Update test method names

This commit is contained in:
Kinar R 2023-04-19 12:10:50 +05:30 committed by GitHub
parent e5e8c71390
commit f1fbcfab26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -138,7 +138,7 @@ class ObjectDetectorTest(parameterized.TestCase):
os.path.join(_TEST_DATA_DIR, _MODEL_FILE) os.path.join(_TEST_DATA_DIR, _MODEL_FILE)
) )
def _assert_approximately_equals_bounding_box(self, bbox, expected_bbox): def _expect_bounding_box_correct(self, bbox, expected_bbox):
self.assertEqual(bbox.width, expected_bbox.width) self.assertEqual(bbox.width, expected_bbox.width)
self.assertEqual(bbox.height, expected_bbox.height) self.assertEqual(bbox.height, expected_bbox.height)
self.assertAlmostEqual( self.assertAlmostEqual(
@ -148,21 +148,21 @@ class ObjectDetectorTest(parameterized.TestCase):
bbox.origin_y, expected_bbox.origin_y, _PIXEL_DIFF_TOLERANCE bbox.origin_y, expected_bbox.origin_y, _PIXEL_DIFF_TOLERANCE
) )
def _assert_approximately_equals_category(self, category, expected_category): def _expect_category_correct(self, category, expected_category):
self.assertEqual(category.category_name, expected_category.category_name) self.assertEqual(category.category_name, expected_category.category_name)
self.assertAlmostEqual( self.assertAlmostEqual(
category.score, expected_category.score, _SCORE_DIFF_TOLERANCE category.score, expected_category.score, _SCORE_DIFF_TOLERANCE
) )
def _assert_approximately_equals_detection_result(self, result, expected_result): def _expect_detection_result_correct(self, result, expected_result):
self.assertLen(result.detections, len(expected_result.detections)) self.assertLen(result.detections, len(expected_result.detections))
for i, detection in enumerate(result.detections): for i, detection in enumerate(result.detections):
bbox = detection.bounding_box bbox = detection.bounding_box
category = detection.categories[0] category = detection.categories[0]
expected_bbox = expected_result.detections[i].bounding_box expected_bbox = expected_result.detections[i].bounding_box
expected_category = expected_result.detections[i].categories[0] expected_category = expected_result.detections[i].categories[0]
self._assert_approximately_equals_bounding_box(bbox, expected_bbox) self._expect_bounding_box_correct(bbox, expected_bbox)
self._assert_approximately_equals_category(category, expected_category) self._expect_category_correct(category, expected_category)
def test_create_from_file_succeeds_with_valid_model_path(self): def test_create_from_file_succeeds_with_valid_model_path(self):
# Creates with default option and valid model file successfully. # Creates with default option and valid model file successfully.
@ -220,7 +220,7 @@ class ObjectDetectorTest(parameterized.TestCase):
# Performs object detection on the input. # Performs object detection on the input.
detection_result = detector.detect(self.test_image) detection_result = detector.detect(self.test_image)
# Comparing results. # Comparing results.
self._assert_approximately_equals_detection_result( self._expect_detection_result_correct(
detection_result, expected_detection_result detection_result, expected_detection_result
) )
# Closes the detector explicitly when the detector is not used in # Closes the detector explicitly when the detector is not used in
@ -435,7 +435,7 @@ class ObjectDetectorTest(parameterized.TestCase):
with _ObjectDetector.create_from_options(options) as detector: with _ObjectDetector.create_from_options(options) as detector:
for timestamp in range(0, 300, 30): for timestamp in range(0, 300, 30):
detection_result = detector.detect_for_video(self.test_image, timestamp) detection_result = detector.detect_for_video(self.test_image, timestamp)
self._assert_approximately_equals_detection_result( self._expect_detection_result_correct(
detection_result, _EXPECTED_DETECTION_RESULT detection_result, _EXPECTED_DETECTION_RESULT
) )
@ -487,7 +487,7 @@ class ObjectDetectorTest(parameterized.TestCase):
result: _DetectionResult, output_image: _Image, timestamp_ms: int result: _DetectionResult, output_image: _Image, timestamp_ms: int
): ):
if result.detections: if result.detections:
self._assert_approximately_equals_detection_result( self._expect_detection_result_correct(
result, expected_result result, expected_result
) )
else: else: