feat: Added face mesh DLL example with side models
Change List: - added graphs for running face mesh dll example with face_detections and face_landmarks models paths saved in side pockets (these pathed can be configured in `MPFaceMeshDetector` constructor - added possibility to set maximum nuber of faces to detect (by default 1)
This commit is contained in:
parent
26b367dc69
commit
b7dd4cfe72
|
@ -47,9 +47,9 @@ windows_dll_library(
|
|||
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_front_cpu_with_face_counter",
|
||||
|
||||
|
||||
"//mediapipe/calculators/tflite:tflite_model_calculator",
|
||||
"//mediapipe/calculators/util:local_file_contents_calculator",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_front_side_model_cpu_with_face_counter",
|
||||
]
|
||||
)
|
||||
|
||||
|
|
|
@ -21,7 +21,22 @@ int main(int argc, char **argv) {
|
|||
|
||||
LOG(INFO) << "VideoCapture initialized.";
|
||||
|
||||
MPFaceMeshDetector *faceMeshDetector = FaceMeshDetector_Construct();
|
||||
// Maximum number of faces that can be detected
|
||||
constexpr int maxNumFaces = 1;
|
||||
constexpr char face_detection_model_path[] =
|
||||
"mediapipe/modules/face_detection/face_detection_short_range.tflite";
|
||||
constexpr char face_landmark_model_path[] =
|
||||
"mediapipe/modules/face_landmark/face_landmark.tflite";
|
||||
|
||||
MPFaceMeshDetector *faceMeshDetector = FaceMeshDetector_Construct(
|
||||
maxNumFaces, face_detection_model_path, face_landmark_model_path);
|
||||
|
||||
// allocate memory for face landmarks
|
||||
auto multiFaceLandmarks = new cv::Point2f *[maxNumFaces];
|
||||
constexpr auto mediapipeFaceLandmarksNum = 468;
|
||||
for (int i = 0; i < maxNumFaces; ++i) {
|
||||
multiFaceLandmarks[i] = new cv::Point2f[mediapipeFaceLandmarksNum];
|
||||
}
|
||||
|
||||
LOG(INFO) << "FaceMeshDetector constructed.";
|
||||
|
||||
|
@ -36,26 +51,26 @@ int main(int argc, char **argv) {
|
|||
LOG(INFO) << "Ignore empty frames from camera.";
|
||||
continue;
|
||||
}
|
||||
|
||||
cv::Mat camera_frame;
|
||||
cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGB);
|
||||
cv::flip(camera_frame, camera_frame, /*flipcode=HORIZONTAL*/ 1);
|
||||
|
||||
std::unique_ptr<std::vector<std::vector<cv::Point2f>>> multi_face_landmarks(
|
||||
reinterpret_cast<std::vector<std::vector<cv::Point2f>> *>(
|
||||
FaceMeshDetector_ProcessFrame2D(faceMeshDetector, camera_frame)));
|
||||
int faceCount =
|
||||
FaceMeshDetector_GetFaceCount(faceMeshDetector, camera_frame);
|
||||
|
||||
const auto multi_face_landmarks_num = multi_face_landmarks->size();
|
||||
LOG(INFO) << "Detected faces num: " << faceCount;
|
||||
|
||||
LOG(INFO) << "Got multi_face_landmarks_num: " << multi_face_landmarks_num;
|
||||
if (faceCount > 0) {
|
||||
|
||||
if (multi_face_landmarks_num) {
|
||||
auto &face_landmarks = multi_face_landmarks->operator[](0);
|
||||
FaceMeshDetector_GetFaceLandmarks(faceMeshDetector, multiFaceLandmarks);
|
||||
|
||||
auto &face_landmarks = multiFaceLandmarks[0];
|
||||
auto &landmark = face_landmarks[0];
|
||||
|
||||
LOG(INFO) << "First landmark: x - " << landmark.x << ", y - "
|
||||
<< landmark.y;
|
||||
}
|
||||
|
||||
const int pressed_key = cv::waitKey(5);
|
||||
if (pressed_key >= 0 && pressed_key != 255)
|
||||
grab_frames = false;
|
||||
|
@ -65,5 +80,11 @@ int main(int argc, char **argv) {
|
|||
|
||||
LOG(INFO) << "Shutting down.";
|
||||
|
||||
// deallocate memory for face landmarks
|
||||
for (int i = 0; i < maxNumFaces; ++i) {
|
||||
delete[] multiFaceLandmarks[i];
|
||||
}
|
||||
delete[] multiFaceLandmarks;
|
||||
|
||||
FaceMeshDetector_Destruct(faceMeshDetector);
|
||||
}
|
|
@ -2,20 +2,51 @@
|
|||
|
||||
#include "face_mesh_lib.h"
|
||||
|
||||
MPFaceMeshDetector::MPFaceMeshDetector() {
|
||||
const auto status = InitFaceMeshDetector();
|
||||
#define DEBUG
|
||||
|
||||
MPFaceMeshDetector::MPFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
const auto status = InitFaceMeshDetector(numFaces, face_detection_model_path,
|
||||
face_landmark_model_path);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "Failed constructing FaceMeshDetector.";
|
||||
LOG(INFO) << status.message();
|
||||
}
|
||||
}
|
||||
|
||||
absl::Status MPFaceMeshDetector::InitFaceMeshDetector() {
|
||||
LOG(INFO) << "Get calculator graph config contents: " << graphConfig;
|
||||
absl::Status
|
||||
MPFaceMeshDetector::InitFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
if (numFaces <= 0) {
|
||||
numFaces = 1;
|
||||
}
|
||||
|
||||
if (face_detection_model_path == nullptr) {
|
||||
face_detection_model_path =
|
||||
"mediapipe/modules/face_detection/face_detection_short_range.tflite";
|
||||
}
|
||||
|
||||
if (face_landmark_model_path == nullptr) {
|
||||
face_landmark_model_path =
|
||||
"mediapipe/modules/face_landmark/face_landmark.tflite";
|
||||
}
|
||||
|
||||
auto preparedGraphConfig = absl::StrReplaceAll(
|
||||
graphConfig, {{"$numFaces", std::to_string(numFaces)}});
|
||||
preparedGraphConfig = absl::StrReplaceAll(
|
||||
preparedGraphConfig,
|
||||
{{"$faceDetectionModelPath", face_detection_model_path}});
|
||||
preparedGraphConfig = absl::StrReplaceAll(
|
||||
preparedGraphConfig,
|
||||
{{"$faceLandmarkModelPath", face_landmark_model_path}});
|
||||
|
||||
LOG(INFO) << "Get calculator graph config contents: " << preparedGraphConfig;
|
||||
|
||||
mediapipe::CalculatorGraphConfig config =
|
||||
mediapipe::ParseTextProtoOrDie<mediapipe::CalculatorGraphConfig>(
|
||||
graphConfig);
|
||||
|
||||
preparedGraphConfig);
|
||||
LOG(INFO) << "Initialize the calculator graph.";
|
||||
|
||||
MP_RETURN_IF_ERROR(graph.Initialize(config));
|
||||
|
@ -34,13 +65,13 @@ absl::Status MPFaceMeshDetector::InitFaceMeshDetector() {
|
|||
|
||||
MP_RETURN_IF_ERROR(graph.StartRun({}));
|
||||
|
||||
return absl::Status();
|
||||
LOG(INFO) << "MPFaceMeshDetector constructed successfully.";
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
absl::Status MPFaceMeshDetector::ProcessFrameWithStatus(
|
||||
const cv::Mat &camera_frame,
|
||||
std::unique_ptr<std::vector<std::vector<cv::Point2f>>>
|
||||
&multi_face_landmarks) {
|
||||
absl::Status
|
||||
MPFaceMeshDetector::GetFaceCountWithStatus(const cv::Mat &camera_frame) {
|
||||
// Wrap Mat into an ImageFrame.
|
||||
auto input_frame = absl::make_unique<mediapipe::ImageFrame>(
|
||||
mediapipe::ImageFormat::SRGB, camera_frame.cols, camera_frame.rows,
|
||||
|
@ -49,82 +80,99 @@ absl::Status MPFaceMeshDetector::ProcessFrameWithStatus(
|
|||
camera_frame.copyTo(input_frame_mat);
|
||||
|
||||
// Send image packet into the graph.
|
||||
|
||||
size_t frame_timestamp_us =
|
||||
(double)cv::getTickCount() / (double)cv::getTickFrequency() * 1e6;
|
||||
size_t frame_timestamp_us = static_cast<double>(cv::getTickCount()) /
|
||||
static_cast<double>(cv::getTickFrequency()) * 1e6;
|
||||
MP_RETURN_IF_ERROR(graph.AddPacketToInputStream(
|
||||
kInputStream, mediapipe::Adopt(input_frame.release())
|
||||
.At(mediapipe::Timestamp(frame_timestamp_us))));
|
||||
LOG(INFO) << "Pushed new frame.";
|
||||
|
||||
mediapipe::Packet face_count_packet;
|
||||
if (!face_count_poller_ptr ||
|
||||
!face_count_poller_ptr->Next(&face_count_packet)) {
|
||||
LOG(INFO) << "Failed during getting next face_count_packet.";
|
||||
|
||||
return absl::Status();
|
||||
return absl::CancelledError(
|
||||
"Failed during getting next face_count_packet.");
|
||||
}
|
||||
|
||||
auto &face_count = face_count_packet.Get<int>();
|
||||
|
||||
if (!face_count) {
|
||||
return absl::Status();
|
||||
faceCount = face_count;
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
int MPFaceMeshDetector::GetFaceCount(const cv::Mat &camera_frame) {
|
||||
const auto status = GetFaceCountWithStatus(camera_frame);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "Failed GetFaceCount.";
|
||||
LOG(INFO) << status.message();
|
||||
}
|
||||
|
||||
return faceCount;
|
||||
}
|
||||
|
||||
absl::Status MPFaceMeshDetector::GetFaceLandmarksWithStatus(
|
||||
cv::Point2f **multi_face_landmarks) {
|
||||
|
||||
if (faceCount <= 0) {
|
||||
return absl::CancelledError(
|
||||
"Failed during gettinglandmarks, because faceCount is <= 0.");
|
||||
}
|
||||
|
||||
mediapipe::Packet face_landmarks_packet;
|
||||
if (!landmarks_poller_ptr ||
|
||||
!landmarks_poller_ptr->Next(&face_landmarks_packet)) {
|
||||
LOG(INFO) << "Failed during getting next landmarks_packet.";
|
||||
|
||||
return absl::Status();
|
||||
return absl::CancelledError("Failed during getting next landmarks_packet.");
|
||||
}
|
||||
|
||||
auto &output_landmarks_vector =
|
||||
face_landmarks_packet
|
||||
.Get<::std::vector<::mediapipe::NormalizedLandmarkList>>();
|
||||
|
||||
multi_face_landmarks->reserve(output_landmarks_vector.size());
|
||||
|
||||
for (const auto &normalizedLandmarkList : output_landmarks_vector) {
|
||||
multi_face_landmarks->emplace_back();
|
||||
|
||||
auto &face_landmarks = multi_face_landmarks->back();
|
||||
|
||||
for (int i = 0; i < faceCount; ++i) {
|
||||
const auto &normalizedLandmarkList = output_landmarks_vector[i];
|
||||
const auto landmarks_num = normalizedLandmarkList.landmark_size();
|
||||
auto &face_landmarks = multi_face_landmarks[i];
|
||||
|
||||
face_landmarks.reserve(landmarks_num);
|
||||
|
||||
for (int i = 0; i < landmarks_num; ++i) {
|
||||
auto &landmark = normalizedLandmarkList.landmark(i);
|
||||
|
||||
face_landmarks.emplace_back(landmark.x(), landmark.y());
|
||||
for (int j = 0; j < landmarks_num; ++j) {
|
||||
const auto &landmark = normalizedLandmarkList.landmark(j);
|
||||
face_landmarks[j].x = landmark.x();
|
||||
face_landmarks[j].y = landmark.y();
|
||||
}
|
||||
}
|
||||
|
||||
return absl::Status();
|
||||
faceCount = -1;
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
std::vector<std::vector<cv::Point2f>> *
|
||||
MPFaceMeshDetector::ProcessFrame2D(const cv::Mat &camera_frame) {
|
||||
auto landmarks = std::make_unique<std::vector<std::vector<cv::Point2f>>>();
|
||||
|
||||
ProcessFrameWithStatus(camera_frame, landmarks);
|
||||
|
||||
return landmarks.release();
|
||||
void MPFaceMeshDetector::GetFaceLandmarks(cv::Point2f **multi_face_landmarks) {
|
||||
const auto status = GetFaceLandmarksWithStatus(multi_face_landmarks);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "Failed GetFaceLandmarks.";
|
||||
LOG(INFO) << status.message();
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
DLLEXPORT MPFaceMeshDetector *FaceMeshDetector_Construct() {
|
||||
return new MPFaceMeshDetector();
|
||||
DLLEXPORT MPFaceMeshDetector *
|
||||
FaceMeshDetector_Construct(int numFaces, const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
return new MPFaceMeshDetector(numFaces, face_detection_model_path,
|
||||
face_landmark_model_path);
|
||||
}
|
||||
|
||||
DLLEXPORT void FaceMeshDetector_Destruct(MPFaceMeshDetector *detector) {
|
||||
delete detector;
|
||||
}
|
||||
|
||||
DLLEXPORT void *
|
||||
FaceMeshDetector_ProcessFrame2D(MPFaceMeshDetector *detector,
|
||||
const cv::Mat &camera_frame) {
|
||||
return reinterpret_cast<void *>(detector->ProcessFrame2D(camera_frame));
|
||||
DLLEXPORT int FaceMeshDetector_GetFaceCount(MPFaceMeshDetector *detector,
|
||||
const cv::Mat &camera_frame) {
|
||||
return detector->GetFaceCount(camera_frame);
|
||||
}
|
||||
|
||||
DLLEXPORT void
|
||||
FaceMeshDetector_GetFaceLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point2f **multi_face_landmarks) {
|
||||
detector->GetFaceLandmarks(multi_face_landmarks);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -163,16 +211,60 @@ node {
|
|||
output_side_packet: "PACKET:num_faces"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { int_value: 1 }
|
||||
packet { int_value: $numFaces }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:face_detection_model_path"
|
||||
options: {
|
||||
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
|
||||
packet { string_value: "$faceDetectionModelPath" }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:face_landmark_model_path"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { string_value: "$faceLandmarkModelPath" }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "LocalFileContentsCalculator"
|
||||
input_side_packet: "FILE_PATH:0:face_detection_model_path"
|
||||
input_side_packet: "FILE_PATH:1:face_landmark_model_path"
|
||||
output_side_packet: "CONTENTS:0:face_detection_model_blob"
|
||||
output_side_packet: "CONTENTS:1:face_landmark_model_blob"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TfLiteModelCalculator"
|
||||
input_side_packet: "MODEL_BLOB:face_detection_model_blob"
|
||||
output_side_packet: "MODEL:face_detection_model"
|
||||
}
|
||||
node {
|
||||
calculator: "TfLiteModelCalculator"
|
||||
input_side_packet: "MODEL_BLOB:face_landmark_model_blob"
|
||||
output_side_packet: "MODEL:face_landmark_model"
|
||||
}
|
||||
|
||||
|
||||
# Subgraph that detects faces and corresponding landmarks.
|
||||
node {
|
||||
calculator: "FaceLandmarkFrontCpuWithFaceCounter"
|
||||
calculator: "FaceLandmarkFrontSideModelCpuWithFaceCounter"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
input_side_packet: "MODEL:0:face_detection_model"
|
||||
input_side_packet: "MODEL:1:face_landmark_model"
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
|
||||
output_stream: "DETECTIONS:face_detections"
|
||||
|
|
|
@ -13,11 +13,13 @@
|
|||
|
||||
#include "absl/flags/flag.h"
|
||||
#include "absl/flags/parse.h"
|
||||
#include "absl/strings/str_replace.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/calculator_graph.h"
|
||||
#include "mediapipe/framework/formats/image_frame.h"
|
||||
#include "mediapipe/framework/formats/image_frame_opencv.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/output_stream_poller.h"
|
||||
#include "mediapipe/framework/port/file_helpers.h"
|
||||
#include "mediapipe/framework/port/opencv_highgui_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||
|
@ -27,15 +29,20 @@
|
|||
|
||||
class MPFaceMeshDetector {
|
||||
public:
|
||||
MPFaceMeshDetector();
|
||||
std::vector<std::vector<cv::Point2f>> *ProcessFrame2D(const cv::Mat &camera_frame);
|
||||
MPFaceMeshDetector(int numFaces, const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path);
|
||||
int GetFaceCount(const cv::Mat &camera_frame);
|
||||
void GetFaceLandmarks(cv::Point2f **multi_face_landmarks);
|
||||
|
||||
private:
|
||||
absl::Status InitFaceMeshDetector();
|
||||
absl::Status
|
||||
ProcessFrameWithStatus(const cv::Mat &camera_frame,
|
||||
std::unique_ptr<std::vector<std::vector<cv::Point2f>>>
|
||||
&multi_face_landmarks);
|
||||
absl::Status InitFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path);
|
||||
absl::Status ProcessFrameWithStatus(
|
||||
const cv::Mat &camera_frame,
|
||||
std::vector<std::vector<cv::Point2f>> &multi_face_landmarks);
|
||||
absl::Status GetFaceCountWithStatus(const cv::Mat &camera_frame);
|
||||
absl::Status GetFaceLandmarksWithStatus(cv::Point2f **multi_face_landmarks);
|
||||
|
||||
static const char kInputStream[];
|
||||
static const char kOutputStream_landmarks[];
|
||||
|
@ -47,18 +54,29 @@ private:
|
|||
|
||||
std::unique_ptr<mediapipe::OutputStreamPoller> landmarks_poller_ptr;
|
||||
std::unique_ptr<mediapipe::OutputStreamPoller> face_count_poller_ptr;
|
||||
|
||||
int faceCount = -1;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
DLLEXPORT MPFaceMeshDetector *FaceMeshDetector_Construct();
|
||||
DLLEXPORT MPFaceMeshDetector *FaceMeshDetector_Construct(
|
||||
int numFaces = 1,
|
||||
const char *face_detection_model_path =
|
||||
"mediapipe/modules/face_detection/face_detection_short_range.tflite",
|
||||
const char *face_landmark_model_path =
|
||||
"mediapipe/modules/face_landmark/face_landmark.tflite");
|
||||
|
||||
|
||||
DLLEXPORT void FaceMeshDetector_Destruct(MPFaceMeshDetector *detector);
|
||||
|
||||
DLLEXPORT void *FaceMeshDetector_ProcessFrame2D(MPFaceMeshDetector *detector,
|
||||
const cv::Mat &camera_frame);
|
||||
DLLEXPORT int FaceMeshDetector_GetFaceCount(MPFaceMeshDetector *detector,
|
||||
const cv::Mat &camera_frame);
|
||||
DLLEXPORT void
|
||||
FaceMeshDetector_GetFaceLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point2f **multi_face_landmarks);
|
||||
|
||||
#ifdef __cplusplus
|
||||
};
|
||||
|
|
|
@ -57,6 +57,18 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_detection_short_range_side_model_cpu",
|
||||
graph = "face_detection_short_range_side_model_cpu.pbtxt",
|
||||
register_as = "FaceDetectionShortRangeSideModelCpu",
|
||||
deps = [
|
||||
":face_detection_short_range_common",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/util:to_image_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_detection_short_range_gpu",
|
||||
graph = "face_detection_short_range_gpu.pbtxt",
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
# MediaPipe graph to detect faces. (CPU input, and inference is executed on
|
||||
# CPU.)
|
||||
#
|
||||
# It is required that "face_detection_short_range.tflite" is available at
|
||||
# "mediapipe/modules/face_detection/face_detection_short_range.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceDetectionShortRangeCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_side_packet: "MODEL:face_detection_model"
|
||||
# output_stream: "DETECTIONS:face_detections"
|
||||
# }
|
||||
|
||||
type: "FaceDetectionShortRangeCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
|
||||
# TfLite model to detect faces.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_detection/face_detection_short_range.tflite
|
||||
# model only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
|
||||
# Detected faces. (std::vector<Detection>)
|
||||
# NOTE: there will not be an output packet in the DETECTIONS stream for this
|
||||
# particular timestamp if none of faces detected. However, the MediaPipe
|
||||
# framework will internally inform the downstream calculators of the absence of
|
||||
# this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "DETECTIONS:detections"
|
||||
|
||||
# Converts the input CPU image (ImageFrame) to the multi-backend image type
|
||||
# (Image).
|
||||
node: {
|
||||
calculator: "ToImageCalculator"
|
||||
input_stream: "IMAGE_CPU:image"
|
||||
output_stream: "IMAGE:multi_backend_image"
|
||||
}
|
||||
|
||||
# Transforms the input image into a 128x128 tensor while keeping the aspect
|
||||
# ratio (what is expected by the corresponding face detection model), resulting
|
||||
# in potential letterboxing in the transformed image.
|
||||
node: {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
input_stream: "IMAGE:multi_backend_image"
|
||||
output_stream: "TENSORS:input_tensors"
|
||||
output_stream: "MATRIX:transform_matrix"
|
||||
options: {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 128
|
||||
output_tensor_height: 128
|
||||
keep_aspect_ratio: true
|
||||
output_tensor_float_range {
|
||||
min: -1.0
|
||||
max: 1.0
|
||||
}
|
||||
border_mode: BORDER_ZERO
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
||||
# vector of tensors representing, for instance, detection boxes/keypoints and
|
||||
# scores.
|
||||
node {
|
||||
calculator: "InferenceCalculator"
|
||||
input_stream: "TENSORS:input_tensors"
|
||||
output_stream: "TENSORS:detection_tensors"
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
options {
|
||||
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||
delegate { tflite {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Performs tensor post processing to generate face detections.
|
||||
node {
|
||||
calculator: "FaceDetectionShortRangeCommon"
|
||||
input_stream: "TENSORS:detection_tensors"
|
||||
input_stream: "MATRIX:transform_matrix"
|
||||
output_stream: "DETECTIONS:detections"
|
||||
}
|
|
@ -37,6 +37,22 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_side_model_cpu",
|
||||
graph = "face_landmark_side_model_cpu.pbtxt",
|
||||
register_as = "FaceLandmarkSideModelCpu",
|
||||
deps = [
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:split_vector_calculator",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_floats_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_landmarks_calculator",
|
||||
"//mediapipe/calculators/util:landmark_projection_calculator",
|
||||
"//mediapipe/calculators/util:thresholding_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_gpu",
|
||||
graph = "face_landmark_gpu.pbtxt",
|
||||
|
@ -96,6 +112,28 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_front_side_model_cpu_with_face_counter",
|
||||
graph = "face_landmark_front_side_model_cpu_with_face_counter.pbtxt",
|
||||
register_as = "FaceLandmarkFrontSideModelCpuWithFaceCounter",
|
||||
deps = [
|
||||
":face_detection_front_detection_to_roi",
|
||||
":face_landmark_side_model_cpu",
|
||||
":face_landmark_landmarks_to_roi",
|
||||
"//mediapipe/calculators/core:begin_loop_calculator",
|
||||
"//mediapipe/calculators/core:clip_vector_size_calculator",
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
"//mediapipe/calculators/core:end_loop_calculator",
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:previous_loopback_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/util:association_norm_rect_calculator",
|
||||
"//mediapipe/calculators/util:collection_has_min_size_calculator",
|
||||
"//mediapipe/calculators/util:counting_vector_size_calculator",
|
||||
"//mediapipe/modules/face_detection:face_detection_short_range_side_model_cpu",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_front_gpu",
|
||||
graph = "face_landmark_front_gpu.pbtxt",
|
||||
|
|
|
@ -0,0 +1,256 @@
|
|||
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
|
||||
# executed on CPU.) This graph tries to skip face detection as much as possible
|
||||
# by using previously detected/predicted landmarks for new images.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceLandmarkFrontSideModelCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_side_packet: "NUM_FACES:num_faces"
|
||||
# input_side_packet: "MODEL:0:face_detection_model"
|
||||
# input_side_packet: "MODEL:1:face_landmark_model"
|
||||
# output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
# }
|
||||
|
||||
type: "FaceLandmarkFrontSideModelCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
|
||||
# Max number of faces to detect/track. (int)
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
# TfLite model to detect faces.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_detection/face_detection_short_range.tflite
|
||||
# model only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:0:face_detection_model"
|
||||
# TfLite model to detect face landmarks.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_landmark/face_landmark.tflite model
|
||||
# only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:1:face_landmark_model"
|
||||
|
||||
# Collection of detected/predicted faces, each represented as a list of 468 face
|
||||
# landmarks. (std::vector<NormalizedLandmarkList>)
|
||||
# NOTE: there will not be an output packet in the LANDMARKS stream for this
|
||||
# particular timestamp if none of faces detected. However, the MediaPipe
|
||||
# framework will internally inform the downstream calculators of the absence of
|
||||
# this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
|
||||
# Extra outputs (for debugging, for instance).
|
||||
# Detected faces. (std::vector<Detection>)
|
||||
output_stream: "DETECTIONS:face_detections"
|
||||
# Regions of interest calculated based on landmarks.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
|
||||
# Regions of interest calculated based on face detections.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
|
||||
|
||||
# (int)
|
||||
output_stream: "FACE_COUNT_FROM_LANDMARKS:face_count"
|
||||
|
||||
|
||||
# Defines whether landmarks on the previous image should be used to help
|
||||
# localize landmarks on the current image.
|
||||
node {
|
||||
name: "ConstantSidePacketCalculator"
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:use_prev_landmarks"
|
||||
options: {
|
||||
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
|
||||
packet { bool_value: true }
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_side_packet: "ALLOW:use_prev_landmarks"
|
||||
input_stream: "prev_face_rects_from_landmarks"
|
||||
output_stream: "gated_prev_face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided num_faces.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_face_rects_from_landmarks"
|
||||
input_side_packet: "num_faces"
|
||||
output_stream: "prev_has_enough_faces"
|
||||
}
|
||||
|
||||
# Drops the incoming image if FaceLandmarkCpu was able to identify face presence
|
||||
# in the previous image. Otherwise, passes the incoming image through to trigger
|
||||
# a new round of face detection in FaceDetectionShortRangeCpu.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "image"
|
||||
input_stream: "DISALLOW:prev_has_enough_faces"
|
||||
output_stream: "gated_image"
|
||||
options: {
|
||||
[mediapipe.GateCalculatorOptions.ext] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Detects faces.
|
||||
node {
|
||||
calculator: "FaceDetectionShortRangeSideModelCpu"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
output_stream: "DETECTIONS:all_face_detections"
|
||||
}
|
||||
|
||||
# Makes sure there are no more detections than the provided num_faces.
|
||||
node {
|
||||
calculator: "ClipDetectionVectorSizeCalculator"
|
||||
input_stream: "all_face_detections"
|
||||
output_stream: "face_detections"
|
||||
input_side_packet: "num_faces"
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
output_stream: "SIZE:gated_image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_detections at a fake timestamp for the rest of
|
||||
# the graph to process. Clones the image size packet for each face_detection at
|
||||
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
|
||||
# for downstream calculators to inform them that all elements in the vector have
|
||||
# been processed.
|
||||
node {
|
||||
calculator: "BeginLoopDetectionCalculator"
|
||||
input_stream: "ITERABLE:face_detections"
|
||||
input_stream: "CLONE:gated_image_size"
|
||||
output_stream: "ITEM:face_detection"
|
||||
output_stream: "CLONE:detections_loop_image_size"
|
||||
output_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face detections, so that can be used
|
||||
# to detect landmarks.
|
||||
node {
|
||||
calculator: "FaceDetectionFrontDetectionToRoi"
|
||||
input_stream: "DETECTION:face_detection"
|
||||
input_stream: "IMAGE_SIZE:detections_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_detection"
|
||||
}
|
||||
|
||||
# Counting a multi_faceLandmarks vector size. The image stream is only used to
|
||||
# make the calculator work even when there is no input vector.
|
||||
node {
|
||||
calculator: "CountingNormalizedLandmarkListVectorSizeCalculator"
|
||||
input_stream: "CLOCK:image"
|
||||
input_stream: "VECTOR:multi_face_landmarks"
|
||||
output_stream: "COUNT:face_count"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_detection"
|
||||
input_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_detections"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# image and rects based on face detections from the current image. This
|
||||
# calculator ensures that the output face_rects vector doesn't contain
|
||||
# overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "face_rects_from_detections"
|
||||
input_stream: "prev_face_rects_from_landmarks"
|
||||
output_stream: "face_rects"
|
||||
options: {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:image"
|
||||
output_stream: "SIZE:image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_rects at a fake timestamp for the rest of the
|
||||
# graph to process. Clones image and image size packets for each
|
||||
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
|
||||
# BATCH_END timestamp for downstream calculators to inform them that all
|
||||
# elements in the vector have been processed.
|
||||
node {
|
||||
calculator: "BeginLoopNormalizedRectCalculator"
|
||||
input_stream: "ITERABLE:face_rects"
|
||||
input_stream: "CLONE:0:image"
|
||||
input_stream: "CLONE:1:image_size"
|
||||
output_stream: "ITEM:face_rect"
|
||||
output_stream: "CLONE:0:landmarks_loop_image"
|
||||
output_stream: "CLONE:1:landmarks_loop_image_size"
|
||||
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Detects face landmarks within specified region of interest of the image.
|
||||
node {
|
||||
calculator: "FaceLandmarkSideModelCpu"
|
||||
input_stream: "IMAGE:landmarks_loop_image"
|
||||
input_stream: "ROI:face_rect"
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
output_stream: "LANDMARKS:face_landmarks"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face landmarks, so that can be reused
|
||||
# for subsequent image.
|
||||
node {
|
||||
calculator: "FaceLandmarkLandmarksToRoi"
|
||||
input_stream: "LANDMARKS:face_landmarks"
|
||||
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_landmarks"
|
||||
}
|
||||
|
||||
# Collects a set of landmarks for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
|
||||
input_stream: "ITEM:face_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:multi_face_landmarks"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches face rects calculated from landmarks, and upon the arrival of the next
|
||||
# input image, sends out the cached rects with timestamps replaced by that of
|
||||
# the input image, essentially generating a packet that carries the previous
|
||||
# face rects. Note that upon the arrival of the very first input image, a
|
||||
# timestamp bound update occurs to jump start the feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:image"
|
||||
input_stream: "LOOP:face_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
|
||||
}
|
|
@ -0,0 +1,143 @@
|
|||
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
|
||||
# executed on CPU.)
|
||||
#
|
||||
# It is required that "face_landmark.tflite" is available at
|
||||
# "mediapipe/modules/face_landmark/face_landmark.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceLandmarkCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_stream: "ROI:face_roi"
|
||||
# input_side_packet: "MODEL:face_landmark_model"
|
||||
# output_stream: "LANDMARKS:face_landmarks"
|
||||
# }
|
||||
|
||||
type: "FaceLandmarkCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
# ROI (region of interest) within the given image where a face is located.
|
||||
# (NormalizedRect)
|
||||
input_stream: "ROI:roi"
|
||||
|
||||
# TfLite model to detect face landmarks.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_landmark/face_landmark.tflite model
|
||||
# only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
|
||||
|
||||
# 468 face landmarks within the given ROI. (NormalizedLandmarkList)
|
||||
# NOTE: if a face is not present within the given ROI, for this particular
|
||||
# timestamp there will not be an output packet in the LANDMARKS stream. However,
|
||||
# the MediaPipe framework will internally inform the downstream calculators of
|
||||
# the absence of this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "LANDMARKS:face_landmarks"
|
||||
|
||||
# Transforms the input image into a 192x192 tensor.
|
||||
node: {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
input_stream: "IMAGE:image"
|
||||
input_stream: "NORM_RECT:roi"
|
||||
output_stream: "TENSORS:input_tensors"
|
||||
options: {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 192
|
||||
output_tensor_height: 192
|
||||
output_tensor_float_range {
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
||||
# vector of tensors representing, for instance, detection boxes/keypoints and
|
||||
# scores.
|
||||
node {
|
||||
calculator: "InferenceCalculator"
|
||||
input_stream: "TENSORS:input_tensors"
|
||||
output_stream: "TENSORS:output_tensors"
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
options {
|
||||
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||
delegate { tflite {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Splits a vector of tensors into multiple vectors.
|
||||
node {
|
||||
calculator: "SplitTensorVectorCalculator"
|
||||
input_stream: "output_tensors"
|
||||
output_stream: "landmark_tensors"
|
||||
output_stream: "face_flag_tensor"
|
||||
options: {
|
||||
[mediapipe.SplitVectorCalculatorOptions.ext] {
|
||||
ranges: { begin: 0 end: 1 }
|
||||
ranges: { begin: 1 end: 2 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Converts the face-flag tensor into a float that represents the confidence
|
||||
# score of face presence.
|
||||
node {
|
||||
calculator: "TensorsToFloatsCalculator"
|
||||
input_stream: "TENSORS:face_flag_tensor"
|
||||
output_stream: "FLOAT:face_presence_score"
|
||||
options {
|
||||
[mediapipe.TensorsToFloatsCalculatorOptions.ext] {
|
||||
activation: SIGMOID
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Applies a threshold to the confidence score to determine whether a face is
|
||||
# present.
|
||||
node {
|
||||
calculator: "ThresholdingCalculator"
|
||||
input_stream: "FLOAT:face_presence_score"
|
||||
output_stream: "FLAG:face_presence"
|
||||
options: {
|
||||
[mediapipe.ThresholdingCalculatorOptions.ext] {
|
||||
threshold: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drop landmarks tensors if face is not present.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "landmark_tensors"
|
||||
input_stream: "ALLOW:face_presence"
|
||||
output_stream: "ensured_landmark_tensors"
|
||||
}
|
||||
|
||||
# Decodes the landmark tensors into a vector of landmarks, where the landmark
|
||||
# coordinates are normalized by the size of the input image to the model.
|
||||
node {
|
||||
calculator: "TensorsToLandmarksCalculator"
|
||||
input_stream: "TENSORS:ensured_landmark_tensors"
|
||||
output_stream: "NORM_LANDMARKS:landmarks"
|
||||
options: {
|
||||
[mediapipe.TensorsToLandmarksCalculatorOptions.ext] {
|
||||
num_landmarks: 468
|
||||
input_image_width: 192
|
||||
input_image_height: 192
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Projects the landmarks from the cropped face image to the corresponding
|
||||
# locations on the full image before cropping (input to the graph).
|
||||
node {
|
||||
calculator: "LandmarkProjectionCalculator"
|
||||
input_stream: "NORM_LANDMARKS:landmarks"
|
||||
input_stream: "NORM_RECT:roi"
|
||||
output_stream: "NORM_LANDMARKS:face_landmarks"
|
||||
}
|
Loading…
Reference in New Issue
Block a user