Sample PR to test import
This commit is contained in:
		
							parent
							
								
									6cdc6443b6
								
							
						
					
					
						commit
						ce3c6322d9
					
				| 
						 | 
				
			
			@ -19,3 +19,21 @@ package(default_visibility = ["//mediapipe/tasks:internal"])
 | 
			
		|||
licenses(["notice"])
 | 
			
		||||
 | 
			
		||||
# TODO: This test fails in OSS
 | 
			
		||||
 | 
			
		||||
py_test(
 | 
			
		||||
    name = "image_classification_test",
 | 
			
		||||
    srcs = ["image_classification_test.py"],
 | 
			
		||||
    data = [
 | 
			
		||||
        "//mediapipe/tasks/testdata/vision:test_images",
 | 
			
		||||
        "//mediapipe/tasks/testdata/vision:test_models",
 | 
			
		||||
    ],
 | 
			
		||||
    deps = [
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:category",
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:classifications",
 | 
			
		||||
        "//mediapipe/tasks/python/core:base_options",
 | 
			
		||||
        "//mediapipe/tasks/python/test:test_util",
 | 
			
		||||
        "//mediapipe/tasks/python/vision:image_classification",
 | 
			
		||||
        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
			
		||||
       "@absl_py//absl/testing:parameterized",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
							
								
								
									
										291
									
								
								mediapipe/tasks/python/test/vision/image_classification_test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										291
									
								
								mediapipe/tasks/python/test/vision/image_classification_test.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,291 @@
 | 
			
		|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
"""Tests for image classifier."""
 | 
			
		||||
 | 
			
		||||
import enum
 | 
			
		||||
 | 
			
		||||
from absl.testing import absltest
 | 
			
		||||
from absl.testing import parameterized
 | 
			
		||||
 | 
			
		||||
from mediapipe.python._framework_bindings import image as image_module
 | 
			
		||||
from mediapipe.tasks.python.components import classifier_options
 | 
			
		||||
from mediapipe.tasks.python.components.containers import category as category_module
 | 
			
		||||
from mediapipe.tasks.python.components.containers import classifications as classifications_module
 | 
			
		||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
			
		||||
from mediapipe.tasks.python.test import test_util
 | 
			
		||||
from mediapipe.tasks.python.vision import image_classification
 | 
			
		||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
			
		||||
 | 
			
		||||
_BaseOptions = base_options_module.BaseOptions
 | 
			
		||||
_ClassifierOptions = classifier_options.ClassifierOptions
 | 
			
		||||
_Category = category_module.Category
 | 
			
		||||
_ClassificationEntry = classifications_module.ClassificationEntry
 | 
			
		||||
_Classifications = classifications_module.Classifications
 | 
			
		||||
_ClassificationResult = classifications_module.ClassificationResult
 | 
			
		||||
_Image = image_module.Image
 | 
			
		||||
_ImageClassifier = image_classification.ImageClassifier
 | 
			
		||||
_ImageClassifierOptions = image_classification.ImageClassifierOptions
 | 
			
		||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
 | 
			
		||||
 | 
			
		||||
_MODEL_FILE = 'mobilenet_v2_1.0_224.tflite'
 | 
			
		||||
_IMAGE_FILE = 'burger.jpg'
 | 
			
		||||
_EXPECTED_CLASSIFICATION_RESULT = _ClassificationResult(
 | 
			
		||||
    classifications=[
 | 
			
		||||
        _Classifications(
 | 
			
		||||
            entries=[
 | 
			
		||||
                _ClassificationEntry(
 | 
			
		||||
                    categories=[
 | 
			
		||||
                        _Category(
 | 
			
		||||
                            index=934,
 | 
			
		||||
                            score=0.7952049970626831,
 | 
			
		||||
                            display_name='',
 | 
			
		||||
                            category_name='cheeseburger'),
 | 
			
		||||
                        _Category(
 | 
			
		||||
                            index=932,
 | 
			
		||||
                            score=0.02732999622821808,
 | 
			
		||||
                            display_name='',
 | 
			
		||||
                            category_name='bagel'),
 | 
			
		||||
                        _Category(
 | 
			
		||||
                            index=925,
 | 
			
		||||
                            score=0.01933487318456173,
 | 
			
		||||
                            display_name='',
 | 
			
		||||
                            category_name='guacamole'),
 | 
			
		||||
                        _Category(
 | 
			
		||||
                            index=963,
 | 
			
		||||
                            score=0.006279350258409977,
 | 
			
		||||
                            display_name='',
 | 
			
		||||
                            category_name='meat loaf')
 | 
			
		||||
                    ],
 | 
			
		||||
                    timestamp_ms=0
 | 
			
		||||
                )
 | 
			
		||||
            ],
 | 
			
		||||
            head_index=0,
 | 
			
		||||
            head_name='probability')
 | 
			
		||||
    ])
 | 
			
		||||
_ALLOW_LIST = ['cheeseburger', 'guacamole']
 | 
			
		||||
_DENY_LIST = ['cheeseburger']
 | 
			
		||||
_SCORE_THRESHOLD = 0.5
 | 
			
		||||
_MAX_RESULTS = 3
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ModelFileType(enum.Enum):
 | 
			
		||||
    FILE_CONTENT = 1
 | 
			
		||||
    FILE_NAME = 2
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageClassifierTest(parameterized.TestCase):
 | 
			
		||||
 | 
			
		||||
    def setUp(self):
 | 
			
		||||
        super().setUp()
 | 
			
		||||
        self.test_image = test_util.read_test_image(
 | 
			
		||||
            test_util.get_test_data_path(_IMAGE_FILE))
 | 
			
		||||
        self.model_path = test_util.get_test_data_path(_MODEL_FILE)
 | 
			
		||||
 | 
			
		||||
    def test_create_from_file_succeeds_with_valid_model_path(self):
 | 
			
		||||
        # Creates with default option and valid model file successfully.
 | 
			
		||||
        with _ImageClassifier.create_from_model_path(self.model_path) as classifier:
 | 
			
		||||
            self.assertIsInstance(classifier, _ImageClassifier)
 | 
			
		||||
 | 
			
		||||
    def test_create_from_options_succeeds_with_valid_model_path(self):
 | 
			
		||||
        # Creates with options containing model file successfully.
 | 
			
		||||
        base_options = _BaseOptions(file_name=self.model_path)
 | 
			
		||||
        options = _ImageClassifierOptions(base_options=base_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            self.assertIsInstance(classifier, _ImageClassifier)
 | 
			
		||||
 | 
			
		||||
    def test_create_from_options_fails_with_invalid_model_path(self):
 | 
			
		||||
        # Invalid empty model path.
 | 
			
		||||
        with self.assertRaisesRegex(
 | 
			
		||||
                ValueError,
 | 
			
		||||
                r"ExternalFile must specify at least one of 'file_content', "
 | 
			
		||||
                r"'file_name' or 'file_descriptor_meta'."):
 | 
			
		||||
            base_options = _BaseOptions(file_name='')
 | 
			
		||||
            options = _ImageClassifierOptions(base_options=base_options)
 | 
			
		||||
            _ImageClassifier.create_from_options(options)
 | 
			
		||||
 | 
			
		||||
    def test_create_from_options_succeeds_with_valid_model_content(self):
 | 
			
		||||
        # Creates with options containing model content successfully.
 | 
			
		||||
        with open(self.model_path, 'rb') as f:
 | 
			
		||||
            base_options = _BaseOptions(file_content=f.read())
 | 
			
		||||
            options = _ImageClassifierOptions(base_options=base_options)
 | 
			
		||||
            classifier = _ImageClassifier.create_from_options(options)
 | 
			
		||||
            self.assertIsInstance(classifier, _ImageClassifier)
 | 
			
		||||
 | 
			
		||||
    @parameterized.parameters(
 | 
			
		||||
        (ModelFileType.FILE_NAME, 4, _EXPECTED_CLASSIFICATION_RESULT),
 | 
			
		||||
        (ModelFileType.FILE_CONTENT, 4, _EXPECTED_CLASSIFICATION_RESULT))
 | 
			
		||||
    def test_classify(self, model_file_type, max_results,
 | 
			
		||||
                      expected_classification_result):
 | 
			
		||||
        # Creates classifier.
 | 
			
		||||
        if model_file_type is ModelFileType.FILE_NAME:
 | 
			
		||||
            base_options = _BaseOptions(file_name=self.model_path)
 | 
			
		||||
        elif model_file_type is ModelFileType.FILE_CONTENT:
 | 
			
		||||
            with open(self.model_path, 'rb') as f:
 | 
			
		||||
                model_content = f.read()
 | 
			
		||||
            base_options = _BaseOptions(file_content=model_content)
 | 
			
		||||
        else:
 | 
			
		||||
            # Should never happen
 | 
			
		||||
            raise ValueError('model_file_type is invalid.')
 | 
			
		||||
 | 
			
		||||
        classifier_options = _ClassifierOptions(max_results=max_results)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=base_options, classifier_options=classifier_options)
 | 
			
		||||
        classifier = _ImageClassifier.create_from_options(options)
 | 
			
		||||
 | 
			
		||||
        # Performs image classification on the input.
 | 
			
		||||
        image_result = classifier.classify(self.test_image)
 | 
			
		||||
        # Comparing results.
 | 
			
		||||
        self.assertEqual(image_result, expected_classification_result)
 | 
			
		||||
        # Closes the classifier explicitly when the classifier is not used in
 | 
			
		||||
        # a context.
 | 
			
		||||
        classifier.close()
 | 
			
		||||
 | 
			
		||||
    @parameterized.parameters(
 | 
			
		||||
        (ModelFileType.FILE_NAME, 4, _EXPECTED_CLASSIFICATION_RESULT),
 | 
			
		||||
        (ModelFileType.FILE_CONTENT, 4, _EXPECTED_CLASSIFICATION_RESULT))
 | 
			
		||||
    def test_classify_in_context(self, model_file_type, max_results,
 | 
			
		||||
                                 expected_classification_result):
 | 
			
		||||
        if model_file_type is ModelFileType.FILE_NAME:
 | 
			
		||||
            base_options = _BaseOptions(file_name=self.model_path)
 | 
			
		||||
        elif model_file_type is ModelFileType.FILE_CONTENT:
 | 
			
		||||
            with open(self.model_path, 'rb') as f:
 | 
			
		||||
                model_content = f.read()
 | 
			
		||||
            base_options = _BaseOptions(file_content=model_content)
 | 
			
		||||
        else:
 | 
			
		||||
            # Should never happen
 | 
			
		||||
            raise ValueError('model_file_type is invalid.')
 | 
			
		||||
 | 
			
		||||
        classifier_options = _ClassifierOptions(max_results=max_results)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=base_options, classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs object detection on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            # Comparing results.
 | 
			
		||||
            self.assertEqual(image_result, expected_classification_result)
 | 
			
		||||
 | 
			
		||||
    def test_score_threshold_option(self):
 | 
			
		||||
        classifier_options = _ClassifierOptions(score_threshold=_SCORE_THRESHOLD)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs image classification on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            classifications = image_result.classifications
 | 
			
		||||
 | 
			
		||||
            for classification in classifications:
 | 
			
		||||
                for entry in classification.entries:
 | 
			
		||||
                    score = entry.categories[0].score
 | 
			
		||||
                    self.assertGreaterEqual(
 | 
			
		||||
                        score, _SCORE_THRESHOLD,
 | 
			
		||||
                        f'Classification with score lower than threshold found. '
 | 
			
		||||
                        f'{classification}')
 | 
			
		||||
 | 
			
		||||
    def test_max_results_option(self):
 | 
			
		||||
        classifier_options = _ClassifierOptions(score_threshold=_SCORE_THRESHOLD)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs image classification on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            categories = image_result.classifications[0].entries[0].categories
 | 
			
		||||
 | 
			
		||||
            self.assertLessEqual(
 | 
			
		||||
                len(categories), _MAX_RESULTS, 'Too many results returned.')
 | 
			
		||||
 | 
			
		||||
    def test_allow_list_option(self):
 | 
			
		||||
        classifier_options = _ClassifierOptions(category_allowlist=_ALLOW_LIST)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs image classification on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            classifications = image_result.classifications
 | 
			
		||||
 | 
			
		||||
            for classification in classifications:
 | 
			
		||||
                for entry in classification.entries:
 | 
			
		||||
                    label = entry.categories[0].category_name
 | 
			
		||||
                    self.assertIn(label, _ALLOW_LIST,
 | 
			
		||||
                                  f'Label {label} found but not in label allow list')
 | 
			
		||||
 | 
			
		||||
    def test_deny_list_option(self):
 | 
			
		||||
        classifier_options = _ClassifierOptions(category_denylist=_DENY_LIST)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs image classification on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            classifications = image_result.classifications
 | 
			
		||||
 | 
			
		||||
            for classification in classifications:
 | 
			
		||||
                for entry in classification.entries:
 | 
			
		||||
                    label = entry.categories[0].category_name
 | 
			
		||||
                    self.assertNotIn(label, _DENY_LIST,
 | 
			
		||||
                                     f'Label {label} found but in deny list.')
 | 
			
		||||
 | 
			
		||||
    def test_combined_allowlist_and_denylist(self):
 | 
			
		||||
        # Fails with combined allowlist and denylist
 | 
			
		||||
        with self.assertRaisesRegex(
 | 
			
		||||
                ValueError,
 | 
			
		||||
                r'`category_allowlist` and `category_denylist` are mutually '
 | 
			
		||||
                r'exclusive options.'):
 | 
			
		||||
            classifier_options = _ClassifierOptions(category_allowlist=['foo'],
 | 
			
		||||
                                                    category_denylist=['bar'])
 | 
			
		||||
            options = _ImageClassifierOptions(
 | 
			
		||||
                base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
                classifier_options=classifier_options)
 | 
			
		||||
            with _ImageClassifier.create_from_options(options) as unused_classifier:
 | 
			
		||||
                pass
 | 
			
		||||
 | 
			
		||||
    def test_empty_classification_outputs(self):
 | 
			
		||||
        classifier_options = _ClassifierOptions(score_threshold=1)
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            classifier_options=classifier_options)
 | 
			
		||||
        with _ImageClassifier.create_from_options(options) as classifier:
 | 
			
		||||
            # Performs image classification on the input.
 | 
			
		||||
            image_result = classifier.classify(self.test_image)
 | 
			
		||||
            self.assertEmpty(image_result.classifications[0].entries[0].categories)
 | 
			
		||||
 | 
			
		||||
    def test_missing_result_callback(self):
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            running_mode=_RUNNING_MODE.LIVE_STREAM)
 | 
			
		||||
        with self.assertRaisesRegex(ValueError,
 | 
			
		||||
                                    r'result callback must be provided'):
 | 
			
		||||
            with _ImageClassifier.create_from_options(options) as unused_classifier:
 | 
			
		||||
                pass
 | 
			
		||||
 | 
			
		||||
    @parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
 | 
			
		||||
    def test_illegal_result_callback(self, running_mode):
 | 
			
		||||
 | 
			
		||||
        def pass_through(unused_result: _ClassificationResult):
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
        options = _ImageClassifierOptions(
 | 
			
		||||
            base_options=_BaseOptions(file_name=self.model_path),
 | 
			
		||||
            running_mode=running_mode,
 | 
			
		||||
            result_callback=pass_through)
 | 
			
		||||
        with self.assertRaisesRegex(ValueError,
 | 
			
		||||
                                    r'result callback should not be provided'):
 | 
			
		||||
            with _ImageClassifier.create_from_options(options) as unused_classifier:
 | 
			
		||||
                pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    absltest.main()
 | 
			
		||||
| 
						 | 
				
			
			@ -35,3 +35,23 @@ py_library(
 | 
			
		|||
        "//mediapipe/tasks/python/core:optional_dependencies",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
py_library(
 | 
			
		||||
    name = "image_classification",
 | 
			
		||||
    srcs = [
 | 
			
		||||
        "image_classification.py",
 | 
			
		||||
    ],
 | 
			
		||||
    deps = [
 | 
			
		||||
        "//mediapipe/python:_framework_bindings",
 | 
			
		||||
        "//mediapipe/python:packet_creator",
 | 
			
		||||
        "//mediapipe/python:packet_getter",
 | 
			
		||||
        "//mediapipe/tasks/cc/vision/image_classification:image_classifier_options_py_pb2",
 | 
			
		||||
        "//mediapipe/tasks/python/components:classifier_options",
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:classifications",
 | 
			
		||||
        "//mediapipe/tasks/python/core:base_options",
 | 
			
		||||
        "//mediapipe/tasks/python/core:optional_dependencies",
 | 
			
		||||
        "//mediapipe/tasks/python/core:task_info",
 | 
			
		||||
        "//mediapipe/tasks/python/vision/core:base_vision_task_api",
 | 
			
		||||
        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										180
									
								
								mediapipe/tasks/python/vision/core/image_classification.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								mediapipe/tasks/python/vision/core/image_classification.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,180 @@
 | 
			
		|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
"""MediaPipe image classifier task."""
 | 
			
		||||
 | 
			
		||||
import dataclasses
 | 
			
		||||
from typing import Callable, List, Mapping, Optional
 | 
			
		||||
 | 
			
		||||
from mediapipe.python import packet_creator
 | 
			
		||||
from mediapipe.python import packet_getter
 | 
			
		||||
from mediapipe.python._framework_bindings import image as image_module
 | 
			
		||||
from mediapipe.python._framework_bindings import packet as packet_module
 | 
			
		||||
from mediapipe.python._framework_bindings import task_runner as task_runner_module
 | 
			
		||||
from mediapipe.tasks.cc.vision.image_classification import image_classifier_options_pb2
 | 
			
		||||
from mediapipe.tasks.python.components import classifier_options
 | 
			
		||||
from mediapipe.tasks.python.components.containers import classifications as classifications_module
 | 
			
		||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
			
		||||
from mediapipe.tasks.python.core import task_info as task_info_module
 | 
			
		||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
 | 
			
		||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
 | 
			
		||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
			
		||||
 | 
			
		||||
_BaseOptions = base_options_module.BaseOptions
 | 
			
		||||
_ImageClassifierOptionsProto = image_classifier_options_pb2.ImageClassifierOptions
 | 
			
		||||
_ClassifierOptions = classifier_options.ClassifierOptions
 | 
			
		||||
_RunningMode = running_mode_module.VisionTaskRunningMode
 | 
			
		||||
_TaskInfo = task_info_module.TaskInfo
 | 
			
		||||
_TaskRunner = task_runner_module.TaskRunner
 | 
			
		||||
 | 
			
		||||
_CLASSIFICATION_RESULT_OUT_STREAM_NAME = 'classification_result_out'
 | 
			
		||||
_CLASSIFICATION_RESULT_TAG = 'CLASSIFICATION_RESULT'
 | 
			
		||||
_IMAGE_IN_STREAM_NAME = 'image_in'
 | 
			
		||||
_IMAGE_TAG = 'IMAGE'
 | 
			
		||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.ImageClassifierGraph'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclasses.dataclass
 | 
			
		||||
class ImageClassifierOptions:
 | 
			
		||||
    """Options for the image classifier task.
 | 
			
		||||
    Attributes:
 | 
			
		||||
      base_options: Base options for the image classifier task.
 | 
			
		||||
      running_mode: The running mode of the task. Default to the image mode.
 | 
			
		||||
        Image classifier task has three running modes:
 | 
			
		||||
        1) The image mode for classifying objects on single image inputs.
 | 
			
		||||
        2) The video mode for classifying objects on the decoded frames of a
 | 
			
		||||
           video.
 | 
			
		||||
        3) The live stream mode for classifying objects on a live stream of input
 | 
			
		||||
           data, such as from camera.
 | 
			
		||||
      display_names_locale: The locale to use for display names specified through
 | 
			
		||||
        the TFLite Model Metadata.
 | 
			
		||||
      max_results: The maximum number of top-scored classification results to
 | 
			
		||||
        return.
 | 
			
		||||
      score_threshold: Overrides the ones provided in the model metadata. Results
 | 
			
		||||
        below this value are rejected.
 | 
			
		||||
      category_allowlist: Allowlist of category names. If non-empty, detection
 | 
			
		||||
        results whose category name is not in this set will be filtered out.
 | 
			
		||||
        Duplicate or unknown category names are ignored. Mutually exclusive with
 | 
			
		||||
        `category_denylist`.
 | 
			
		||||
      category_denylist: Denylist of category names. If non-empty, detection
 | 
			
		||||
        results whose category name is in this set will be filtered out. Duplicate
 | 
			
		||||
        or unknown category names are ignored. Mutually exclusive with
 | 
			
		||||
        `category_allowlist`.
 | 
			
		||||
      result_callback: The user-defined result callback for processing live stream
 | 
			
		||||
        data. The result callback should only be specified when the running mode
 | 
			
		||||
        is set to the live stream mode.
 | 
			
		||||
    """
 | 
			
		||||
    base_options: _BaseOptions
 | 
			
		||||
    running_mode: _RunningMode = _RunningMode.IMAGE
 | 
			
		||||
    classifier_options: _ClassifierOptions = _ClassifierOptions()
 | 
			
		||||
    result_callback: Optional[
 | 
			
		||||
        Callable[[classifications_module.ClassificationResult],
 | 
			
		||||
                 None]] = None
 | 
			
		||||
 | 
			
		||||
    @doc_controls.do_not_generate_docs
 | 
			
		||||
    def to_pb2(self) -> _ImageClassifierOptionsProto:
 | 
			
		||||
        """Generates an ImageClassifierOptions protobuf object."""
 | 
			
		||||
        base_options_proto = self.base_options.to_pb2()
 | 
			
		||||
        base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
 | 
			
		||||
        classifier_options_proto = self.classifier_options.to_pb2()
 | 
			
		||||
 | 
			
		||||
        return _ImageClassifierOptionsProto(
 | 
			
		||||
            base_options=base_options_proto,
 | 
			
		||||
            classifier_options=classifier_options_proto
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageClassifier(base_vision_task_api.BaseVisionTaskApi):
 | 
			
		||||
    """Class that performs image classification on images."""
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def create_from_model_path(cls, model_path: str) -> 'ImageClassifier':
 | 
			
		||||
        """Creates an `ImageClassifier` object from a TensorFlow Lite model and the default `ImageClassifierOptions`.
 | 
			
		||||
        Note that the created `ImageClassifier` instance is in image mode, for
 | 
			
		||||
        detecting objects on single image inputs.
 | 
			
		||||
        Args:
 | 
			
		||||
          model_path: Path to the model.
 | 
			
		||||
        Returns:
 | 
			
		||||
          `ImageClassifier` object that's created from the model file and the default
 | 
			
		||||
          `ImageClassifierOptions`.
 | 
			
		||||
        Raises:
 | 
			
		||||
          ValueError: If failed to create `ImageClassifier` object from the provided
 | 
			
		||||
            file such as invalid file path.
 | 
			
		||||
          RuntimeError: If other types of error occurred.
 | 
			
		||||
        """
 | 
			
		||||
        base_options = _BaseOptions(file_name=model_path)
 | 
			
		||||
        options = ImageClassifierOptions(
 | 
			
		||||
            base_options=base_options, running_mode=_RunningMode.IMAGE)
 | 
			
		||||
        return cls.create_from_options(options)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def create_from_options(cls,
 | 
			
		||||
                            options: ImageClassifierOptions) -> 'ImageClassifier':
 | 
			
		||||
        """Creates the `ImageClassifier` object from image classifier options.
 | 
			
		||||
        Args:
 | 
			
		||||
          options: Options for the image classifier task.
 | 
			
		||||
        Returns:
 | 
			
		||||
          `ImageClassifier` object that's created from `options`.
 | 
			
		||||
        Raises:
 | 
			
		||||
          ValueError: If failed to create `ImageClassifier` object from
 | 
			
		||||
            `ImageClassifierOptions` such as missing the model.
 | 
			
		||||
          RuntimeError: If other types of error occurred.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
 | 
			
		||||
            classification_result_proto = packet_getter.get_proto(
 | 
			
		||||
                output_packets[_CLASSIFICATION_RESULT_OUT_STREAM_NAME])
 | 
			
		||||
 | 
			
		||||
            classification_result = classifications_module.ClassificationResult([
 | 
			
		||||
                classifications_module.Classifications.create_from_pb2(classification)
 | 
			
		||||
                for classification in classification_result_proto.classifications
 | 
			
		||||
            ])
 | 
			
		||||
            options.result_callback(classification_result)
 | 
			
		||||
 | 
			
		||||
        task_info = _TaskInfo(
 | 
			
		||||
            task_graph=_TASK_GRAPH_NAME,
 | 
			
		||||
            input_streams=[':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME])],
 | 
			
		||||
            output_streams=[
 | 
			
		||||
                ':'.join([_CLASSIFICATION_RESULT_TAG,
 | 
			
		||||
                          _CLASSIFICATION_RESULT_OUT_STREAM_NAME])
 | 
			
		||||
            ],
 | 
			
		||||
            task_options=options)
 | 
			
		||||
        return cls(
 | 
			
		||||
            task_info.generate_graph_config(
 | 
			
		||||
                enable_flow_limiting=options.running_mode ==
 | 
			
		||||
                                     _RunningMode.LIVE_STREAM), options.running_mode,
 | 
			
		||||
            packets_callback if options.result_callback else None)
 | 
			
		||||
 | 
			
		||||
    # TODO: Create an Image class for MediaPipe Tasks.
 | 
			
		||||
    def classify(
 | 
			
		||||
            self,
 | 
			
		||||
            image: image_module.Image
 | 
			
		||||
    ) -> classifications_module.ClassificationResult:
 | 
			
		||||
        """Performs image classification on the provided MediaPipe Image.
 | 
			
		||||
        Args:
 | 
			
		||||
          image: MediaPipe Image.
 | 
			
		||||
        Returns:
 | 
			
		||||
          A classification result object that contains a list of classifications.
 | 
			
		||||
        Raises:
 | 
			
		||||
          ValueError: If any of the input arguments is invalid.
 | 
			
		||||
          RuntimeError: If image classification failed to run.
 | 
			
		||||
        """
 | 
			
		||||
        output_packets = self._process_image_data(
 | 
			
		||||
            {_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image)})
 | 
			
		||||
        classification_result_proto = packet_getter.get_proto(
 | 
			
		||||
            output_packets[_CLASSIFICATION_RESULT_OUT_STREAM_NAME])
 | 
			
		||||
 | 
			
		||||
        return classifications_module.ClassificationResult([
 | 
			
		||||
            classifications_module.Classifications.create_from_pb2(classification)
 | 
			
		||||
            for classification in classification_result_proto.classifications
 | 
			
		||||
        ])
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user