diff --git a/mediapipe/tasks/python/test/metadata/metadata_test.py b/mediapipe/tasks/python/test/metadata/metadata_test.py index 00dbe526a..bed9c2833 100644 --- a/mediapipe/tasks/python/test/metadata/metadata_test.py +++ b/mediapipe/tasks/python/test/metadata/metadata_test.py @@ -27,6 +27,8 @@ from mediapipe.tasks.metadata import schema_py_generated as _schema_fb from mediapipe.tasks.python.metadata import metadata as _metadata from mediapipe.tasks.python.test import test_utils +_TEST_DATA_DIR = "mediapipe/tasks/testdata/metadata" + class Tokenizer(enum.Enum): BERT_TOKENIZER = 0 @@ -810,7 +812,8 @@ class MetadataDisplayerTest(MetadataTest): actual_json = _metadata.convert_to_json(actual_buffer) # Verifies the generated json file. - golden_json_file_path = test_utils.get_test_data_path("golden_json.json") + golden_json_file_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "golden_json.json")) with open(golden_json_file_path, "r") as f: expected = f.read() self.assertEqual(actual_json, expected) @@ -821,7 +824,8 @@ class MetadataDisplayerTest(MetadataTest): actual = displayer.get_metadata_json() # Verifies the generated json file. - golden_json_file_path = test_utils.get_test_data_path("golden_json.json") + golden_json_file_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "golden_json.json")) expected = _read_file(golden_json_file_path, "r") self.assertEqual(actual, expected) @@ -848,7 +852,8 @@ class MetadataUtilTest(MetadataTest): metadata_json = _metadata.convert_to_json(metadata_buf) # Verifies the generated json file. - golden_json_file_path = test_utils.get_test_data_path("golden_json.json") + golden_json_file_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "golden_json.json")) expected = _read_file(golden_json_file_path, "r") self.assertEqual(metadata_json, expected) diff --git a/mediapipe/tasks/python/test/metadata/metadata_writers/image_classifier_test.py b/mediapipe/tasks/python/test/metadata/metadata_writers/image_classifier_test.py index 4bbd91667..51f248d1e 100644 --- a/mediapipe/tasks/python/test/metadata/metadata_writers/image_classifier_test.py +++ b/mediapipe/tasks/python/test/metadata/metadata_writers/image_classifier_test.py @@ -14,6 +14,8 @@ # ============================================================================== """Tests for metadata_writer.image_classifier.""" +import os + from absl.testing import absltest from absl.testing import parameterized @@ -23,18 +25,25 @@ from mediapipe.tasks.python.metadata.metadata_writers import image_classifier from mediapipe.tasks.python.metadata.metadata_writers import metadata_writer from mediapipe.tasks.python.test import test_utils +_TEST_DATA_DIR = "mediapipe/tasks/testdata/metadata" _FLOAT_MODEL = test_utils.get_test_data_path( - "mobilenet_v2_1.0_224_without_metadata.tflite") + os.path.join(_TEST_DATA_DIR, + "mobilenet_v2_1.0_224_without_metadata.tflite")) _QUANT_MODEL = test_utils.get_test_data_path( - "mobilenet_v2_1.0_224_quant_without_metadata.tflite") -_LABEL_FILE = test_utils.get_test_data_path("labels.txt") -_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path("score_calibration.txt") + os.path.join(_TEST_DATA_DIR, + "mobilenet_v2_1.0_224_quant_without_metadata.tflite")) +_LABEL_FILE = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "labels.txt")) +_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "score_calibration.txt")) _SCORE_CALIBRATION_FILENAME = "score_calibration.txt" _DEFAULT_SCORE_CALIBRATION_VALUE = 0.2 _NORM_MEAN = 127.5 _NORM_STD = 127.5 -_FLOAT_JSON = test_utils.get_test_data_path("mobilenet_v2_1.0_224.json") -_QUANT_JSON = test_utils.get_test_data_path("mobilenet_v2_1.0_224_quant.json") +_FLOAT_JSON = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "mobilenet_v2_1.0_224.json")) +_QUANT_JSON = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "mobilenet_v2_1.0_224_quant.json")) class ImageClassifierTest(parameterized.TestCase): diff --git a/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_info_test.py b/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_info_test.py index 33e162607..0e1d1c369 100644 --- a/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_info_test.py +++ b/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_info_test.py @@ -14,6 +14,7 @@ # ============================================================================== """Tests for metadata info classes.""" +import os import tempfile from absl.testing import absltest @@ -26,13 +27,15 @@ from mediapipe.tasks.python.metadata import metadata as _metadata from mediapipe.tasks.python.metadata.metadata_writers import metadata_info from mediapipe.tasks.python.test import test_utils -_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path("score_calibration.txt") +_TEST_DATA_DIR = "mediapipe/tasks/testdata/metadata" +_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, "score_calibration.txt")) class GeneralMdTest(absltest.TestCase): _EXPECTED_GENERAL_META_JSON = test_utils.get_test_data_path( - "general_meta.json") + os.path.join(_TEST_DATA_DIR, "general_meta.json")) def test_create_metadata_should_succeed(self): general_md = metadata_info.GeneralMd( @@ -59,7 +62,7 @@ class GeneralMdTest(absltest.TestCase): class AssociatedFileMdTest(absltest.TestCase): _EXPECTED_META_JSON = test_utils.get_test_data_path( - "associated_file_meta.json") + os.path.join(_TEST_DATA_DIR, "associated_file_meta.json")) def test_create_metadata_should_succeed(self): file_md = metadata_info.AssociatedFileMd( @@ -92,11 +95,11 @@ class TensorMdTest(parameterized.TestCase): _LABEL_FILE_EN = "labels.txt" _LABEL_FILE_CN = "labels_cn.txt" # Locale label file in Chinese. _EXPECTED_FEATURE_TENSOR_JSON = test_utils.get_test_data_path( - "feature_tensor_meta.json") + os.path.join(_TEST_DATA_DIR, "feature_tensor_meta.json")) _EXPECTED_IMAGE_TENSOR_JSON = test_utils.get_test_data_path( - "image_tensor_meta.json") + os.path.join(_TEST_DATA_DIR, "image_tensor_meta.json")) _EXPECTED_BOUNDING_BOX_TENSOR_JSON = test_utils.get_test_data_path( - "bounding_box_tensor_meta.json") + os.path.join(_TEST_DATA_DIR, "bounding_box_tensor_meta.json")) @parameterized.named_parameters( { @@ -142,11 +145,11 @@ class InputImageTensorMdTest(parameterized.TestCase): _NORM_STD = (127.5, 127.5, 127.5) _COLOR_SPACE_TYPE = _metadata_fb.ColorSpaceType.RGB _EXPECTED_FLOAT_TENSOR_JSON = test_utils.get_test_data_path( - "input_image_tensor_float_meta.json") + os.path.join(_TEST_DATA_DIR, "input_image_tensor_float_meta.json")) _EXPECTED_UINT8_TENSOR_JSON = test_utils.get_test_data_path( - "input_image_tensor_uint8_meta.json") + os.path.join(_TEST_DATA_DIR, "input_image_tensor_uint8_meta.json")) _EXPECTED_UNSUPPORTED_TENSOR_JSON = test_utils.get_test_data_path( - "input_image_tensor_unsupported_meta.json") + os.path.join(_TEST_DATA_DIR, "input_image_tensor_unsupported_meta.json")) @parameterized.named_parameters( { @@ -196,11 +199,12 @@ class ClassificationTensorMdTest(parameterized.TestCase): _LABEL_FILE_CN = "labels_cn.txt" # Locale label file in Chinese. _CALIBRATION_DEFAULT_SCORE = 0.2 _EXPECTED_FLOAT_TENSOR_JSON = test_utils.get_test_data_path( - "classification_tensor_float_meta.json") + os.path.join(_TEST_DATA_DIR, "classification_tensor_float_meta.json")) _EXPECTED_UINT8_TENSOR_JSON = test_utils.get_test_data_path( - "classification_tensor_uint8_meta.json") + os.path.join(_TEST_DATA_DIR, "classification_tensor_uint8_meta.json")) _EXPECTED_UNSUPPORTED_TENSOR_JSON = test_utils.get_test_data_path( - "classification_tensor_unsupported_meta.json") + os.path.join(_TEST_DATA_DIR, + "classification_tensor_unsupported_meta.json")) @parameterized.named_parameters( { @@ -243,9 +247,9 @@ class ClassificationTensorMdTest(parameterized.TestCase): class ScoreCalibrationMdTest(absltest.TestCase): _DEFAULT_VALUE = 0.2 _EXPECTED_TENSOR_JSON = test_utils.get_test_data_path( - "score_calibration_tensor_meta.json") + os.path.join(_TEST_DATA_DIR, "score_calibration_tensor_meta.json")) _EXPECTED_MODEL_META_JSON = test_utils.get_test_data_path( - "score_calibration_file_meta.json") + os.path.join(_TEST_DATA_DIR, "score_calibration_file_meta.json")) def test_create_metadata_should_succeed(self): score_calibration_md = metadata_info.ScoreCalibrationMd( @@ -310,7 +314,7 @@ class ScoreCalibrationMdTest(absltest.TestCase): class ScoreThresholdingMdTest(absltest.TestCase): _DEFAULT_GLOBAL_THRESHOLD = 0.5 _EXPECTED_TENSOR_JSON = test_utils.get_test_data_path( - "score_thresholding_meta.json") + os.path.join(_TEST_DATA_DIR, "score_thresholding_meta.json")) def test_create_metadata_should_succeed(self): score_thresholding_md = metadata_info.ScoreThresholdingMd( diff --git a/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_writer_test.py b/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_writer_test.py index c59f19519..8cde318e7 100644 --- a/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_writer_test.py +++ b/mediapipe/tasks/python/test/metadata/metadata_writers/metadata_writer_test.py @@ -21,9 +21,12 @@ from absl.testing import absltest from mediapipe.tasks.python.metadata.metadata_writers import metadata_writer from mediapipe.tasks.python.test import test_utils +_TEST_DATA_DIR = 'mediapipe/tasks/testdata/metadata' + _IMAGE_CLASSIFIER_MODEL = test_utils.get_test_data_path( - 'mobilenet_v1_0.25_224_1_default_1.tflite') -_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path('score_calibration.txt') + os.path.join(_TEST_DATA_DIR, 'mobilenet_v1_0.25_224_1_default_1.tflite')) +_SCORE_CALIBRATION_FILE = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, 'score_calibration.txt')) class LabelsTest(absltest.TestCase): @@ -85,8 +88,7 @@ class ScoreCalibrationTest(absltest.TestCase): with self.assertRaisesRegex( ValueError, 'Expected empty lines or 3 or 4 parameters per line in score ' - 'calibration file, but got 2.' - ): + 'calibration file, but got 2.'): metadata_writer.ScoreCalibration.create_from_file( metadata_writer.ScoreCalibration.transformation_types.LOG, test_file) diff --git a/mediapipe/tasks/python/test/test_utils.py b/mediapipe/tasks/python/test/test_utils.py index d2e76c57b..6854791b4 100644 --- a/mediapipe/tasks/python/test/test_utils.py +++ b/mediapipe/tasks/python/test/test_utils.py @@ -42,13 +42,15 @@ def test_srcdir(): raise RuntimeError("Missing TEST_SRCDIR environment.") -def get_test_data_path(file_or_dirname: str) -> str: +def get_test_data_path(file_or_dirname_path: str) -> str: """Returns full test data path.""" for (directory, subdirs, files) in os.walk(test_srcdir()): for f in subdirs + files: - if f.endswith(file_or_dirname): - return os.path.join(directory, f) - raise ValueError("No %s in test directory" % file_or_dirname) + path = os.path.join(directory, f) + if path.endswith(file_or_dirname_path): + return path + raise ValueError("No %s in test directory: %s." % + (file_or_dirname_path, test_srcdir())) def create_calibration_file(file_dir: str, diff --git a/mediapipe/tasks/python/test/vision/image_classifier_test.py b/mediapipe/tasks/python/test/vision/image_classifier_test.py index 274bf3434..14cff14d6 100644 --- a/mediapipe/tasks/python/test/vision/image_classifier_test.py +++ b/mediapipe/tasks/python/test/vision/image_classifier_test.py @@ -14,10 +14,12 @@ """Tests for image classifier.""" import enum +import os from unittest import mock from absl.testing import absltest from absl.testing import parameterized + import numpy as np from mediapipe.python._framework_bindings import image @@ -48,6 +50,7 @@ _ALLOW_LIST = ['cheeseburger', 'guacamole'] _DENY_LIST = ['cheeseburger'] _SCORE_THRESHOLD = 0.5 _MAX_RESULTS = 3 +_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision' def _generate_empty_results(timestamp_ms: int) -> _ClassificationResult: @@ -124,8 +127,10 @@ class ImageClassifierTest(parameterized.TestCase): def setUp(self): super().setUp() self.test_image = _Image.create_from_file( - test_utils.get_test_data_path(_IMAGE_FILE)) - self.model_path = test_utils.get_test_data_path(_MODEL_FILE) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _IMAGE_FILE))) + self.model_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _MODEL_FILE)) def test_create_from_file_succeeds_with_valid_model_path(self): # Creates with default option and valid model file successfully. @@ -220,7 +225,8 @@ class ImageClassifierTest(parameterized.TestCase): with _ImageClassifier.create_from_options(options) as classifier: # Load the test image. test_image = _Image.create_from_file( - test_utils.get_test_data_path('multi_objects.jpg')) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, 'multi_objects.jpg'))) # NormalizedRect around the soccer ball. roi = _NormalizedRect( x_center=0.532, y_center=0.521, width=0.164, height=0.427) @@ -409,7 +415,8 @@ class ImageClassifierTest(parameterized.TestCase): with _ImageClassifier.create_from_options(options) as classifier: # Load the test image. test_image = _Image.create_from_file( - test_utils.get_test_data_path('multi_objects.jpg')) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, 'multi_objects.jpg'))) # NormalizedRect around the soccer ball. roi = _NormalizedRect( x_center=0.532, y_center=0.521, width=0.164, height=0.427) @@ -482,7 +489,8 @@ class ImageClassifierTest(parameterized.TestCase): def test_classify_async_succeeds_with_region_of_interest(self): # Load the test image. test_image = _Image.create_from_file( - test_utils.get_test_data_path('multi_objects.jpg')) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, 'multi_objects.jpg'))) # NormalizedRect around the soccer ball. roi = _NormalizedRect( x_center=0.532, y_center=0.521, width=0.164, height=0.427) diff --git a/mediapipe/tasks/python/test/vision/image_segmenter_test.py b/mediapipe/tasks/python/test/vision/image_segmenter_test.py index b1fe4f759..dde751c1d 100644 --- a/mediapipe/tasks/python/test/vision/image_segmenter_test.py +++ b/mediapipe/tasks/python/test/vision/image_segmenter_test.py @@ -14,6 +14,7 @@ """Tests for image segmenter.""" import enum +import os from typing import List from unittest import mock @@ -43,6 +44,7 @@ _IMAGE_FILE = 'segmentation_input_rotation0.jpg' _SEGMENTATION_FILE = 'segmentation_golden_rotation0.png' _MASK_MAGNIFICATION_FACTOR = 10 _MASK_SIMILARITY_THRESHOLD = 0.98 +_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision' def _similar_to_uint8_mask(actual_mask, expected_mask): @@ -71,12 +73,16 @@ class ImageSegmenterTest(parameterized.TestCase): super().setUp() # Load the test input image. self.test_image = _Image.create_from_file( - test_utils.get_test_data_path(_IMAGE_FILE)) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _IMAGE_FILE))) # Loads ground truth segmentation file. gt_segmentation_data = cv2.imread( - test_utils.get_test_data_path(_SEGMENTATION_FILE), cv2.IMREAD_GRAYSCALE) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _SEGMENTATION_FILE)), + cv2.IMREAD_GRAYSCALE) self.test_seg_image = _Image(_ImageFormat.GRAY8, gt_segmentation_data) - self.model_path = test_utils.get_test_data_path(_MODEL_FILE) + self.model_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _MODEL_FILE)) def test_create_from_file_succeeds_with_valid_model_path(self): # Creates with default option and valid model file successfully. diff --git a/mediapipe/tasks/python/test/vision/object_detector_test.py b/mediapipe/tasks/python/test/vision/object_detector_test.py index d5cebd94b..53c64427f 100644 --- a/mediapipe/tasks/python/test/vision/object_detector_test.py +++ b/mediapipe/tasks/python/test/vision/object_detector_test.py @@ -14,6 +14,7 @@ """Tests for object detector.""" import enum +import os from unittest import mock from absl.testing import absltest @@ -87,6 +88,7 @@ _ALLOW_LIST = ['cat', 'dog'] _DENY_LIST = ['cat'] _SCORE_THRESHOLD = 0.3 _MAX_RESULTS = 3 +_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision' class ModelFileType(enum.Enum): @@ -99,8 +101,10 @@ class ObjectDetectorTest(parameterized.TestCase): def setUp(self): super().setUp() self.test_image = _Image.create_from_file( - test_utils.get_test_data_path(_IMAGE_FILE)) - self.model_path = test_utils.get_test_data_path(_MODEL_FILE) + test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _IMAGE_FILE))) + self.model_path = test_utils.get_test_data_path( + os.path.join(_TEST_DATA_DIR, _MODEL_FILE)) def test_create_from_file_succeeds_with_valid_model_path(self): # Creates with default option and valid model file successfully. @@ -395,5 +399,6 @@ class ObjectDetectorTest(parameterized.TestCase): detector.detect_async(self.test_image, timestamp) detector.close() + if __name__ == '__main__': absltest.main()