Model Maker object detector change learning_rate_boundaries to learning_rate_epoch_boundaries.
PiperOrigin-RevId: 521024056
This commit is contained in:
parent
7f9fd4f154
commit
d9f940f8b2
|
@ -29,9 +29,9 @@ class HParams(hp.BaseHParams):
|
|||
epochs: Number of training iterations over the dataset.
|
||||
do_fine_tuning: If true, the base module is trained together with the
|
||||
classification layer on top.
|
||||
learning_rate_boundaries: List of epoch boundaries where
|
||||
learning_rate_boundaries[i] is the epoch where the learning rate will
|
||||
decay to learning_rate * learning_rate_decay_multipliers[i].
|
||||
learning_rate_epoch_boundaries: List of epoch boundaries where
|
||||
learning_rate_epoch_boundaries[i] is the epoch where the learning rate
|
||||
will decay to learning_rate * learning_rate_decay_multipliers[i].
|
||||
learning_rate_decay_multipliers: List of learning rate multipliers which
|
||||
calculates the learning rate at the ith boundary as learning_rate *
|
||||
learning_rate_decay_multipliers[i].
|
||||
|
@ -43,35 +43,39 @@ class HParams(hp.BaseHParams):
|
|||
epochs: int = 10
|
||||
|
||||
# Parameters for learning rate decay
|
||||
learning_rate_boundaries: List[int] = dataclasses.field(
|
||||
default_factory=lambda: [5, 8]
|
||||
learning_rate_epoch_boundaries: List[int] = dataclasses.field(
|
||||
default_factory=lambda: []
|
||||
)
|
||||
learning_rate_decay_multipliers: List[float] = dataclasses.field(
|
||||
default_factory=lambda: [0.1, 0.01]
|
||||
default_factory=lambda: []
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
# Validate stepwise learning rate parameters
|
||||
lr_boundary_len = len(self.learning_rate_boundaries)
|
||||
lr_boundary_len = len(self.learning_rate_epoch_boundaries)
|
||||
lr_decay_multipliers_len = len(self.learning_rate_decay_multipliers)
|
||||
if lr_boundary_len != lr_decay_multipliers_len:
|
||||
raise ValueError(
|
||||
"Length of learning_rate_boundaries and ",
|
||||
"Length of learning_rate_epoch_boundaries and ",
|
||||
"learning_rate_decay_multipliers do not match: ",
|
||||
f"{lr_boundary_len}!={lr_decay_multipliers_len}",
|
||||
)
|
||||
# Validate learning_rate_boundaries
|
||||
if sorted(self.learning_rate_boundaries) != self.learning_rate_boundaries:
|
||||
raise ValueError(
|
||||
"learning_rate_boundaries is not in ascending order: ",
|
||||
self.learning_rate_boundaries,
|
||||
)
|
||||
# Validate learning_rate_epoch_boundaries
|
||||
if (
|
||||
self.learning_rate_boundaries
|
||||
and self.learning_rate_boundaries[-1] > self.epochs
|
||||
sorted(self.learning_rate_epoch_boundaries)
|
||||
!= self.learning_rate_epoch_boundaries
|
||||
):
|
||||
raise ValueError(
|
||||
"Values in learning_rate_boundaries cannot be greater ", "than epochs"
|
||||
"learning_rate_epoch_boundaries is not in ascending order: ",
|
||||
self.learning_rate_epoch_boundaries,
|
||||
)
|
||||
if (
|
||||
self.learning_rate_epoch_boundaries
|
||||
and self.learning_rate_epoch_boundaries[-1] > self.epochs
|
||||
):
|
||||
raise ValueError(
|
||||
"Values in learning_rate_epoch_boundaries cannot be greater ",
|
||||
"than epochs",
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -57,7 +57,6 @@ class ObjectDetector(classifier.Classifier):
|
|||
self._preprocessor = preprocessor.Preprocessor(model_spec)
|
||||
self._hparams = hparams
|
||||
self._model_options = model_options
|
||||
self._optimizer = self._create_optimizer()
|
||||
self._is_qat = False
|
||||
|
||||
@classmethod
|
||||
|
@ -104,6 +103,11 @@ class ObjectDetector(classifier.Classifier):
|
|||
train_data: Training data.
|
||||
validation_data: Validation data.
|
||||
"""
|
||||
self._optimizer = self._create_optimizer(
|
||||
model_util.get_steps_per_epoch(
|
||||
self._hparams.steps_per_epoch,
|
||||
)
|
||||
)
|
||||
self._create_model()
|
||||
self._train_model(
|
||||
train_data, validation_data, preprocessor=self._preprocessor
|
||||
|
@ -333,21 +337,34 @@ class ObjectDetector(classifier.Classifier):
|
|||
with open(metadata_file, 'w') as f:
|
||||
f.write(metadata_json)
|
||||
|
||||
def _create_optimizer(self) -> tf.keras.optimizers.Optimizer:
|
||||
def _create_optimizer(
|
||||
self, steps_per_epoch: int
|
||||
) -> tf.keras.optimizers.Optimizer:
|
||||
"""Creates an optimizer with learning rate schedule for regular training.
|
||||
|
||||
Uses Keras PiecewiseConstantDecay schedule by default.
|
||||
|
||||
Args:
|
||||
steps_per_epoch: Steps per epoch to calculate the step boundaries from the
|
||||
learning_rate_epoch_boundaries
|
||||
|
||||
Returns:
|
||||
A tf.keras.optimizer.Optimizer for model training.
|
||||
"""
|
||||
init_lr = self._hparams.learning_rate * self._hparams.batch_size / 256
|
||||
if self._hparams.learning_rate_epoch_boundaries:
|
||||
lr_values = [init_lr] + [
|
||||
init_lr * m for m in self._hparams.learning_rate_decay_multipliers
|
||||
]
|
||||
learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
|
||||
self._hparams.learning_rate_boundaries, lr_values
|
||||
lr_step_boundaries = [
|
||||
steps_per_epoch * epoch_boundary
|
||||
for epoch_boundary in self._hparams.learning_rate_epoch_boundaries
|
||||
]
|
||||
learning_rate = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
|
||||
lr_step_boundaries, lr_values
|
||||
)
|
||||
else:
|
||||
learning_rate = init_lr
|
||||
return tf.keras.optimizers.experimental.SGD(
|
||||
learning_rate=learning_rate_fn, momentum=0.9
|
||||
learning_rate=learning_rate, momentum=0.9
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue
Block a user