Merge pull request #4361 from kinaryml:face-aligner-python
PiperOrigin-RevId: 529165597
This commit is contained in:
commit
e84e90e5b2
|
@ -185,3 +185,20 @@ py_test(
|
|||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "face_aligner_test",
|
||||
srcs = ["face_aligner_test.py"],
|
||||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:face_aligner",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
],
|
||||
)
|
||||
|
|
190
mediapipe/tasks/python/test/vision/face_aligner_test.py
Normal file
190
mediapipe/tasks/python/test/vision/face_aligner_test.py
Normal file
|
@ -0,0 +1,190 @@
|
|||
# Copyright 2023 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for face aligner."""
|
||||
|
||||
import enum
|
||||
import os
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.python.components.containers import rect
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import face_aligner
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Rect = rect.Rect
|
||||
_Image = image_module.Image
|
||||
_FaceAligner = face_aligner.FaceAligner
|
||||
_FaceAlignerOptions = face_aligner.FaceAlignerOptions
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
|
||||
_MODEL = 'face_landmarker_v2.task'
|
||||
_LARGE_FACE_IMAGE = 'portrait.jpg'
|
||||
_MODEL_IMAGE_SIZE = 256
|
||||
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
FILE_CONTENT = 1
|
||||
FILE_NAME = 2
|
||||
|
||||
|
||||
class FaceAlignerTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _LARGE_FACE_IMAGE)
|
||||
)
|
||||
)
|
||||
self.model_path = test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _MODEL)
|
||||
)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
with _FaceAligner.create_from_model_path(self.model_path) as aligner:
|
||||
self.assertIsInstance(aligner, _FaceAligner)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||
# Creates with options containing model file successfully.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
with _FaceAligner.create_from_options(options) as aligner:
|
||||
self.assertIsInstance(aligner, _FaceAligner)
|
||||
|
||||
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
|
||||
):
|
||||
base_options = _BaseOptions(
|
||||
model_asset_path='/path/to/invalid/model.tflite'
|
||||
)
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
_FaceAligner.create_from_options(options)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||
# Creates with options containing model content successfully.
|
||||
with open(self.model_path, 'rb') as f:
|
||||
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
aligner = _FaceAligner.create_from_options(options)
|
||||
self.assertIsInstance(aligner, _FaceAligner)
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME, _LARGE_FACE_IMAGE),
|
||||
(ModelFileType.FILE_CONTENT, _LARGE_FACE_IMAGE),
|
||||
)
|
||||
def test_align(self, model_file_type, image_file_name):
|
||||
# Load the test image.
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, image_file_name)
|
||||
)
|
||||
)
|
||||
# Creates aligner.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
aligner = _FaceAligner.create_from_options(options)
|
||||
|
||||
# Performs face alignment on the input.
|
||||
alignd_image = aligner.align(self.test_image)
|
||||
self.assertIsInstance(alignd_image, _Image)
|
||||
# Closes the aligner explicitly when the aligner is not used in
|
||||
# a context.
|
||||
aligner.close()
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME, _LARGE_FACE_IMAGE),
|
||||
(ModelFileType.FILE_CONTENT, _LARGE_FACE_IMAGE),
|
||||
)
|
||||
def test_align_in_context(self, model_file_type, image_file_name):
|
||||
# Load the test image.
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, image_file_name)
|
||||
)
|
||||
)
|
||||
# Creates aligner.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
with _FaceAligner.create_from_options(options) as aligner:
|
||||
# Performs face alignment on the input.
|
||||
alignd_image = aligner.align(self.test_image)
|
||||
self.assertIsInstance(alignd_image, _Image)
|
||||
self.assertEqual(alignd_image.width, _MODEL_IMAGE_SIZE)
|
||||
self.assertEqual(alignd_image.height, _MODEL_IMAGE_SIZE)
|
||||
|
||||
def test_align_succeeds_with_region_of_interest(self):
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
with _FaceAligner.create_from_options(options) as aligner:
|
||||
# Load the test image.
|
||||
test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _LARGE_FACE_IMAGE)
|
||||
)
|
||||
)
|
||||
# Region-of-interest around the face.
|
||||
roi = _Rect(left=0.32, top=0.02, right=0.67, bottom=0.32)
|
||||
image_processing_options = _ImageProcessingOptions(roi)
|
||||
# Performs face alignment on the input.
|
||||
alignd_image = aligner.align(test_image, image_processing_options)
|
||||
self.assertIsInstance(alignd_image, _Image)
|
||||
self.assertEqual(alignd_image.width, _MODEL_IMAGE_SIZE)
|
||||
self.assertEqual(alignd_image.height, _MODEL_IMAGE_SIZE)
|
||||
|
||||
def test_align_succeeds_with_no_face_detected(self):
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _FaceAlignerOptions(base_options=base_options)
|
||||
with _FaceAligner.create_from_options(options) as aligner:
|
||||
# Load the test image.
|
||||
test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _LARGE_FACE_IMAGE)
|
||||
)
|
||||
)
|
||||
# Region-of-interest that doesn't contain a human face.
|
||||
roi = _Rect(left=0.1, top=0.1, right=0.2, bottom=0.2)
|
||||
image_processing_options = _ImageProcessingOptions(roi)
|
||||
# Performs face alignment on the input.
|
||||
alignd_image = aligner.align(test_image, image_processing_options)
|
||||
self.assertIsNone(alignd_image)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
|
@ -264,3 +264,22 @@ py_library(
|
|||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "face_aligner",
|
||||
srcs = [
|
||||
"face_aligner.py",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/python:packet_creator",
|
||||
"//mediapipe/python:packet_getter",
|
||||
"//mediapipe/tasks/cc/vision/face_stylizer/proto:face_stylizer_graph_options_py_pb2",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
"//mediapipe/tasks/python/core:task_info",
|
||||
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
|
158
mediapipe/tasks/python/vision/face_aligner.py
Normal file
158
mediapipe/tasks/python/vision/face_aligner.py
Normal file
|
@ -0,0 +1,158 @@
|
|||
# Copyright 2023 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MediaPipe face aligner task."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Optional
|
||||
|
||||
from mediapipe.python import packet_creator
|
||||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.cc.vision.face_stylizer.proto import face_stylizer_graph_options_pb2
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_FaceStylizerGraphOptionsProto = (
|
||||
face_stylizer_graph_options_pb2.FaceStylizerGraphOptions
|
||||
)
|
||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
|
||||
_FACE_ALIGNMENT_IMAGE_NAME = 'face_alignment'
|
||||
_FACE_ALIGNMENT_IMAGE_TAG = 'FACE_ALIGNMENT'
|
||||
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||
_NORM_RECT_TAG = 'NORM_RECT'
|
||||
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||
_IMAGE_TAG = 'IMAGE'
|
||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.face_stylizer.FaceStylizerGraph'
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class FaceAlignerOptions:
|
||||
"""Options for the face aligner task.
|
||||
|
||||
Attributes:
|
||||
base_options: Base options for the face aligner task.
|
||||
"""
|
||||
|
||||
base_options: _BaseOptions
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _FaceStylizerGraphOptionsProto:
|
||||
"""Generates a FaceStylizerOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False
|
||||
return _FaceStylizerGraphOptionsProto(base_options=base_options_proto)
|
||||
|
||||
|
||||
class FaceAligner(base_vision_task_api.BaseVisionTaskApi):
|
||||
"""Class that performs face alignment on images."""
|
||||
|
||||
@classmethod
|
||||
def create_from_model_path(cls, model_path: str) -> 'FaceAligner':
|
||||
"""Creates a `FaceAligner` object from a face landmarker task bundle and the default `FaceAlignerOptions`.
|
||||
|
||||
Note that the created `FaceAligner` instance is in image mode, for
|
||||
aligning one face on a single image input.
|
||||
|
||||
Args:
|
||||
model_path: Path to the face landmarker task bundle.
|
||||
|
||||
Returns:
|
||||
`FaceAligner` object that's created from the model file and the default
|
||||
`FaceAlignerOptions`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceAligner` object from the provided
|
||||
file such as invalid file path.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
options = FaceAlignerOptions(base_options=base_options)
|
||||
return cls.create_from_options(options)
|
||||
|
||||
@classmethod
|
||||
def create_from_options(cls, options: FaceAlignerOptions) -> 'FaceAligner':
|
||||
"""Creates the `FaceAligner` object from face aligner options.
|
||||
|
||||
Args:
|
||||
options: Options for the face aligner task.
|
||||
|
||||
Returns:
|
||||
`FaceAligner` object that's created from `options`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceAligner` object from
|
||||
`FaceAlignerOptions` such as missing the model.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
task_info = _TaskInfo(
|
||||
task_graph=_TASK_GRAPH_NAME,
|
||||
input_streams=[
|
||||
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||
],
|
||||
output_streams=[
|
||||
':'.join([_FACE_ALIGNMENT_IMAGE_TAG, _FACE_ALIGNMENT_IMAGE_NAME]),
|
||||
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
||||
],
|
||||
task_options=options,
|
||||
)
|
||||
return cls(
|
||||
task_info.generate_graph_config(enable_flow_limiting=False),
|
||||
_RunningMode.IMAGE,
|
||||
None,
|
||||
)
|
||||
|
||||
def align(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||
) -> image_module.Image:
|
||||
"""Performs face alignment on the provided MediaPipe Image.
|
||||
|
||||
Only use this method when the FaceAligner is created with the image
|
||||
running mode.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The aligned face image. The aligned output image size is the same as the
|
||||
model output size. None if no face is detected on the input image.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If face alignment failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, image
|
||||
)
|
||||
output_packets = self._process_image_data({
|
||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||
normalized_rect.to_pb2()
|
||||
),
|
||||
})
|
||||
if output_packets[_FACE_ALIGNMENT_IMAGE_NAME].is_empty():
|
||||
return None
|
||||
return packet_getter.get_image(output_packets[_FACE_ALIGNMENT_IMAGE_NAME])
|
Loading…
Reference in New Issue
Block a user