Open-sources the bert_preprocessor_calculator_test.

PiperOrigin-RevId: 481724320
This commit is contained in:
MediaPipe Team 2022-10-17 13:25:58 -07:00 committed by Copybara-Service
parent 5e543c506f
commit cd32543786
2 changed files with 173 additions and 0 deletions

View File

@ -199,6 +199,25 @@ cc_library(
alwayslink = 1, alwayslink = 1,
) )
cc_test(
name = "bert_preprocessor_calculator_test",
srcs = ["bert_preprocessor_calculator_test.cc"],
data = ["//mediapipe/tasks/testdata/text:bert_text_classifier_models"],
linkopts = ["-ldl"],
deps = [
":bert_preprocessor_calculator",
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework/formats:tensor",
"//mediapipe/framework/port:gtest_main",
"//mediapipe/framework/port:parse_text_proto",
"//mediapipe/tasks/cc/core:utils",
"//mediapipe/tasks/cc/metadata:metadata_extractor",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@com_google_absl//absl/strings",
],
)
mediapipe_proto_library( mediapipe_proto_library(
name = "regex_preprocessor_calculator_proto", name = "regex_preprocessor_calculator_proto",
srcs = ["regex_preprocessor_calculator.proto"], srcs = ["regex_preprocessor_calculator.proto"],

View File

@ -0,0 +1,154 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/gmock.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status_matchers.h"
#include "mediapipe/tasks/cc/core/utils.h"
#include "mediapipe/tasks/cc/metadata/metadata_extractor.h"
namespace mediapipe {
namespace {
using ::mediapipe::tasks::metadata::ModelMetadataExtractor;
using ::testing::ElementsAreArray;
constexpr int kNumInputTensorsForBert = 3;
constexpr int kBertMaxSeqLen = 128;
constexpr absl::string_view kTestModelPath =
"mediapipe/tasks/testdata/text/bert_text_classifier.tflite";
absl::StatusOr<std::vector<std::vector<int>>> RunBertPreprocessorCalculator(
absl::string_view text, absl::string_view model_path) {
auto graph_config = ParseTextProtoOrDie<CalculatorGraphConfig>(
absl::Substitute(R"(
input_stream: "text"
output_stream: "tensors"
node {
calculator: "BertPreprocessorCalculator"
input_stream: "TEXT:text"
input_side_packet: "METADATA_EXTRACTOR:metadata_extractor"
output_stream: "TENSORS:tensors"
options {
[mediapipe.BertPreprocessorCalculatorOptions.ext] {
bert_max_seq_len: $0
}
}
}
)",
kBertMaxSeqLen));
std::vector<Packet> output_packets;
tool::AddVectorSink("tensors", &graph_config, &output_packets);
std::string model_buffer = tasks::core::LoadBinaryContent(model_path.data());
ASSIGN_OR_RETURN(std::unique_ptr<ModelMetadataExtractor> metadata_extractor,
ModelMetadataExtractor::CreateFromModelBuffer(
model_buffer.data(), model_buffer.size()));
// Run the graph.
CalculatorGraph graph;
MP_RETURN_IF_ERROR(graph.Initialize(
graph_config,
{{"metadata_extractor",
MakePacket<ModelMetadataExtractor>(std::move(*metadata_extractor))}}));
MP_RETURN_IF_ERROR(graph.StartRun({}));
MP_RETURN_IF_ERROR(graph.AddPacketToInputStream(
"text", MakePacket<std::string>(text).At(Timestamp(0))));
MP_RETURN_IF_ERROR(graph.WaitUntilIdle());
if (output_packets.size() != 1) {
return absl::InvalidArgumentError(absl::Substitute(
"output_packets has size $0, expected 1", output_packets.size()));
}
const std::vector<Tensor>& tensor_vec =
output_packets[0].Get<std::vector<Tensor>>();
if (tensor_vec.size() != kNumInputTensorsForBert) {
return absl::InvalidArgumentError(
absl::Substitute("tensor_vec has size $0, expected $1",
tensor_vec.size(), kNumInputTensorsForBert));
}
std::vector<std::vector<int>> results;
for (int i = 0; i < kNumInputTensorsForBert; i++) {
const Tensor& tensor = tensor_vec[i];
if (tensor.element_type() != Tensor::ElementType::kInt32) {
return absl::InvalidArgumentError("Expected tensor element type kInt32");
}
auto* buffer = tensor.GetCpuReadView().buffer<int>();
std::vector<int> buffer_view(buffer, buffer + kBertMaxSeqLen);
results.push_back(buffer_view);
}
MP_RETURN_IF_ERROR(graph.CloseAllPacketSources());
MP_RETURN_IF_ERROR(graph.WaitUntilDone());
return results;
}
TEST(BertPreprocessorCalculatorTest, TextClassifierWithBertModel) {
std::vector<std::vector<int>> expected_result = {
{101, 2009, 1005, 1055, 1037, 11951, 1998, 2411, 12473, 4990, 102}};
// segment_ids
expected_result.push_back(std::vector(kBertMaxSeqLen, 0));
// input_masks
expected_result.push_back(std::vector(expected_result[0].size(), 1));
expected_result[2].resize(kBertMaxSeqLen);
// padding input_ids
expected_result[0].resize(kBertMaxSeqLen);
MP_ASSERT_OK_AND_ASSIGN(
std::vector<std::vector<int>> processed_tensor_values,
RunBertPreprocessorCalculator(
"it's a charming and often affecting journey", kTestModelPath));
EXPECT_THAT(processed_tensor_values, ElementsAreArray(expected_result));
}
TEST(BertPreprocessorCalculatorTest, LongInput) {
std::stringstream long_input;
long_input
<< "it's a charming and often affecting journey and this is a long";
for (int i = 0; i < kBertMaxSeqLen; ++i) {
long_input << " long";
}
long_input << " movie review";
std::vector<std::vector<int>> expected_result = {
{101, 2009, 1005, 1055, 1037, 11951, 1998, 2411, 12473, 4990, 1998, 2023,
2003, 1037}};
// "long" id
expected_result[0].resize(kBertMaxSeqLen - 1, 2146);
// "[SEP]" id
expected_result[0].push_back(102);
// segment_ids
expected_result.push_back(std::vector(kBertMaxSeqLen, 0));
// input_masks
expected_result.push_back(std::vector(kBertMaxSeqLen, 1));
MP_ASSERT_OK_AND_ASSIGN(
std::vector<std::vector<int>> processed_tensor_values,
RunBertPreprocessorCalculator(long_input.str(), kTestModelPath));
EXPECT_THAT(processed_tensor_values, ElementsAreArray(expected_result));
}
} // namespace
} // namespace mediapipe