlist.
std::vector<std::string> category_denylist = {};
// The running mode of the task. Default to the image mode.
// Object detector has three running modes:
// 1) The image mode for detecting objects on single image inputs.
// 2) The video mode for detecting objects on the decoded frames of a video.
// 3) The live stream mode for detecting objects on the live stream of input
// data, such as from camera. In this mode, the "result_callback" below must
// be specified to receive the detection results asynchronously.
core::RunningMode running_mode = core::RunningMode::IMAGE;
// The user-defined result callback for processing live stream data.
// The result callback should only be specified when the running mode is set
// to RunningMode::LIVE_STREAM.

View File

@ -531,9 +531,9 @@ class ObjectDetectorGraph : public core::ModelTaskGraph {
// Outputs the labeled detections and the processed image as the subgraph
// output streams.
return {{
.detections =
detection_label_id_to_text[Output<std::vector<Detection>>("")],
.image = preprocessing[Output<Image>(kImageTag)],
/* detections= */
detection_label_id_to_text[Output<std::vector<Detection>>("")],
/* image= */ preprocessing[Output<Image>(kImageTag)],
}};
}
};

View File

@ -194,7 +194,7 @@ TEST_F(CreateFromOptionsTest, FailsWithSelectiveOpResolverMissingOps) {
// interpreter errors (e.g., "Encountered unresolved custom op").
EXPECT_EQ(object_detector.status().code(), absl::StatusCode::kInternal);
EXPECT_THAT(object_detector.status().message(),
HasSubstr("interpreter_->AllocateTensors() == kTfLiteOk"));
HasSubstr("interpreter->AllocateTensors() == kTfLiteOk"));
}
TEST_F(CreateFromOptionsTest, FailsWithMissingModel) {

View File

@ -27,7 +27,7 @@ message ObjectDetectorOptions {
extend mediapipe.CalculatorOptions {
optional ObjectDetectorOptions ext = 443442058;
}
// Base options for configuring Task library, such as specifying the TfLite
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;

View File

@ -1,75 +0,0 @@
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "mediapipe/tasks/cc/vision/segmentation/image_segmenter.h"
#include "mediapipe/framework/api2/builder.h"
#include "mediapipe/tasks/cc/core/task_api_factory.h"
namespace mediapipe {
namespace tasks {
namespace vision {
namespace {
constexpr char kSegmentationStreamName[] = "segmented_mask_out";
constexpr char kGroupedSegmentationTag[] = "GROUPED_SEGMENTATION";
constexpr char kImageStreamName[] = "image_in";
constexpr char kImageTag[] = "IMAGE";
constexpr char kSubgraphTypeName[] =
"mediapipe.tasks.vision.ImageSegmenterGraph";
using ::mediapipe::CalculatorGraphConfig;
using ::mediapipe::Image;
// Creates a MediaPipe graph config that only contains a single subgraph node of
// "mediapipe.tasks.vision.SegmenterGraph".
CalculatorGraphConfig CreateGraphConfig(
std::unique_ptr<ImageSegmenterOptions> options) {
api2::builder::Graph graph;
auto& subgraph = graph.AddNode(kSubgraphTypeName);
subgraph.GetOptions<ImageSegmenterOptions>().Swap(options.get());
graph.In(kImageTag).SetName(kImageStreamName) >> subgraph.In(kImageTag);
subgraph.Out(kGroupedSegmentationTag).SetName(kSegmentationStreamName) >>
graph.Out(kGroupedSegmentationTag);
return graph.GetConfig();
}
} // namespace
absl::StatusOr<std::unique_ptr<ImageSegmenter>> ImageSegmenter::Create(
std::unique_ptr<ImageSegmenterOptions> options,
std::unique_ptr<tflite::OpResolver> resolver) {
return core::TaskApiFactory::Create<ImageSegmenter, ImageSegmenterOptions>(
CreateGraphConfig(std::move(options)), std::move(resolver));
}
absl::StatusOr<std::vector<Image>> ImageSegmenter::Segment(
mediapipe::Image image) {
if (image.UsesGpu()) {
return CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrCat("GPU input images are currently not supported."),
MediaPipeTasksStatus::kRunnerUnexpectedInputError);
}
ASSIGN_OR_RETURN(
auto output_packets,
runner_->Process({{kImageStreamName,
mediapipe::MakePacket<Image>(std::move(image))}}));
return output_packets[kSegmentationStreamName].Get<std::vector<Image>>();
}
} // namespace vision
} // namespace tasks
} // namespace mediapipe

View File

@ -1,76 +0,0 @@
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_IMAGE_SEGMENTER_H_
#define MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_IMAGE_SEGMENTER_H_
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/status/statusor.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/tasks/cc/core/base_task_api.h"
#include "mediapipe/tasks/cc/vision/segmentation/image_segmenter_options.pb.h"
#include "tensorflow/lite/core/api/op_resolver.h"
#include "tensorflow/lite/kernels/register.h"
namespace mediapipe {
namespace tasks {
namespace vision {
// Performs segmentation on images.
//
// The API expects a TFLite model with mandatory TFLite Model Metadata.
//
// Input tensor:
// (kTfLiteUInt8/kTfLiteFloat32)
// - image input of size `[batch x height x width x channels]`.
// - batch inference is not supported (`batch` is required to be 1).
// - RGB and greyscale inputs are supported (`channels` is required to be
// 1 or 3).
// - if type is kTfLiteFloat32, NormalizationOptions are required to be
// attached to the metadata for input normalization.
// Output tensors:
// (kTfLiteUInt8/kTfLiteFloat32)
// - list of segmented masks.
// - if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
// - if `output_type` is CONFIDENCE_MASK, float32 Image list of size
// `cahnnels`.
// - batch is always 1
// An example of such model can be found at:
// https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2
class ImageSegmenter : core::BaseTaskApi {
public:
using BaseTaskApi::BaseTaskApi;
// Creates a Segmenter from the provided options. A non-default
// OpResolver can be specified in order to support custom Ops or specify a
// subset of built-in Ops.
static absl::StatusOr<std::unique_ptr<ImageSegmenter>> Create(
std::unique_ptr<ImageSegmenterOptions> options,
std::unique_ptr<tflite::OpResolver> resolver =
absl::make_unique<tflite::ops::builtin::BuiltinOpResolver>());
// Runs the actual segmentation task.
absl::StatusOr<std::vector<mediapipe::Image>> Segment(mediapipe::Image image);
};
} // namespace vision
} // namespace tasks
} // namespace mediapipe
#endif // MEDIAPIPE_TASKS_CC_VISION_SEGMENTATION_IMAGE_SEGMENTER_H_

View File

@ -80,6 +80,7 @@ filegroup(
],
)
# TODO Create individual filegroup for models required for each Tasks.
filegroup(
name = "test_models",
srcs = [