Internal change
PiperOrigin-RevId: 522534050
This commit is contained in:
parent
6c523cd21f
commit
c6b3090d0e
|
@ -106,8 +106,8 @@ BoxDetectorInterface::BoxDetectorInterface(const BoxDetectorOptions &options)
|
|||
|
||||
void BoxDetectorInterface::DetectAndAddBoxFromFeatures(
|
||||
const std::vector<Vector2_f> &features, const cv::Mat &descriptors,
|
||||
const TimedBoxProtoList &tracked_boxes, int64 timestamp_msec, float scale_x,
|
||||
float scale_y, TimedBoxProtoList *detected_boxes) {
|
||||
const TimedBoxProtoList &tracked_boxes, int64_t timestamp_msec,
|
||||
float scale_x, float scale_y, TimedBoxProtoList *detected_boxes) {
|
||||
absl::MutexLock lock_access(&access_to_index_);
|
||||
image_scale_ = std::min(scale_x, scale_y);
|
||||
image_aspect_ = scale_x / scale_y;
|
||||
|
@ -177,7 +177,7 @@ void BoxDetectorInterface::DetectAndAddBoxFromFeatures(
|
|||
|
||||
void BoxDetectorInterface::DetectAndAddBox(
|
||||
const TrackingData &tracking_data, const TimedBoxProtoList &tracked_boxes,
|
||||
int64 timestamp_msec, TimedBoxProtoList *detected_boxes) {
|
||||
int64_t timestamp_msec, TimedBoxProtoList *detected_boxes) {
|
||||
std::vector<Vector2_f> features_from_tracking_data;
|
||||
std::vector<std::string> descriptors_from_tracking_data;
|
||||
FeatureAndDescriptorFromTrackingData(tracking_data,
|
||||
|
@ -255,7 +255,7 @@ bool BoxDetectorInterface::CheckDetectAndAddBox(
|
|||
|
||||
void BoxDetectorInterface::DetectAndAddBox(
|
||||
const cv::Mat &image, const TimedBoxProtoList &tracked_boxes,
|
||||
int64 timestamp_msec, TimedBoxProtoList *detected_boxes) {
|
||||
int64_t timestamp_msec, TimedBoxProtoList *detected_boxes) {
|
||||
// Determine if we need execute feature extraction.
|
||||
if (!CheckDetectAndAddBox(tracked_boxes)) {
|
||||
return;
|
||||
|
|
|
@ -112,7 +112,7 @@ void TimedBoxFromMotionBoxState(const MotionBoxState& state, TimedBox* box) {
|
|||
namespace {
|
||||
|
||||
TimedBox BlendTimedBoxes(const TimedBox& lhs, const TimedBox& rhs,
|
||||
int64 time_msec) {
|
||||
int64_t time_msec) {
|
||||
CHECK_LT(lhs.time_msec, rhs.time_msec);
|
||||
const double alpha =
|
||||
(time_msec - lhs.time_msec) * 1.0 / (rhs.time_msec - lhs.time_msec);
|
||||
|
@ -246,7 +246,7 @@ BoxTracker::BoxTracker(
|
|||
void BoxTracker::AddTrackingDataChunk(const TrackingDataChunk* chunk,
|
||||
bool copy_data) {
|
||||
CHECK_GT(chunk->item_size(), 0) << "Empty chunk.";
|
||||
int64 chunk_time_msec = chunk->item(0).timestamp_usec() / 1000;
|
||||
int64_t chunk_time_msec = chunk->item(0).timestamp_usec() / 1000;
|
||||
int chunk_idx = ChunkIdxFromTime(chunk_time_msec);
|
||||
CHECK_GE(chunk_idx, tracking_data_.size()) << "Chunk is out of order.";
|
||||
if (chunk_idx > tracking_data_.size()) {
|
||||
|
@ -270,7 +270,7 @@ void BoxTracker::AddTrackingDataChunks(
|
|||
}
|
||||
|
||||
void BoxTracker::NewBoxTrack(const TimedBox& initial_pos, int id,
|
||||
int64 min_msec, int64 max_msec) {
|
||||
int64_t min_msec, int64_t max_msec) {
|
||||
VLOG(1) << "New box track: " << id << " : " << initial_pos.ToString()
|
||||
<< " from " << min_msec << " to " << max_msec;
|
||||
|
||||
|
@ -290,7 +290,7 @@ void BoxTracker::NewBoxTrack(const TimedBox& initial_pos, int id,
|
|||
tracking_workers_->Schedule(operation);
|
||||
}
|
||||
|
||||
std::pair<int64, int64> BoxTracker::TrackInterval(int id) {
|
||||
std::pair<int64_t, int64_t> BoxTracker::TrackInterval(int id) {
|
||||
absl::MutexLock lock(&path_mutex_);
|
||||
const Path& path = paths_[id];
|
||||
if (path.empty()) {
|
||||
|
@ -305,7 +305,7 @@ std::pair<int64, int64> BoxTracker::TrackInterval(int id) {
|
|||
}
|
||||
|
||||
void BoxTracker::NewBoxTrackAsync(const TimedBox& initial_pos, int id,
|
||||
int64 min_msec, int64 max_msec) {
|
||||
int64_t min_msec, int64_t max_msec) {
|
||||
VLOG(1) << "Async track for id: " << id << " from " << min_msec << " to "
|
||||
<< max_msec;
|
||||
|
||||
|
@ -483,7 +483,7 @@ void BoxTracker::CancelTracking(int id, int checkpoint) {
|
|||
track_status_[id][checkpoint].canceled = false;
|
||||
}
|
||||
|
||||
bool BoxTracker::GetTimedPosition(int id, int64 time_msec, TimedBox* result,
|
||||
bool BoxTracker::GetTimedPosition(int id, int64_t time_msec, TimedBox* result,
|
||||
std::vector<MotionBoxState>* states) {
|
||||
CHECK(result);
|
||||
|
||||
|
@ -686,7 +686,7 @@ bool BoxTracker::WaitForChunkFile(int id, int checkpoint,
|
|||
return file_exists;
|
||||
}
|
||||
|
||||
int BoxTracker::ClosestFrameIndex(int64 msec,
|
||||
int BoxTracker::ClosestFrameIndex(int64_t msec,
|
||||
const TrackingDataChunk& chunk) const {
|
||||
CHECK_GT(chunk.item_size(), 0);
|
||||
typedef TrackingDataChunk::Item Item;
|
||||
|
@ -708,8 +708,8 @@ int BoxTracker::ClosestFrameIndex(int64 msec,
|
|||
}
|
||||
|
||||
// Determine closest timestamp.
|
||||
const int64 lhs_diff = msec - chunk.item(pos - 1).timestamp_usec() / 1000;
|
||||
const int64 rhs_diff = chunk.item(pos).timestamp_usec() / 1000 - msec;
|
||||
const int64_t lhs_diff = msec - chunk.item(pos - 1).timestamp_usec() / 1000;
|
||||
const int64_t rhs_diff = chunk.item(pos).timestamp_usec() / 1000 - msec;
|
||||
|
||||
if (std::min(lhs_diff, rhs_diff) >= 67) {
|
||||
LOG(ERROR) << "No frame found within 67ms, probably using wrong chunk.";
|
||||
|
@ -849,7 +849,7 @@ void BoxTracker::TrackingImpl(const TrackingImplArgs& a) {
|
|||
MotionVectorFrame mvf;
|
||||
MotionVectorFrameFromTrackingData(a.chunk_data->item(f).tracking_data(),
|
||||
&mvf);
|
||||
const int64 track_duration_ms =
|
||||
const int64_t track_duration_ms =
|
||||
TrackingDataDurationMs(a.chunk_data->item(f));
|
||||
if (track_duration_ms > 0) {
|
||||
mvf.duration_ms = track_duration_ms;
|
||||
|
@ -905,8 +905,8 @@ void BoxTracker::TrackingImpl(const TrackingImplArgs& a) {
|
|||
cleanup_func();
|
||||
}
|
||||
|
||||
bool TimedBoxAtTime(const PathSegment& segment, int64 time_msec, TimedBox* box,
|
||||
MotionBoxState* state) {
|
||||
bool TimedBoxAtTime(const PathSegment& segment, int64_t time_msec,
|
||||
TimedBox* box, MotionBoxState* state) {
|
||||
CHECK(box);
|
||||
|
||||
if (segment.empty()) {
|
||||
|
@ -1028,7 +1028,7 @@ bool BoxTracker::WaitForAllOngoingTracks(int timeout_us) {
|
|||
return !IsTrackingOngoingMutexHeld();
|
||||
}
|
||||
|
||||
bool BoxTracker::GetTrackingData(int id, int64 request_time_msec,
|
||||
bool BoxTracker::GetTrackingData(int id, int64_t request_time_msec,
|
||||
TrackingData* tracking_data,
|
||||
int* tracking_data_msec) {
|
||||
CHECK(tracking_data);
|
||||
|
|
|
@ -276,7 +276,7 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
CHECK(options_.binary_tracking_data_support());
|
||||
CHECK(binary_data != nullptr);
|
||||
|
||||
int32 frame_flags = 0;
|
||||
int32_t frame_flags = 0;
|
||||
const bool high_profile = options_.use_high_profile();
|
||||
if (high_profile) {
|
||||
frame_flags |= TrackingData::FLAG_PROFILE_HIGH;
|
||||
|
@ -293,7 +293,7 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
tracking_data.frame_flags() & TrackingData::FLAG_BACKGROUND_UNSTABLE;
|
||||
|
||||
const TrackingData::MotionData& motion_data = tracking_data.motion_data();
|
||||
int32 num_vectors = motion_data.num_elements();
|
||||
int32_t num_vectors = motion_data.num_elements();
|
||||
|
||||
// Compute maximum vector or delta vector value.
|
||||
float max_vector_value = 0;
|
||||
|
@ -311,8 +311,8 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
}
|
||||
}
|
||||
|
||||
const int32 domain_width = tracking_data.domain_width();
|
||||
const int32 domain_height = tracking_data.domain_height();
|
||||
const int32_t domain_width = tracking_data.domain_width();
|
||||
const int32_t domain_height = tracking_data.domain_height();
|
||||
CHECK_LT(domain_height, 256) << "Only heights below 256 are supported.";
|
||||
const float frame_aspect = tracking_data.frame_aspect();
|
||||
|
||||
|
@ -338,20 +338,20 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
int scale_16 = std::ceil(kByteMax16 / max_vector_value);
|
||||
int scale_8 = std::ceil(kByteMax8 / max_vector_value);
|
||||
|
||||
const int32 scale =
|
||||
const int32_t scale =
|
||||
options_.high_fidelity_16bit_encode() ? scale_16 : scale_8;
|
||||
const float inv_scale = 1.0f / scale;
|
||||
const int kByteMax =
|
||||
options_.high_fidelity_16bit_encode() ? kByteMax16 : kByteMax8;
|
||||
|
||||
// Compressed flow to be encoded in binary format.
|
||||
std::vector<int16> flow_compressed_16;
|
||||
std::vector<int8> flow_compressed_8;
|
||||
std::vector<int16_t> flow_compressed_16;
|
||||
std::vector<int8_t> flow_compressed_8;
|
||||
|
||||
flow_compressed_16.reserve(num_vectors);
|
||||
flow_compressed_8.reserve(num_vectors);
|
||||
|
||||
std::vector<uint8> row_idx;
|
||||
std::vector<uint8_t> row_idx;
|
||||
row_idx.reserve(num_vectors);
|
||||
|
||||
float average_error = 0;
|
||||
|
@ -538,7 +538,7 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
}
|
||||
|
||||
// Delta compress col_starts.
|
||||
std::vector<uint8> col_start_delta(domain_width + 1, 0);
|
||||
std::vector<uint8_t> col_start_delta(domain_width + 1, 0);
|
||||
col_start_delta[0] = col_starts[0];
|
||||
for (int k = 1; k < domain_width + 1; ++k) {
|
||||
const int delta = col_starts[k] - col_starts[k - 1];
|
||||
|
@ -575,10 +575,10 @@ void FlowPackager::EncodeTrackingData(const TrackingData& tracking_data,
|
|||
|
||||
std::string* data = binary_data->mutable_data();
|
||||
data->clear();
|
||||
int32 vector_size = options_.high_fidelity_16bit_encode()
|
||||
int32_t vector_size = options_.high_fidelity_16bit_encode()
|
||||
? flow_compressed_16.size()
|
||||
: flow_compressed_8.size();
|
||||
int32 row_idx_size = row_idx.size();
|
||||
int32_t row_idx_size = row_idx.size();
|
||||
|
||||
absl::StrAppend(data, EncodeToString(frame_flags),
|
||||
EncodeToString(domain_width), EncodeToString(domain_height),
|
||||
|
@ -605,12 +605,12 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
CHECK(tracking_data != nullptr);
|
||||
|
||||
absl::string_view data(container_data.data());
|
||||
int32 frame_flags = 0;
|
||||
int32 domain_width = 0;
|
||||
int32 domain_height = 0;
|
||||
int32_t frame_flags = 0;
|
||||
int32_t domain_width = 0;
|
||||
int32_t domain_height = 0;
|
||||
std::vector<float> background_model;
|
||||
int32 scale = 0;
|
||||
int32 num_vectors = 0;
|
||||
int32_t scale = 0;
|
||||
int32_t num_vectors = 0;
|
||||
float frame_aspect = 0.0f;
|
||||
|
||||
DecodeFromStringView(PopSubstring(4, &data), &frame_flags);
|
||||
|
@ -642,7 +642,7 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
frame_flags & TrackingData::FLAG_HIGH_FIDELITY_VECTORS;
|
||||
const float flow_denom = 1.0f / scale;
|
||||
|
||||
std::vector<uint8> col_starts_delta;
|
||||
std::vector<uint8_t> col_starts_delta;
|
||||
DecodeVectorFromStringView(PopSubstring(domain_width + 1, &data),
|
||||
&col_starts_delta);
|
||||
|
||||
|
@ -656,8 +656,8 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
col_starts.push_back(column);
|
||||
}
|
||||
|
||||
std::vector<uint8> row_idx;
|
||||
int32 row_idx_size;
|
||||
std::vector<uint8_t> row_idx;
|
||||
int32_t row_idx_size;
|
||||
DecodeFromStringView(PopSubstring(4, &data), &row_idx_size);
|
||||
|
||||
// Should not have more row indices than vectors. (One for each in baseline
|
||||
|
@ -676,14 +676,14 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
const int kIndexMask = FlowPackagerOptions::INDEX_MASK;
|
||||
|
||||
std::vector<int> column_expansions(domain_width, 0);
|
||||
std::vector<uint8> row_idx_unpacked;
|
||||
std::vector<uint8_t> row_idx_unpacked;
|
||||
row_idx_unpacked.reserve(num_vectors);
|
||||
advance.clear();
|
||||
|
||||
for (int c = 0; c < col_starts.size() - 1; ++c) {
|
||||
const int r_start = col_starts[c];
|
||||
const int r_end = col_starts[c + 1];
|
||||
uint8 prev_row_idx = 0;
|
||||
uint8_t prev_row_idx = 0;
|
||||
for (int r = r_start; r < r_end; ++r) {
|
||||
// Use top bit as indicator to advance.
|
||||
advance.push_back(row_idx[r] & kAdvanceFlag);
|
||||
|
@ -725,7 +725,7 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
int prev_flow_x = 0;
|
||||
int prev_flow_y = 0;
|
||||
if (high_fidelity) {
|
||||
std::vector<int16> vector_data;
|
||||
std::vector<int16_t> vector_data;
|
||||
DecodeVectorFromStringView(
|
||||
PopSubstring(sizeof(vector_data[0]) * vector_data_size, &data),
|
||||
&vector_data);
|
||||
|
@ -751,7 +751,7 @@ void FlowPackager::DecodeTrackingData(const BinaryTrackingData& container_data,
|
|||
}
|
||||
CHECK_EQ(vector_data_size, counter);
|
||||
} else {
|
||||
std::vector<int8> vector_data;
|
||||
std::vector<int8_t> vector_data;
|
||||
DecodeVectorFromStringView(
|
||||
PopSubstring(sizeof(vector_data[0]) * vector_data_size, &data),
|
||||
&vector_data);
|
||||
|
@ -813,13 +813,13 @@ void FlowPackager::DecodeMetaData(const TrackingContainer& container_data,
|
|||
|
||||
absl::string_view data(container_data.data());
|
||||
|
||||
int32 num_frames;
|
||||
int32_t num_frames;
|
||||
DecodeFromStringView(PopSubstring(4, &data), &num_frames);
|
||||
meta_data->set_num_frames(num_frames);
|
||||
|
||||
for (int k = 0; k < num_frames; ++k) {
|
||||
int32 msec;
|
||||
int32 stream_offset;
|
||||
int32_t msec;
|
||||
int32_t stream_offset;
|
||||
|
||||
DecodeFromStringView(PopSubstring(4, &data), &msec);
|
||||
DecodeFromStringView(PopSubstring(4, &data), &stream_offset);
|
||||
|
@ -831,14 +831,14 @@ void FlowPackager::DecodeMetaData(const TrackingContainer& container_data,
|
|||
}
|
||||
|
||||
void FlowPackager::FinalizeTrackingContainerFormat(
|
||||
std::vector<uint32>* timestamps,
|
||||
std::vector<uint32_t>* timestamps,
|
||||
TrackingContainerFormat* container_format) {
|
||||
CHECK(container_format != nullptr);
|
||||
|
||||
// Compute binary sizes of track_data.
|
||||
const int num_frames = container_format->track_data_size();
|
||||
|
||||
std::vector<uint32> msecs(num_frames, 0);
|
||||
std::vector<uint32_t> msecs(num_frames, 0);
|
||||
if (timestamps) {
|
||||
CHECK_EQ(num_frames, timestamps->size());
|
||||
msecs = *timestamps;
|
||||
|
@ -876,13 +876,13 @@ void FlowPackager::FinalizeTrackingContainerFormat(
|
|||
}
|
||||
|
||||
void FlowPackager::FinalizeTrackingContainerProto(
|
||||
std::vector<uint32>* timestamps, TrackingContainerProto* proto) {
|
||||
std::vector<uint32_t>* timestamps, TrackingContainerProto* proto) {
|
||||
CHECK(proto != nullptr);
|
||||
|
||||
// Compute binary sizes of track_data.
|
||||
const int num_frames = proto->track_data_size();
|
||||
|
||||
std::vector<uint32> msecs(num_frames, 0);
|
||||
std::vector<uint32_t> msecs(num_frames, 0);
|
||||
if (timestamps) {
|
||||
CHECK_EQ(num_frames, timestamps->size());
|
||||
msecs = *timestamps;
|
||||
|
@ -905,7 +905,7 @@ void FlowPackager::FinalizeTrackingContainerProto(
|
|||
}
|
||||
|
||||
void FlowPackager::InitializeMetaData(int num_frames,
|
||||
const std::vector<uint32>& msecs,
|
||||
const std::vector<uint32_t>& msecs,
|
||||
const std::vector<int>& data_sizes,
|
||||
MetaData* meta_data) const {
|
||||
meta_data->set_num_frames(num_frames);
|
||||
|
|
|
@ -32,8 +32,8 @@ float FrameDifferenceMedian(const cv::Mat& img_1, const cv::Mat& img_2) {
|
|||
color_diffs.reserve(img_1.cols * img_1.rows);
|
||||
const int channels = img_1.channels();
|
||||
for (int j = 0; j < img_1.rows; ++j) {
|
||||
const uint8* src_1 = img_1.ptr<uint8>(j);
|
||||
const uint8* src_2 = img_2.ptr<uint8>(j);
|
||||
const uint8_t* src_1 = img_1.ptr<uint8_t>(j);
|
||||
const uint8_t* src_2 = img_2.ptr<uint8_t>(j);
|
||||
const int end_i = channels * img_1.cols;
|
||||
const float inverse = 1.0f / channels;
|
||||
for (int i = 0; i < end_i;) {
|
||||
|
|
|
@ -338,13 +338,13 @@ void MotionAnalysis::InitPolicyOptions() {
|
|||
}
|
||||
}
|
||||
|
||||
bool MotionAnalysis::AddFrame(const cv::Mat& frame, int64 timestamp_usec,
|
||||
bool MotionAnalysis::AddFrame(const cv::Mat& frame, int64_t timestamp_usec,
|
||||
RegionFlowFeatureList* feature_list) {
|
||||
return AddFrameWithSeed(frame, timestamp_usec, Homography(), feature_list);
|
||||
}
|
||||
|
||||
bool MotionAnalysis::AddFrameWithSeed(const cv::Mat& frame,
|
||||
int64 timestamp_usec,
|
||||
int64_t timestamp_usec,
|
||||
const Homography& initial_transform,
|
||||
RegionFlowFeatureList* feature_list) {
|
||||
return AddFrameGeneric(frame, timestamp_usec, initial_transform,
|
||||
|
@ -355,7 +355,7 @@ bool MotionAnalysis::AddFrameWithSeed(const cv::Mat& frame,
|
|||
}
|
||||
|
||||
bool MotionAnalysis::AddFrameGeneric(
|
||||
const cv::Mat& frame, int64 timestamp_usec,
|
||||
const cv::Mat& frame, int64_t timestamp_usec,
|
||||
const Homography& initial_transform, const Homography* rejection_transform,
|
||||
const RegionFlowFeatureList* external_features,
|
||||
std::function<void(RegionFlowFeatureList*)>* modify_features,
|
||||
|
@ -730,7 +730,7 @@ void MotionAnalysis::ComputeDenseForeground(
|
|||
foreground_mask->create(frame_height_, frame_width_, CV_8U);
|
||||
for (int i = 0; i < frame_height_; ++i) {
|
||||
const float* src_ptr = foreground_map.ptr<float>(i);
|
||||
uint8* dst_ptr = foreground_mask->ptr<uint8>(i);
|
||||
uint8_t* dst_ptr = foreground_mask->ptr<uint8_t>(i);
|
||||
for (int j = 0; j < frame_width_; ++j) {
|
||||
// Result is in first channel (second is confidence).
|
||||
dst_ptr[j] =
|
||||
|
@ -758,8 +758,8 @@ void MotionAnalysis::VisualizeDenseForeground(const cv::Mat& foreground_mask,
|
|||
// Burn-in alpha compositing.
|
||||
const float alpha = 1.3f;
|
||||
for (int i = 0; i < frame_height_; ++i) {
|
||||
uint8* image_ptr = output->ptr<uint8>(i);
|
||||
const uint8* foreground_ptr = foreground_mask.ptr<uint8>(i);
|
||||
uint8_t* image_ptr = output->ptr<uint8_t>(i);
|
||||
const uint8_t* foreground_ptr = foreground_mask.ptr<uint8_t>(i);
|
||||
|
||||
for (int j = 0; j < frame_width_; ++j) {
|
||||
const float norm_foreground = foreground_ptr[j] * (1.0 / 255.0f);
|
||||
|
|
|
@ -3056,8 +3056,8 @@ bool MotionEstimation::GetTranslationIrlsInitialization(
|
|||
|
||||
// Bool indicator which features agree with model in each round.
|
||||
// In case no RANSAC rounds are performed considered all features inliers.
|
||||
std::vector<uint8> best_features(num_features, 1);
|
||||
std::vector<uint8> curr_features(num_features);
|
||||
std::vector<uint8_t> best_features(num_features, 1);
|
||||
std::vector<uint8_t> curr_features(num_features);
|
||||
float best_sum = 0;
|
||||
|
||||
unsigned int seed = 900913; // = Google in leet :)
|
||||
|
@ -3095,7 +3095,7 @@ bool MotionEstimation::GetTranslationIrlsInitialization(
|
|||
for (int i = 0; i < num_features; ++i) {
|
||||
const Feature& feature = feature_list->feature(i);
|
||||
const Vector2_f diff = FeatureFlow(feature) - flow;
|
||||
curr_features[i] = static_cast<uint8>(diff.Norm2() < sq_cutoff);
|
||||
curr_features[i] = static_cast<uint8_t>(diff.Norm2() < sq_cutoff);
|
||||
if (curr_features[i]) {
|
||||
float score = feature.irls_weight();
|
||||
if (inlier_mask) {
|
||||
|
@ -3366,8 +3366,8 @@ bool MotionEstimation::GetSimilarityIrlsInitialization(
|
|||
|
||||
// Bool indicator which features agree with model in each round.
|
||||
// In case no RANSAC rounds are performed considered all features inliers.
|
||||
std::vector<uint8> best_features(num_features, 1);
|
||||
std::vector<uint8> curr_features(num_features);
|
||||
std::vector<uint8_t> best_features(num_features, 1);
|
||||
std::vector<uint8_t> curr_features(num_features);
|
||||
float best_sum = 0;
|
||||
|
||||
unsigned int seed = 900913; // = Google in leet :)
|
||||
|
@ -3417,7 +3417,7 @@ bool MotionEstimation::GetSimilarityIrlsInitialization(
|
|||
const Vector2_f trans_location = LinearSimilarityAdapter::TransformPoint(
|
||||
similarity, FeatureLocation(feature));
|
||||
const Vector2_f diff = FeatureMatchLocation(feature) - trans_location;
|
||||
curr_features[i] = static_cast<uint8>(diff.Norm2() < sq_cutoff);
|
||||
curr_features[i] = static_cast<uint8_t>(diff.Norm2() < sq_cutoff);
|
||||
if (curr_features[i]) {
|
||||
float score = feature.irls_weight();
|
||||
if (inlier_mask) {
|
||||
|
|
|
@ -149,7 +149,7 @@ void GetPatchDescriptorAtPoint(const cv::Mat& rgb_frame, const Vector2_i& pt,
|
|||
// Compute channel sums and means.
|
||||
int sum[3] = {0, 0, 0};
|
||||
for (int y = 0; y < diameter; ++y) {
|
||||
const uint8* data = rgb_window.ptr<uint8>(y);
|
||||
const uint8_t* data = rgb_window.ptr<uint8_t>(y);
|
||||
for (int x = 0; x < diameter; ++x, data += 3) {
|
||||
for (int c = 0; c < 3; ++c) {
|
||||
sum[c] += data[c];
|
||||
|
@ -175,7 +175,7 @@ void GetPatchDescriptorAtPoint(const cv::Mat& rgb_frame, const Vector2_i& pt,
|
|||
// using N = diameter * diameter and sum[c] = N * mean[c].
|
||||
product[c][d] = -sum[c] * sum[d] * denom;
|
||||
for (int y = 0; y < diameter; ++y) {
|
||||
const uint8* data = rgb_window.ptr<uint8>(y);
|
||||
const uint8_t* data = rgb_window.ptr<uint8_t>(y);
|
||||
for (int x = 0; x < diameter; ++x, data += 3) {
|
||||
product[c][d] += static_cast<int>(data[c]) * data[d];
|
||||
}
|
||||
|
@ -355,7 +355,7 @@ struct RegionFlowComputation::FrameTrackingData {
|
|||
int frame_num = 0;
|
||||
|
||||
// Timestamp of the underlying frame.
|
||||
int64 timestamp_usec = 0;
|
||||
int64_t timestamp_usec = 0;
|
||||
|
||||
// Difference of this FrameTrackingData's tiny_image w.r.t. previous one,
|
||||
// i.e. one frame earlier.
|
||||
|
@ -407,7 +407,7 @@ struct RegionFlowComputation::FrameTrackingData {
|
|||
}
|
||||
}
|
||||
|
||||
void Reset(int frame_num_, int64 timestamp_) {
|
||||
void Reset(int frame_num_, int64_t timestamp_) {
|
||||
frame_num = frame_num_;
|
||||
timestamp_usec = timestamp_;
|
||||
pyramid_levels = 0;
|
||||
|
@ -834,19 +834,19 @@ RegionFlowComputation::RegionFlowComputation(
|
|||
RegionFlowComputation::~RegionFlowComputation() {}
|
||||
|
||||
bool RegionFlowComputation::AddImage(const cv::Mat& source,
|
||||
int64 timestamp_usec) {
|
||||
int64_t timestamp_usec) {
|
||||
return AddImageAndTrack(source, cv::Mat(), timestamp_usec, Homography());
|
||||
}
|
||||
|
||||
bool RegionFlowComputation::AddImageWithSeed(
|
||||
const cv::Mat& source, int64 timestamp_usec,
|
||||
const cv::Mat& source, int64_t timestamp_usec,
|
||||
const Homography& initial_transform) {
|
||||
return AddImageAndTrack(source, cv::Mat(), timestamp_usec, initial_transform);
|
||||
}
|
||||
|
||||
bool RegionFlowComputation::AddImageWithMask(const cv::Mat& source,
|
||||
const cv::Mat& source_mask,
|
||||
int64 timestamp_usec) {
|
||||
int64_t timestamp_usec) {
|
||||
return AddImageAndTrack(source, source_mask, timestamp_usec, Homography());
|
||||
}
|
||||
|
||||
|
@ -1035,7 +1035,7 @@ bool RegionFlowComputation::InitFrame(const cv::Mat& source,
|
|||
}
|
||||
|
||||
bool RegionFlowComputation::AddImageAndTrack(
|
||||
const cv::Mat& source, const cv::Mat& source_mask, int64 timestamp_usec,
|
||||
const cv::Mat& source, const cv::Mat& source_mask, int64_t timestamp_usec,
|
||||
const Homography& initial_transform) {
|
||||
VLOG(1) << "Processing frame " << frame_num_ << " at " << timestamp_usec;
|
||||
MEASURE_TIME << "AddImageAndTrack";
|
||||
|
@ -1622,12 +1622,12 @@ inline void SetMaskNeighborhood(int mask_x, int mask_y, cv::Mat* mask) {
|
|||
|
||||
if (!add) {
|
||||
for (int i = mask_start_y; i <= mask_end_y; ++i) {
|
||||
uint8* mask_ptr = mask->ptr<uint8>(i) + mask_start_x;
|
||||
uint8_t* mask_ptr = mask->ptr<uint8_t>(i) + mask_start_x;
|
||||
memset(mask_ptr, K, mask_dx * sizeof(*mask_ptr));
|
||||
}
|
||||
} else {
|
||||
for (int i = mask_start_y; i <= mask_end_y; ++i) {
|
||||
uint8* mask_ptr = mask->ptr<uint8>(i);
|
||||
uint8_t* mask_ptr = mask->ptr<uint8_t>(i);
|
||||
for (int j = mask_start_x; j <= mask_end_x; ++j) {
|
||||
mask_ptr[j] = (mask_ptr[j] & 0x7F) + K; // Limit to 128.
|
||||
}
|
||||
|
@ -1764,7 +1764,7 @@ void RegionFlowComputation::AdaptiveGoodFeaturesToTrack(
|
|||
const int mask_y = corner_y * mask_scale;
|
||||
|
||||
// Test if neighboring element is already set.
|
||||
if (mask->at<uint8>(mask_y, mask_x) >= 1) {
|
||||
if (mask->at<uint8_t>(mask_y, mask_x) >= 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -1829,8 +1829,8 @@ void RegionFlowComputation::AdaptiveGoodFeaturesToTrack(
|
|||
}
|
||||
|
||||
// Map corner pointer to x and y location.
|
||||
const int offset = reinterpret_cast<const uint8*>(corner_ptr) -
|
||||
eig_image->ptr<const uint8>(0);
|
||||
const int offset = reinterpret_cast<const uint8_t*>(corner_ptr) -
|
||||
eig_image->ptr<const uint8_t>(0);
|
||||
|
||||
const int corner_y = offset / eig_image->step[0];
|
||||
const int corner_x =
|
||||
|
@ -1846,7 +1846,7 @@ void RegionFlowComputation::AdaptiveGoodFeaturesToTrack(
|
|||
const int mask_y = corner_y * mask_scale;
|
||||
|
||||
// Test if neighboring element is already set.
|
||||
if (mask->at<uint8>(mask_y, mask_x) >= 1) {
|
||||
if (mask->at<uint8_t>(mask_y, mask_x) >= 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -2208,7 +2208,7 @@ void RegionFlowComputation::RemoveFeaturesOutsideMask(FrameTrackingData* data) {
|
|||
for (int k = data->features.size() - 1; k >= 0; --k) {
|
||||
const int x = static_cast<int>(data->features[k].x + 0.5);
|
||||
const int y = static_cast<int>(data->features[k].y + 0.5);
|
||||
if (data->mask.at<uint8>(y, x) == 0) {
|
||||
if (data->mask.at<uint8_t>(y, x) == 0) {
|
||||
data->RemoveFeature(k);
|
||||
}
|
||||
}
|
||||
|
@ -2290,7 +2290,7 @@ void RegionFlowComputation::ExtractFeatures(
|
|||
if (!data->mask.empty()) {
|
||||
cv::resize(data->mask, mask, mask.size(), 0, 0, cv::INTER_NEAREST);
|
||||
for (int y = 0; y < mask.rows; ++y) {
|
||||
uint8* mask_ptr = mask.ptr<uint8>(y);
|
||||
uint8_t* mask_ptr = mask.ptr<uint8_t>(y);
|
||||
for (int x = 0; x < mask.cols; ++x) {
|
||||
mask_ptr[x] = mask_ptr[x] == 0 ? 1 : 0;
|
||||
}
|
||||
|
@ -2403,7 +2403,7 @@ void RegionFlowComputation::ExtractFeatures(
|
|||
// to "join", without having to explicitly represent this.
|
||||
// Value of 2 improves number of connected features.
|
||||
constexpr int kMaxFeaturesPerBin = 1;
|
||||
if (mask.at<uint8>(mask_y, mask_x) >= kMaxFeaturesPerBin) {
|
||||
if (mask.at<uint8_t>(mask_y, mask_x) >= kMaxFeaturesPerBin) {
|
||||
data->actively_discarded_tracked_ids.push_back(track_id);
|
||||
continue;
|
||||
}
|
||||
|
|
|
@ -154,8 +154,8 @@ void ToneEstimation::IntensityPercentiles(const cv::Mat& frame,
|
|||
std::vector<float> histogram(256, 0.0f);
|
||||
|
||||
for (int i = 0; i < intensity.rows; ++i) {
|
||||
const uint8* intensity_ptr = intensity.ptr<uint8>(i);
|
||||
const uint8* clip_ptr = clip_mask.ptr<uint8>(i);
|
||||
const uint8_t* intensity_ptr = intensity.ptr<uint8_t>(i);
|
||||
const uint8_t* clip_ptr = clip_mask.ptr<uint8_t>(i);
|
||||
|
||||
for (int j = 0; j < intensity.cols; ++j) {
|
||||
if (!clip_ptr[j]) {
|
||||
|
|
|
@ -64,8 +64,8 @@ void ToneModelMethods<Model, Adapter>::MapImage(const Model& model,
|
|||
const float inv_norm_scale = 1.0f / norm_scale;
|
||||
|
||||
for (int i = 0; i < input.rows; ++i) {
|
||||
const uint8* input_ptr = input.ptr<uint8>(i);
|
||||
uint8* output_ptr = output->ptr<uint8>(i);
|
||||
const uint8_t* input_ptr = input.ptr<uint8_t>(i);
|
||||
uint8_t* output_ptr = output->ptr<uint8_t>(i);
|
||||
for (int j = 0; j < input.cols;
|
||||
++j, input_ptr += 3, output_ptr += out_channels) {
|
||||
Vector3_f color_vec(input_ptr[0], input_ptr[1], input_ptr[2]);
|
||||
|
|
|
@ -48,7 +48,7 @@ std::vector<int> TrackedDetectionManager::AddDetection(
|
|||
std::unique_ptr<TrackedDetection> detection) {
|
||||
std::vector<int> ids_to_remove;
|
||||
|
||||
int64 latest_duplicate_timestamp = 0;
|
||||
int64_t latest_duplicate_timestamp = 0;
|
||||
// TODO: All detections should be fastforwarded to the current
|
||||
// timestamp before adding the detection manager. E.g. only check they are the
|
||||
// same if the timestamp are the same.
|
||||
|
@ -86,7 +86,7 @@ std::vector<int> TrackedDetectionManager::AddDetection(
|
|||
}
|
||||
|
||||
std::vector<int> TrackedDetectionManager::UpdateDetectionLocation(
|
||||
int id, const NormalizedRect& bounding_box, int64 timestamp) {
|
||||
int id, const NormalizedRect& bounding_box, int64_t timestamp) {
|
||||
// TODO: Remove all boxes that are not updating.
|
||||
auto detection_ptr = detections_.find(id);
|
||||
if (detection_ptr == detections_.end()) {
|
||||
|
@ -104,7 +104,7 @@ std::vector<int> TrackedDetectionManager::UpdateDetectionLocation(
|
|||
}
|
||||
|
||||
std::vector<int> TrackedDetectionManager::RemoveObsoleteDetections(
|
||||
int64 timestamp) {
|
||||
int64_t timestamp) {
|
||||
std::vector<int> ids_to_remove;
|
||||
for (auto& existing_detection : detections_) {
|
||||
if (existing_detection.second->last_updated_timestamp() < timestamp) {
|
||||
|
|
|
@ -1845,8 +1845,8 @@ void MotionBox::TranslationIrlsInitialization(
|
|||
|
||||
// Bool indicator which features agree with model in each round.
|
||||
// In case no RANSAC rounds are performed considered all features inliers.
|
||||
std::vector<uint8> best_features(num_features, 1);
|
||||
std::vector<uint8> curr_features(num_features);
|
||||
std::vector<uint8_t> best_features(num_features, 1);
|
||||
std::vector<uint8_t> curr_features(num_features);
|
||||
float best_sum = 0;
|
||||
|
||||
unsigned int seed = 900913;
|
||||
|
@ -1867,7 +1867,7 @@ void MotionBox::TranslationIrlsInitialization(
|
|||
for (int i = 0; i < num_features; ++i) {
|
||||
const Vector2_f diff = vectors[i]->object - flow;
|
||||
const float error = ErrorDiff(diff, error_system);
|
||||
curr_features[i] = static_cast<uint8>(error < sq_cutoff);
|
||||
curr_features[i] = static_cast<uint8_t>(error < sq_cutoff);
|
||||
if (curr_features[i]) {
|
||||
curr_sum += (*weights)[i];
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user