Revised Interactive Segmenter API and added more tests
This commit is contained in:
parent
6304756c93
commit
e364aeb359
|
@ -102,9 +102,11 @@ py_test(
|
|||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/tasks/python/components/containers:keypoint",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:interactive_segmenter",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -24,20 +24,24 @@ import numpy as np
|
|||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import image_frame
|
||||
from mediapipe.tasks.python.components.containers import keypoint as keypoint_module
|
||||
from mediapipe.tasks.python.components.containers import rect
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import interactive_segmenter
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Image = image_module.Image
|
||||
_ImageFormat = image_frame.ImageFormat
|
||||
_NormalizedKeypoint = keypoint_module.NormalizedKeypoint
|
||||
_Rect = rect.Rect
|
||||
_OutputType = interactive_segmenter.InteractiveSegmenterOptions.OutputType
|
||||
_InteractiveSegmenter = interactive_segmenter.InteractiveSegmenter
|
||||
_InteractiveSegmenterOptions = interactive_segmenter.InteractiveSegmenterOptions
|
||||
_RegionOfInterest = interactive_segmenter.RegionOfInterest
|
||||
_Format = interactive_segmenter.RegionOfInterest.Format
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_RUNNING_MODE = vision_task_running_mode.VisionTaskRunningMode
|
||||
|
||||
_MODEL_FILE = 'ptm_512_hdt_ptm_woid.tflite'
|
||||
|
@ -50,11 +54,11 @@ _TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
|||
|
||||
|
||||
def _calculate_soft_iou(m1, m2):
|
||||
intersection = np.sum(m1 * m2)
|
||||
union = np.sum(m1 * m1) + np.sum(m2 * m2) - intersection
|
||||
intersection_sum = np.sum(m1 * m2)
|
||||
union_sum = np.sum(m1 * m1) + np.sum(m2 * m2) - intersection_sum
|
||||
|
||||
if union > 0:
|
||||
return intersection / union
|
||||
if union_sum > 0:
|
||||
return intersection_sum / union_sum
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
@ -189,9 +193,9 @@ class InteractiveSegmenterTest(parameterized.TestCase):
|
|||
|
||||
@parameterized.parameters(
|
||||
(_RegionOfInterest.Format.KEYPOINT, _NormalizedKeypoint(0.44, 0.7),
|
||||
_CATS_AND_DOGS_MASK_DOG_1, 0.58),
|
||||
_CATS_AND_DOGS_MASK_DOG_1, 0.84),
|
||||
(_RegionOfInterest.Format.KEYPOINT, _NormalizedKeypoint(0.66, 0.66),
|
||||
_CATS_AND_DOGS_MASK_DOG_2, 0.60)
|
||||
_CATS_AND_DOGS_MASK_DOG_2, _MASK_SIMILARITY_THRESHOLD)
|
||||
)
|
||||
def test_segment_succeeds_with_confidence_mask(
|
||||
self, format, keypoint, output_mask, similarity_threshold):
|
||||
|
@ -203,26 +207,66 @@ class InteractiveSegmenterTest(parameterized.TestCase):
|
|||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options,
|
||||
output_type=_OutputType.CONFIDENCE_MASK)
|
||||
segmenter = _InteractiveSegmenter.create_from_options(options)
|
||||
|
||||
# Perform segmentation
|
||||
confidence_masks = segmenter.segment(self.test_image, roi)
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
confidence_masks = segmenter.segment(self.test_image, roi)
|
||||
|
||||
# Check if confidence mask shape is correct.
|
||||
self.assertLen(
|
||||
# Check if confidence mask shape is correct.
|
||||
self.assertLen(
|
||||
confidence_masks, 2,
|
||||
'Number of confidence masks must match with number of categories.')
|
||||
|
||||
# Loads ground truth segmentation file.
|
||||
expected_mask = self._load_segmentation_mask(output_mask)
|
||||
|
||||
self.assertTrue(
|
||||
_similar_to_float_mask(confidence_masks[1], expected_mask,
|
||||
similarity_threshold))
|
||||
|
||||
def test_segment_succeeds_with_rotation(self):
|
||||
# Creates segmenter.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
roi = _RegionOfInterest(
|
||||
format=_RegionOfInterest.Format.KEYPOINT,
|
||||
keypoint=_NormalizedKeypoint(0.66, 0.66)
|
||||
)
|
||||
|
||||
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options,
|
||||
output_type=_OutputType.CONFIDENCE_MASK)
|
||||
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
image_processing_options = _ImageProcessingOptions(rotation_degrees=-90)
|
||||
confidence_masks = segmenter.segment(self.test_image, roi)
|
||||
|
||||
# Check if confidence mask shape is correct.
|
||||
self.assertLen(
|
||||
confidence_masks, 2,
|
||||
'Number of confidence masks must match with number of categories.')
|
||||
|
||||
# Loads ground truth segmentation file.
|
||||
expected_mask = self._load_segmentation_mask(output_mask)
|
||||
def test_segment_fails_with_roi_in_image_processing_options(self):
|
||||
# Creates segmenter.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
roi = _RegionOfInterest(
|
||||
format=_RegionOfInterest.Format.KEYPOINT,
|
||||
keypoint=_NormalizedKeypoint(0.66, 0.66)
|
||||
)
|
||||
|
||||
self.assertTrue(
|
||||
_similar_to_float_mask(confidence_masks[1], expected_mask,
|
||||
similarity_threshold))
|
||||
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options,
|
||||
output_type=_OutputType.CONFIDENCE_MASK)
|
||||
|
||||
# Closes the segmenter explicitly when the segmenter is not used in
|
||||
# a context.
|
||||
segmenter.close()
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "This task doesn't support region-of-interest."):
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
image_processing_options = _ImageProcessingOptions(
|
||||
_Rect(left=0.1, top=0, right=0.9, bottom=1))
|
||||
segmenter.segment(self.test_image, roi, image_processing_options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -254,7 +254,8 @@ class InteractiveSegmenter(base_vision_task_api.BaseVisionTaskApi):
|
|||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If image segmentation failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||
normalized_rect = self.convert_to_normalized_rect(image_processing_options,
|
||||
roi_allowed=False)
|
||||
render_data_proto = _convert_roi_to_render_data(roi)
|
||||
output_packets = self._process_image_data(
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue
Block a user