Modifying tensor_to_vector_float_calculator to take in D_BFLOAT16 values
PiperOrigin-RevId: 565189254
This commit is contained in:
		
							parent
							
								
									6dc1239aa9
								
							
						
					
					
						commit
						e1d1877e07
					
				| 
						 | 
				
			
			@ -723,6 +723,7 @@ cc_library(
 | 
			
		|||
        "//mediapipe/framework:calculator_framework",
 | 
			
		||||
        "//mediapipe/framework/port:ret_check",
 | 
			
		||||
        "//mediapipe/framework/port:status",
 | 
			
		||||
        "@org_tensorflow//tensorflow/core/platform:bfloat16",
 | 
			
		||||
    ] + select({
 | 
			
		||||
        "//conditions:default": [
 | 
			
		||||
            "@org_tensorflow//tensorflow/core:framework",
 | 
			
		||||
| 
						 | 
				
			
			@ -1139,6 +1140,7 @@ cc_test(
 | 
			
		|||
        "//mediapipe/util:packet_test_util",
 | 
			
		||||
        "@org_tensorflow//tensorflow/core:framework",
 | 
			
		||||
        "@org_tensorflow//tensorflow/core:protos_all_cc",
 | 
			
		||||
        "@org_tensorflow//tensorflow/core/platform:bfloat16",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -15,12 +15,16 @@
 | 
			
		|||
// Calculator converts from one-dimensional Tensor of DT_FLOAT to vector<float>
 | 
			
		||||
// OR from (batched) two-dimensional Tensor of DT_FLOAT to vector<vector<float>.
 | 
			
		||||
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
#include "mediapipe/calculators/tensorflow/tensor_to_vector_float_calculator_options.pb.h"
 | 
			
		||||
#include "mediapipe/framework/calculator_framework.h"
 | 
			
		||||
#include "mediapipe/framework/port/ret_check.h"
 | 
			
		||||
#include "mediapipe/framework/port/status.h"
 | 
			
		||||
#include "tensorflow/core/framework/tensor.h"
 | 
			
		||||
#include "tensorflow/core/framework/types.h"
 | 
			
		||||
#include "tensorflow/core/platform/bfloat16.h"
 | 
			
		||||
 | 
			
		||||
namespace mediapipe {
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -76,21 +80,31 @@ absl::Status TensorToVectorFloatCalculator::Open(CalculatorContext* cc) {
 | 
			
		|||
absl::Status TensorToVectorFloatCalculator::Process(CalculatorContext* cc) {
 | 
			
		||||
  const tf::Tensor& input_tensor =
 | 
			
		||||
      cc->Inputs().Index(0).Value().Get<tf::Tensor>();
 | 
			
		||||
  RET_CHECK(tf::DT_FLOAT == input_tensor.dtype())
 | 
			
		||||
      << "expected DT_FLOAT input but got "
 | 
			
		||||
  RET_CHECK(tf::DT_FLOAT == input_tensor.dtype() ||
 | 
			
		||||
            tf::DT_BFLOAT16 == input_tensor.dtype())
 | 
			
		||||
      << "expected DT_FLOAT or DT_BFLOAT_16 input but got "
 | 
			
		||||
      << tensorflow::DataTypeString(input_tensor.dtype());
 | 
			
		||||
 | 
			
		||||
  if (options_.tensor_is_2d()) {
 | 
			
		||||
    RET_CHECK(2 == input_tensor.dims())
 | 
			
		||||
        << "Expected 2-dimensional Tensor, but the tensor shape is: "
 | 
			
		||||
        << input_tensor.shape().DebugString();
 | 
			
		||||
    auto output = absl::make_unique<std::vector<std::vector<float>>>(
 | 
			
		||||
    auto output = std::make_unique<std::vector<std::vector<float>>>(
 | 
			
		||||
        input_tensor.dim_size(0), std::vector<float>(input_tensor.dim_size(1)));
 | 
			
		||||
    for (int i = 0; i < input_tensor.dim_size(0); ++i) {
 | 
			
		||||
      auto& instance_output = output->at(i);
 | 
			
		||||
      const auto& slice = input_tensor.Slice(i, i + 1).unaligned_flat<float>();
 | 
			
		||||
      for (int j = 0; j < input_tensor.dim_size(1); ++j) {
 | 
			
		||||
        instance_output.at(j) = slice(j);
 | 
			
		||||
      if (tf::DT_BFLOAT16 == input_tensor.dtype()) {
 | 
			
		||||
        const auto& slice =
 | 
			
		||||
            input_tensor.Slice(i, i + 1).unaligned_flat<tf::bfloat16>();
 | 
			
		||||
        for (int j = 0; j < input_tensor.dim_size(1); ++j) {
 | 
			
		||||
          instance_output.at(j) = static_cast<float>(slice(j));
 | 
			
		||||
        }
 | 
			
		||||
      } else {
 | 
			
		||||
        const auto& slice =
 | 
			
		||||
            input_tensor.Slice(i, i + 1).unaligned_flat<float>();
 | 
			
		||||
        for (int j = 0; j < input_tensor.dim_size(1); ++j) {
 | 
			
		||||
          instance_output.at(j) = slice(j);
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
 | 
			
		||||
| 
						 | 
				
			
			@ -101,10 +115,17 @@ absl::Status TensorToVectorFloatCalculator::Process(CalculatorContext* cc) {
 | 
			
		|||
          << "tensor shape is: " << input_tensor.shape().DebugString();
 | 
			
		||||
    }
 | 
			
		||||
    auto output =
 | 
			
		||||
        absl::make_unique<std::vector<float>>(input_tensor.NumElements());
 | 
			
		||||
    const auto& tensor_values = input_tensor.unaligned_flat<float>();
 | 
			
		||||
    for (int i = 0; i < input_tensor.NumElements(); ++i) {
 | 
			
		||||
      output->at(i) = tensor_values(i);
 | 
			
		||||
        std::make_unique<std::vector<float>>(input_tensor.NumElements());
 | 
			
		||||
    if (tf::DT_BFLOAT16 == input_tensor.dtype()) {
 | 
			
		||||
      const auto& tensor_values = input_tensor.unaligned_flat<tf::bfloat16>();
 | 
			
		||||
      for (int i = 0; i < input_tensor.NumElements(); ++i) {
 | 
			
		||||
        output->at(i) = static_cast<float>(tensor_values(i));
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      const auto& tensor_values = input_tensor.unaligned_flat<float>();
 | 
			
		||||
      for (int i = 0; i < input_tensor.NumElements(); ++i) {
 | 
			
		||||
        output->at(i) = tensor_values(i);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -12,6 +12,8 @@
 | 
			
		|||
// See the License for the specific language governing permissions and
 | 
			
		||||
// limitations under the License.
 | 
			
		||||
 | 
			
		||||
#include <memory>
 | 
			
		||||
 | 
			
		||||
#include "mediapipe/calculators/tensorflow/tensor_to_vector_float_calculator_options.pb.h"
 | 
			
		||||
#include "mediapipe/framework/calculator_framework.h"
 | 
			
		||||
#include "mediapipe/framework/calculator_runner.h"
 | 
			
		||||
| 
						 | 
				
			
			@ -19,6 +21,7 @@
 | 
			
		|||
#include "mediapipe/util/packet_test_util.h"
 | 
			
		||||
#include "tensorflow/core/framework/tensor.h"
 | 
			
		||||
#include "tensorflow/core/framework/types.pb.h"
 | 
			
		||||
#include "tensorflow/core/platform/bfloat16.h"
 | 
			
		||||
 | 
			
		||||
namespace mediapipe {
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -72,6 +75,62 @@ TEST_F(TensorToVectorFloatCalculatorTest, ConvertsToVectorFloat) {
 | 
			
		|||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(TensorToVectorFloatCalculatorTest, CheckBFloat16Type) {
 | 
			
		||||
  SetUpRunner(false, false);
 | 
			
		||||
  const tf::TensorShape tensor_shape(std::vector<tf::int64>{5});
 | 
			
		||||
  auto tensor = std::make_unique<tf::Tensor>(tf::DT_BFLOAT16, tensor_shape);
 | 
			
		||||
  auto tensor_vec = tensor->vec<tf::bfloat16>();
 | 
			
		||||
  for (int i = 0; i < 5; ++i) {
 | 
			
		||||
    tensor_vec(i) = static_cast<tf::bfloat16>(1 << i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  const int64_t time = 1234;
 | 
			
		||||
  runner_->MutableInputs()->Index(0).packets.push_back(
 | 
			
		||||
      Adopt(tensor.release()).At(Timestamp(time)));
 | 
			
		||||
 | 
			
		||||
  EXPECT_TRUE(runner_->Run().ok());
 | 
			
		||||
  const std::vector<Packet>& output_packets =
 | 
			
		||||
      runner_->Outputs().Index(0).packets;
 | 
			
		||||
  EXPECT_EQ(1, output_packets.size());
 | 
			
		||||
  EXPECT_EQ(time, output_packets[0].Timestamp().Value());
 | 
			
		||||
  const std::vector<float>& output_vector =
 | 
			
		||||
      output_packets[0].Get<std::vector<float>>();
 | 
			
		||||
 | 
			
		||||
  EXPECT_EQ(5, output_vector.size());
 | 
			
		||||
  for (int i = 0; i < 5; ++i) {
 | 
			
		||||
    const float expected = static_cast<float>(1 << i);
 | 
			
		||||
    EXPECT_EQ(expected, output_vector[i]);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(TensorToVectorFloatCalculatorTest, CheckBFloat16TypeAllDim) {
 | 
			
		||||
  SetUpRunner(false, true);
 | 
			
		||||
  const tf::TensorShape tensor_shape(std::vector<tf::int64>{2, 2, 2});
 | 
			
		||||
  auto tensor = std::make_unique<tf::Tensor>(tf::DT_BFLOAT16, tensor_shape);
 | 
			
		||||
  auto slice = tensor->flat<tf::bfloat16>();
 | 
			
		||||
  for (int i = 0; i < 2 * 2 * 2; ++i) {
 | 
			
		||||
    // 2^i can be represented exactly in floating point numbers if 'i' is small.
 | 
			
		||||
    slice(i) = static_cast<tf::bfloat16>(1 << i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  const int64_t time = 1234;
 | 
			
		||||
  runner_->MutableInputs()->Index(0).packets.push_back(
 | 
			
		||||
      Adopt(tensor.release()).At(Timestamp(time)));
 | 
			
		||||
 | 
			
		||||
  EXPECT_TRUE(runner_->Run().ok());
 | 
			
		||||
  const std::vector<Packet>& output_packets =
 | 
			
		||||
      runner_->Outputs().Index(0).packets;
 | 
			
		||||
  EXPECT_EQ(1, output_packets.size());
 | 
			
		||||
  EXPECT_EQ(time, output_packets[0].Timestamp().Value());
 | 
			
		||||
  const std::vector<float>& output_vector =
 | 
			
		||||
      output_packets[0].Get<std::vector<float>>();
 | 
			
		||||
  EXPECT_EQ(2 * 2 * 2, output_vector.size());
 | 
			
		||||
  for (int i = 0; i < 2 * 2 * 2; ++i) {
 | 
			
		||||
    const float expected = static_cast<float>(1 << i);
 | 
			
		||||
    EXPECT_EQ(expected, output_vector[i]);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(TensorToVectorFloatCalculatorTest, ConvertsBatchedToVectorVectorFloat) {
 | 
			
		||||
  SetUpRunner(true, false);
 | 
			
		||||
  const tf::TensorShape tensor_shape(std::vector<tf::int64>{1, 5});
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user