Merge branch 'master' into ios-gesture-recognizer-files
This commit is contained in:
commit
b16905e362
|
@ -194,6 +194,7 @@ cc_library(
|
|||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
"//mediapipe/framework/formats:image",
|
||||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
|
@ -225,10 +226,8 @@ cc_library(
|
|||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/formats:tensor",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"//mediapipe/gpu:gpu_buffer",
|
||||
"//mediapipe/util:render_data_cc_proto",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/status",
|
||||
"@org_tensorflow//tensorflow/lite:framework",
|
||||
],
|
||||
|
@ -907,6 +906,7 @@ cc_library(
|
|||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:classification_cc_proto",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
"//mediapipe/framework/formats:image",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
#include "mediapipe/framework/formats/image.h"
|
||||
#include "mediapipe/framework/formats/image_frame.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/matrix.h"
|
||||
|
@ -72,4 +73,7 @@ typedef BeginLoopCalculator<std::vector<GpuBuffer>>
|
|||
BeginLoopGpuBufferCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopGpuBufferCalculator);
|
||||
|
||||
// A calculator to process std::vector<mediapipe::Image>.
|
||||
typedef BeginLoopCalculator<std::vector<Image>> BeginLoopImageCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopImageCalculator);
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -80,4 +80,8 @@ typedef EndLoopCalculator<std::vector<::mediapipe::Image>>
|
|||
EndLoopImageCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopImageCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<std::array<float, 16>>>
|
||||
EndLoopAffineMatrixCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopAffineMatrixCalculator);
|
||||
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#include "mediapipe/framework/formats/classification.pb.h"
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
#include "mediapipe/framework/formats/image.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/matrix.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
|
@ -86,4 +87,12 @@ REGISTER_CALCULATOR(SplitUint64tVectorCalculator);
|
|||
typedef SplitVectorCalculator<float, false> SplitFloatVectorCalculator;
|
||||
REGISTER_CALCULATOR(SplitFloatVectorCalculator);
|
||||
|
||||
typedef SplitVectorCalculator<mediapipe::Image, false>
|
||||
SplitImageVectorCalculator;
|
||||
REGISTER_CALCULATOR(SplitImageVectorCalculator);
|
||||
|
||||
typedef SplitVectorCalculator<std::array<float, 16>, false>
|
||||
SplitAffineMatrixVectorCalculator;
|
||||
REGISTER_CALCULATOR(SplitAffineMatrixVectorCalculator);
|
||||
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -231,18 +231,26 @@ class FaceStylizerGraph : public core::ModelTaskGraph {
|
|||
SubgraphContext* sc) override {
|
||||
bool output_stylized = HasOutput(sc->OriginalNode(), kStylizedImageTag);
|
||||
bool output_alignment = HasOutput(sc->OriginalNode(), kFaceAlignmentTag);
|
||||
ASSIGN_OR_RETURN(
|
||||
const auto* model_asset_bundle_resources,
|
||||
CreateModelAssetBundleResources<FaceStylizerGraphOptions>(sc));
|
||||
// Copies the file content instead of passing the pointer of file in
|
||||
// memory if the subgraph model resource service is not available.
|
||||
auto face_stylizer_external_file = absl::make_unique<ExternalFile>();
|
||||
MP_RETURN_IF_ERROR(SetSubTaskBaseOptions(
|
||||
*model_asset_bundle_resources,
|
||||
sc->MutableOptions<FaceStylizerGraphOptions>(),
|
||||
output_stylized ? face_stylizer_external_file.get() : nullptr,
|
||||
!sc->Service(::mediapipe::tasks::core::kModelResourcesCacheService)
|
||||
.IsAvailable()));
|
||||
if (sc->Options<FaceStylizerGraphOptions>().has_base_options()) {
|
||||
ASSIGN_OR_RETURN(
|
||||
const auto* model_asset_bundle_resources,
|
||||
CreateModelAssetBundleResources<FaceStylizerGraphOptions>(sc));
|
||||
// Copies the file content instead of passing the pointer of file in
|
||||
// memory if the subgraph model resource service is not available.
|
||||
MP_RETURN_IF_ERROR(SetSubTaskBaseOptions(
|
||||
*model_asset_bundle_resources,
|
||||
sc->MutableOptions<FaceStylizerGraphOptions>(),
|
||||
output_stylized ? face_stylizer_external_file.get() : nullptr,
|
||||
!sc->Service(::mediapipe::tasks::core::kModelResourcesCacheService)
|
||||
.IsAvailable()));
|
||||
} else if (output_stylized) {
|
||||
return CreateStatusWithPayload(
|
||||
absl::StatusCode::kInvalidArgument,
|
||||
"Face stylizer must specify its base options when the "
|
||||
"\"STYLIZED_IMAGE\" output stream is connected.",
|
||||
MediaPipeTasksStatus::kInvalidArgumentError);
|
||||
}
|
||||
Graph graph;
|
||||
ASSIGN_OR_RETURN(
|
||||
auto face_landmark_lists,
|
||||
|
@ -347,7 +355,7 @@ class FaceStylizerGraph : public core::ModelTaskGraph {
|
|||
auto& image_to_tensor = graph.AddNode("ImageToTensorCalculator");
|
||||
auto& image_to_tensor_options =
|
||||
image_to_tensor.GetOptions<ImageToTensorCalculatorOptions>();
|
||||
image_to_tensor_options.mutable_output_tensor_float_range()->set_min(-1);
|
||||
image_to_tensor_options.mutable_output_tensor_float_range()->set_min(0);
|
||||
image_to_tensor_options.mutable_output_tensor_float_range()->set_max(1);
|
||||
image_to_tensor_options.set_output_tensor_width(kFaceAlignmentOutputSize);
|
||||
image_to_tensor_options.set_output_tensor_height(
|
||||
|
@ -363,7 +371,7 @@ class FaceStylizerGraph : public core::ModelTaskGraph {
|
|||
graph.AddNode("mediapipe.tasks.TensorsToImageCalculator");
|
||||
auto& tensors_to_image_options =
|
||||
tensors_to_image.GetOptions<TensorsToImageCalculatorOptions>();
|
||||
tensors_to_image_options.mutable_input_tensor_float_range()->set_min(-1);
|
||||
tensors_to_image_options.mutable_input_tensor_float_range()->set_min(0);
|
||||
tensors_to_image_options.mutable_input_tensor_float_range()->set_max(1);
|
||||
face_alignment_image >> tensors_to_image.In(kTensorsTag);
|
||||
face_alignment = tensors_to_image.Out(kImageTag).Cast<Image>();
|
||||
|
|
|
@ -49,11 +49,12 @@ OBJC_TASK_COMMON_DEPS = [
|
|||
]
|
||||
|
||||
CALCULATORS_AND_GRAPHS = [
|
||||
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/tasks/cc/text/text_classifier:text_classifier_graph",
|
||||
"//mediapipe/tasks/cc/text/text_embedder:text_embedder_graph",
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/tasks/cc/vision/face_detector:face_detector_graph",
|
||||
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||
]
|
||||
|
||||
strip_api_include_path_prefix(
|
||||
|
@ -76,6 +77,9 @@ strip_api_include_path_prefix(
|
|||
"//mediapipe/tasks/ios/text/text_embedder:sources/MPPTextEmbedderResult.h",
|
||||
"//mediapipe/tasks/ios/vision/core:sources/MPPRunningMode.h",
|
||||
"//mediapipe/tasks/ios/vision/core:sources/MPPImage.h",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:sources/MPPFaceDetector.h",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:sources/MPPFaceDetectorOptions.h",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:sources/MPPFaceDetectorResult.h",
|
||||
"//mediapipe/tasks/ios/vision/image_classifier:sources/MPPImageClassifier.h",
|
||||
"//mediapipe/tasks/ios/vision/image_classifier:sources/MPPImageClassifierOptions.h",
|
||||
"//mediapipe/tasks/ios/vision/image_classifier:sources/MPPImageClassifierResult.h",
|
||||
|
@ -157,6 +161,9 @@ apple_static_xcframework(
|
|||
":MPPTaskResult.h",
|
||||
":MPPImage.h",
|
||||
":MPPRunningMode.h",
|
||||
":MPPFaceDetector.h",
|
||||
":MPPFaceDetectorOptions.h",
|
||||
":MPPFaceDetectorResult.h",
|
||||
":MPPImageClassifier.h",
|
||||
":MPPImageClassifierOptions.h",
|
||||
":MPPImageClassifierResult.h",
|
||||
|
@ -165,6 +172,7 @@ apple_static_xcframework(
|
|||
":MPPObjectDetectorResult.h",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/tasks/ios/vision/face_detector:MPPFaceDetector",
|
||||
"//mediapipe/tasks/ios/vision/image_classifier:MPPImageClassifier",
|
||||
"//mediapipe/tasks/ios/vision/object_detector:MPPObjectDetector",
|
||||
],
|
||||
|
|
64
mediapipe/tasks/ios/test/vision/face_detector/BUILD
Normal file
64
mediapipe/tasks/ios/test/vision/face_detector/BUILD
Normal file
|
@ -0,0 +1,64 @@
|
|||
load("@build_bazel_rules_apple//apple:ios.bzl", "ios_unit_test")
|
||||
load(
|
||||
"//mediapipe/framework/tool:ios.bzl",
|
||||
"MPP_TASK_MINIMUM_OS_VERSION",
|
||||
)
|
||||
load(
|
||||
"@org_tensorflow//tensorflow/lite:special_rules.bzl",
|
||||
"tflite_ios_lab_runner",
|
||||
)
|
||||
|
||||
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
# Default tags for filtering iOS targets. Targets are restricted to Apple platforms.
|
||||
TFL_DEFAULT_TAGS = [
|
||||
"apple",
|
||||
]
|
||||
|
||||
# Following sanitizer tests are not supported by iOS test targets.
|
||||
TFL_DISABLED_SANITIZER_TAGS = [
|
||||
"noasan",
|
||||
"nomsan",
|
||||
"notsan",
|
||||
]
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetectorObjcTestLibrary",
|
||||
testonly = 1,
|
||||
srcs = ["MPPFaceDetectorTests.mm"],
|
||||
copts = [
|
||||
"-ObjC++",
|
||||
"-std=c++17",
|
||||
"-x objective-c++",
|
||||
],
|
||||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
"//mediapipe/tasks/testdata/vision:test_protos",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/tasks/ios/common:MPPCommon",
|
||||
"//mediapipe/tasks/ios/components/containers/utils:MPPDetectionHelpers",
|
||||
"//mediapipe/tasks/ios/test/vision/utils:MPPImageTestUtils",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:MPPFaceDetector",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:MPPFaceDetectorResult",
|
||||
"//third_party/apple_frameworks:UIKit",
|
||||
] + select({
|
||||
"//third_party:opencv_ios_sim_arm64_source_build": ["@ios_opencv_source//:opencv_xcframework"],
|
||||
"//third_party:opencv_ios_arm64_source_build": ["@ios_opencv_source//:opencv_xcframework"],
|
||||
"//third_party:opencv_ios_x86_64_source_build": ["@ios_opencv_source//:opencv_xcframework"],
|
||||
"//conditions:default": ["@ios_opencv//:OpencvFramework"],
|
||||
}),
|
||||
)
|
||||
|
||||
ios_unit_test(
|
||||
name = "MPPFaceDetectorObjcTest",
|
||||
minimum_os_version = MPP_TASK_MINIMUM_OS_VERSION,
|
||||
runner = tflite_ios_lab_runner("IOS_LATEST"),
|
||||
tags = TFL_DEFAULT_TAGS + TFL_DISABLED_SANITIZER_TAGS,
|
||||
deps = [
|
||||
":MPPFaceDetectorObjcTestLibrary",
|
||||
],
|
||||
)
|
|
@ -0,0 +1,522 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <UIKit/UIKit.h>
|
||||
#import <XCTest/XCTest.h>
|
||||
|
||||
#import "mediapipe/tasks/ios/common/sources/MPPCommon.h"
|
||||
#import "mediapipe/tasks/ios/components/containers/utils/sources/MPPDetection+Helpers.h"
|
||||
#import "mediapipe/tasks/ios/test/vision/utils/sources/MPPImage+TestUtils.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetector.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorResult.h"
|
||||
|
||||
static NSDictionary *const kPortraitImage =
|
||||
@{@"name" : @"portrait", @"type" : @"jpg", @"orientation" : @(UIImageOrientationUp)};
|
||||
static NSDictionary *const kPortraitRotatedImage =
|
||||
@{@"name" : @"portrait_rotated", @"type" : @"jpg", @"orientation" : @(UIImageOrientationRight)};
|
||||
static NSDictionary *const kCatImage = @{@"name" : @"cat", @"type" : @"jpg"};
|
||||
static NSString *const kShortRangeBlazeFaceModel = @"face_detection_short_range";
|
||||
static NSArray<NSArray *> *const kPortraitExpectedKeypoints = @[
|
||||
@[ @0.44416f, @0.17643f ], @[ @0.55514f, @0.17731f ], @[ @0.50467f, @0.22657f ],
|
||||
@[ @0.50227f, @0.27199f ], @[ @0.36063f, @0.20143f ], @[ @0.60841f, @0.20409f ]
|
||||
];
|
||||
static NSArray<NSArray *> *const kPortraitRotatedExpectedKeypoints = @[
|
||||
@[ @0.82075f, @0.44679f ], @[ @0.81965f, @0.56261f ], @[ @0.76194f, @0.51719f ],
|
||||
@[ @0.71993f, @0.51719f ], @[ @0.80700f, @0.36298f ], @[ @0.80882f, @0.61204f ]
|
||||
];
|
||||
static NSString *const kExpectedErrorDomain = @"com.google.mediapipe.tasks";
|
||||
static NSString *const kLiveStreamTestsDictFaceDetectorKey = @"face_detector";
|
||||
static NSString *const kLiveStreamTestsDictExpectationKey = @"expectation";
|
||||
|
||||
static const float kKeypointErrorThreshold = 1e-2;
|
||||
|
||||
#define AssertEqualErrors(error, expectedError) \
|
||||
XCTAssertNotNil(error); \
|
||||
XCTAssertEqualObjects(error.domain, expectedError.domain); \
|
||||
XCTAssertEqual(error.code, expectedError.code); \
|
||||
XCTAssertEqualObjects(error.localizedDescription, expectedError.localizedDescription)
|
||||
|
||||
@interface MPPFaceDetectorTests : XCTestCase <MPPFaceDetectorLiveStreamDelegate> {
|
||||
NSDictionary *liveStreamSucceedsTestDict;
|
||||
NSDictionary *outOfOrderTimestampTestDict;
|
||||
}
|
||||
@end
|
||||
|
||||
@implementation MPPFaceDetectorTests
|
||||
|
||||
#pragma mark General Tests
|
||||
|
||||
- (void)testCreateFaceDetectorWithMissingModelPathFails {
|
||||
NSString *modelPath = [MPPFaceDetectorTests filePathWithName:@"" extension:@""];
|
||||
|
||||
NSError *error = nil;
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithModelPath:modelPath
|
||||
error:&error];
|
||||
XCTAssertNil(faceDetector);
|
||||
|
||||
NSError *expectedError = [NSError
|
||||
errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey :
|
||||
@"INVALID_ARGUMENT: ExternalFile must specify at least one of 'file_content', "
|
||||
@"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."
|
||||
}];
|
||||
AssertEqualErrors(error, expectedError);
|
||||
}
|
||||
|
||||
#pragma mark Image Mode Tests
|
||||
|
||||
- (void)testDetectWithImageModeAndPotraitSucceeds {
|
||||
NSString *modelPath = [MPPFaceDetectorTests filePathWithName:kShortRangeBlazeFaceModel
|
||||
extension:@"tflite"];
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithModelPath:modelPath error:nil];
|
||||
|
||||
[self assertResultsOfDetectInImageWithFileInfo:kPortraitImage
|
||||
usingFaceDetector:faceDetector
|
||||
containsExpectedKeypoints:kPortraitExpectedKeypoints];
|
||||
}
|
||||
|
||||
- (void)testDetectWithImageModeAndRotatedPotraitSucceeds {
|
||||
NSString *modelPath = [MPPFaceDetectorTests filePathWithName:kShortRangeBlazeFaceModel
|
||||
extension:@"tflite"];
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithModelPath:modelPath error:nil];
|
||||
XCTAssertNotNil(faceDetector);
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitRotatedImage];
|
||||
[self assertResultsOfDetectInImage:image
|
||||
usingFaceDetector:faceDetector
|
||||
containsExpectedKeypoints:kPortraitRotatedExpectedKeypoints];
|
||||
}
|
||||
|
||||
- (void)testDetectWithImageModeAndNoFaceSucceeds {
|
||||
NSString *modelPath = [MPPFaceDetectorTests filePathWithName:kShortRangeBlazeFaceModel
|
||||
extension:@"tflite"];
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithModelPath:modelPath error:nil];
|
||||
XCTAssertNotNil(faceDetector);
|
||||
|
||||
NSError *error;
|
||||
MPPImage *mppImage = [self imageWithFileInfo:kCatImage];
|
||||
MPPFaceDetectorResult *faceDetectorResult = [faceDetector detectInImage:mppImage error:&error];
|
||||
XCTAssertNil(error);
|
||||
XCTAssertNotNil(faceDetectorResult);
|
||||
XCTAssertEqual(faceDetectorResult.detections.count, 0);
|
||||
}
|
||||
|
||||
#pragma mark Video Mode Tests
|
||||
|
||||
- (void)testDetectWithVideoModeAndPotraitSucceeds {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeVideo;
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
for (int i = 0; i < 3; i++) {
|
||||
MPPFaceDetectorResult *faceDetectorResult = [faceDetector detectInVideoFrame:image
|
||||
timestampInMilliseconds:i
|
||||
error:nil];
|
||||
[self assertFaceDetectorResult:faceDetectorResult
|
||||
containsExpectedKeypoints:kPortraitExpectedKeypoints];
|
||||
}
|
||||
}
|
||||
|
||||
- (void)testDetectWithVideoModeAndRotatedPotraitSucceeds {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeVideo;
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitRotatedImage];
|
||||
for (int i = 0; i < 3; i++) {
|
||||
MPPFaceDetectorResult *faceDetectorResult = [faceDetector detectInVideoFrame:image
|
||||
timestampInMilliseconds:i
|
||||
error:nil];
|
||||
[self assertFaceDetectorResult:faceDetectorResult
|
||||
containsExpectedKeypoints:kPortraitRotatedExpectedKeypoints];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma mark Live Stream Mode Tests
|
||||
|
||||
- (void)testDetectWithLiveStreamModeAndPotraitSucceeds {
|
||||
NSInteger iterationCount = 100;
|
||||
|
||||
// Because of flow limiting, the callback might be invoked fewer than `iterationCount` times. An
|
||||
// normal expectation will fail if expectation.fullfill() is not called
|
||||
// `expectation.expectedFulfillmentCount` times. If `expectation.isInverted = true`, the test will
|
||||
// only succeed if expectation is not fullfilled for the specified `expectedFulfillmentCount`.
|
||||
// Since it is not possible to predict how many times the expectation is supposed to be
|
||||
// fullfilled, `expectation.expectedFulfillmentCount` = `iterationCount` + 1 and
|
||||
// `expectation.isInverted = true` ensures that test succeeds if expectation is fullfilled <=
|
||||
// `iterationCount` times.
|
||||
XCTestExpectation *expectation = [[XCTestExpectation alloc]
|
||||
initWithDescription:@"detectWithOutOfOrderTimestampsAndLiveStream"];
|
||||
expectation.expectedFulfillmentCount = iterationCount + 1;
|
||||
expectation.inverted = YES;
|
||||
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeLiveStream;
|
||||
options.faceDetectorLiveStreamDelegate = self;
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
|
||||
liveStreamSucceedsTestDict = @{
|
||||
kLiveStreamTestsDictFaceDetectorKey : faceDetector,
|
||||
kLiveStreamTestsDictExpectationKey : expectation
|
||||
};
|
||||
|
||||
for (int i = 0; i < iterationCount; i++) {
|
||||
XCTAssertTrue([faceDetector detectAsyncInImage:image timestampInMilliseconds:i error:nil]);
|
||||
}
|
||||
|
||||
NSTimeInterval timeout = 0.5f;
|
||||
[self waitForExpectations:@[ expectation ] timeout:timeout];
|
||||
}
|
||||
|
||||
- (void)testDetectWithOutOfOrderTimestampsAndLiveStreamModeFails {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeLiveStream;
|
||||
options.faceDetectorLiveStreamDelegate = self;
|
||||
|
||||
XCTestExpectation *expectation = [[XCTestExpectation alloc]
|
||||
initWithDescription:@"detectWithOutOfOrderTimestampsAndLiveStream"];
|
||||
expectation.expectedFulfillmentCount = 1;
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
liveStreamSucceedsTestDict = @{
|
||||
kLiveStreamTestsDictFaceDetectorKey : faceDetector,
|
||||
kLiveStreamTestsDictExpectationKey : expectation
|
||||
};
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
XCTAssertTrue([faceDetector detectAsyncInImage:image timestampInMilliseconds:1 error:nil]);
|
||||
|
||||
NSError *error;
|
||||
XCTAssertFalse([faceDetector detectAsyncInImage:image timestampInMilliseconds:0 error:&error]);
|
||||
|
||||
NSError *expectedError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey :
|
||||
@"INVALID_ARGUMENT: Input timestamp must be monotonically increasing."
|
||||
}];
|
||||
AssertEqualErrors(error, expectedError);
|
||||
|
||||
NSTimeInterval timeout = 0.5f;
|
||||
[self waitForExpectations:@[ expectation ] timeout:timeout];
|
||||
}
|
||||
|
||||
#pragma mark Running Mode Tests
|
||||
|
||||
- (void)testCreateFaceDetectorFailsWithDelegateInNonLiveStreamMode {
|
||||
MPPRunningMode runningModesToTest[] = {MPPRunningModeImage, MPPRunningModeVideo};
|
||||
for (int i = 0; i < sizeof(runningModesToTest) / sizeof(runningModesToTest[0]); i++) {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
|
||||
options.runningMode = runningModesToTest[i];
|
||||
options.faceDetectorLiveStreamDelegate = self;
|
||||
|
||||
[self assertCreateFaceDetectorWithOptions:options
|
||||
failsWithExpectedError:
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey :
|
||||
@"The vision task is in image or video mode. The "
|
||||
@"delegate must not be set in the task's options."
|
||||
}]];
|
||||
}
|
||||
}
|
||||
|
||||
- (void)testCreateFaceDetectorFailsWithMissingDelegateInLiveStreamMode {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
|
||||
options.runningMode = MPPRunningModeLiveStream;
|
||||
|
||||
[self assertCreateFaceDetectorWithOptions:options
|
||||
failsWithExpectedError:
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey :
|
||||
@"The vision task is in live stream mode. An "
|
||||
@"object must be set as the delegate of the task "
|
||||
@"in its options to ensure asynchronous delivery "
|
||||
@"of results."
|
||||
}]];
|
||||
}
|
||||
|
||||
- (void)testDetectFailsWithCallingWrongApiInImageMode {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
|
||||
NSError *liveStreamApiCallError;
|
||||
XCTAssertFalse([faceDetector detectAsyncInImage:image
|
||||
timestampInMilliseconds:0
|
||||
error:&liveStreamApiCallError]);
|
||||
|
||||
NSError *expectedLiveStreamApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with live "
|
||||
@"stream mode. Current Running Mode: Image"
|
||||
}];
|
||||
AssertEqualErrors(liveStreamApiCallError, expectedLiveStreamApiCallError);
|
||||
|
||||
NSError *videoApiCallError;
|
||||
XCTAssertFalse([faceDetector detectInVideoFrame:image
|
||||
timestampInMilliseconds:0
|
||||
error:&videoApiCallError]);
|
||||
|
||||
NSError *expectedVideoApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with "
|
||||
@"video mode. Current Running Mode: Image"
|
||||
}];
|
||||
AssertEqualErrors(videoApiCallError, expectedVideoApiCallError);
|
||||
}
|
||||
|
||||
- (void)testDetectFailsWithCallingWrongApiInVideoMode {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeVideo;
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
|
||||
NSError *liveStreamApiCallError;
|
||||
XCTAssertFalse([faceDetector detectAsyncInImage:image
|
||||
timestampInMilliseconds:0
|
||||
error:&liveStreamApiCallError]);
|
||||
|
||||
NSError *expectedLiveStreamApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with live "
|
||||
@"stream mode. Current Running Mode: Video"
|
||||
}];
|
||||
AssertEqualErrors(liveStreamApiCallError, expectedLiveStreamApiCallError);
|
||||
|
||||
NSError *imageApiCallError;
|
||||
XCTAssertFalse([faceDetector detectInImage:image error:&imageApiCallError]);
|
||||
|
||||
NSError *expectedImageApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with "
|
||||
@"image mode. Current Running Mode: Video"
|
||||
}];
|
||||
AssertEqualErrors(imageApiCallError, expectedImageApiCallError);
|
||||
}
|
||||
|
||||
- (void)testDetectFailsWithCallingWrongApiInLiveStreamMode {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
|
||||
options.runningMode = MPPRunningModeLiveStream;
|
||||
options.faceDetectorLiveStreamDelegate = self;
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
|
||||
NSError *imageApiCallError;
|
||||
XCTAssertFalse([faceDetector detectInImage:image error:&imageApiCallError]);
|
||||
|
||||
NSError *expectedImageApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with "
|
||||
@"image mode. Current Running Mode: Live Stream"
|
||||
}];
|
||||
AssertEqualErrors(imageApiCallError, expectedImageApiCallError);
|
||||
|
||||
NSError *videoApiCallError;
|
||||
XCTAssertFalse([faceDetector detectInVideoFrame:image
|
||||
timestampInMilliseconds:0
|
||||
error:&videoApiCallError]);
|
||||
|
||||
NSError *expectedVideoApiCallError =
|
||||
[NSError errorWithDomain:kExpectedErrorDomain
|
||||
code:MPPTasksErrorCodeInvalidArgumentError
|
||||
userInfo:@{
|
||||
NSLocalizedDescriptionKey : @"The vision task is not initialized with "
|
||||
@"video mode. Current Running Mode: Live Stream"
|
||||
}];
|
||||
AssertEqualErrors(videoApiCallError, expectedVideoApiCallError);
|
||||
}
|
||||
|
||||
- (void)testDetectWithLiveStreamModeSucceeds {
|
||||
MPPFaceDetectorOptions *options =
|
||||
[self faceDetectorOptionsWithModelName:kShortRangeBlazeFaceModel];
|
||||
options.runningMode = MPPRunningModeLiveStream;
|
||||
options.faceDetectorLiveStreamDelegate = self;
|
||||
|
||||
NSInteger iterationCount = 100;
|
||||
|
||||
// Because of flow limiting, the callback might be invoked fewer than `iterationCount` times. An
|
||||
// normal expectation will fail if expectation.fullfill() is not called times. An normal
|
||||
// expectation will fail if expectation.fullfill() is not called
|
||||
// `expectation.expectedFulfillmentCount` times. If `expectation.isInverted = true`, the test will
|
||||
// only succeed if expectation is not fullfilled for the specified `expectedFulfillmentCount`.
|
||||
// Since it it not possible to determine how many times the expectation is supposed to be
|
||||
// fullfilled, `expectation.expectedFulfillmentCount` = `iterationCount` + 1 and
|
||||
// `expectation.isInverted = true` ensures that test succeeds if expectation is fullfilled <=
|
||||
// `iterationCount` times.
|
||||
XCTestExpectation *expectation = [[XCTestExpectation alloc]
|
||||
initWithDescription:@"detectWithOutOfOrderTimestampsAndLiveStream"];
|
||||
expectation.expectedFulfillmentCount = iterationCount + 1;
|
||||
expectation.inverted = YES;
|
||||
|
||||
MPPFaceDetector *faceDetector = [self faceDetectorWithOptionsSucceeds:options];
|
||||
|
||||
liveStreamSucceedsTestDict = @{
|
||||
kLiveStreamTestsDictFaceDetectorKey : faceDetector,
|
||||
kLiveStreamTestsDictExpectationKey : expectation
|
||||
};
|
||||
|
||||
MPPImage *image = [self imageWithFileInfo:kPortraitImage];
|
||||
for (int i = 0; i < iterationCount; i++) {
|
||||
XCTAssertTrue([faceDetector detectAsyncInImage:image timestampInMilliseconds:i error:nil]);
|
||||
}
|
||||
|
||||
NSTimeInterval timeout = 0.5f;
|
||||
[self waitForExpectations:@[ expectation ] timeout:timeout];
|
||||
}
|
||||
|
||||
#pragma mark MPPFaceDetectorLiveStreamDelegate Methods
|
||||
- (void)faceDetector:(MPPFaceDetector *)faceDetector
|
||||
didFinishDetectionWithResult:(MPPFaceDetectorResult *)faceDetectorResult
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError *)error {
|
||||
[self assertFaceDetectorResult:faceDetectorResult
|
||||
containsExpectedKeypoints:kPortraitExpectedKeypoints];
|
||||
|
||||
if (faceDetector == outOfOrderTimestampTestDict[kLiveStreamTestsDictFaceDetectorKey]) {
|
||||
[outOfOrderTimestampTestDict[kLiveStreamTestsDictExpectationKey] fulfill];
|
||||
} else if (faceDetector == liveStreamSucceedsTestDict[kLiveStreamTestsDictFaceDetectorKey]) {
|
||||
[liveStreamSucceedsTestDict[kLiveStreamTestsDictExpectationKey] fulfill];
|
||||
}
|
||||
}
|
||||
|
||||
+ (NSString *)filePathWithName:(NSString *)fileName extension:(NSString *)extension {
|
||||
NSString *filePath =
|
||||
[[NSBundle bundleForClass:[MPPFaceDetectorTests class]] pathForResource:fileName
|
||||
ofType:extension];
|
||||
return filePath;
|
||||
}
|
||||
|
||||
- (void)assertKeypoints:(NSArray<MPPNormalizedKeypoint *> *)keypoints
|
||||
areEqualToExpectedKeypoints:(NSArray<NSArray *> *)expectedKeypoint {
|
||||
XCTAssertEqual(keypoints.count, expectedKeypoint.count);
|
||||
for (int i = 0; i < keypoints.count; ++i) {
|
||||
XCTAssertEqualWithAccuracy(keypoints[i].location.x, [expectedKeypoint[i][0] floatValue],
|
||||
kKeypointErrorThreshold, @"index i = %d", i);
|
||||
XCTAssertEqualWithAccuracy(keypoints[i].location.y, [expectedKeypoint[i][1] floatValue],
|
||||
kKeypointErrorThreshold, @"index i = %d", i);
|
||||
}
|
||||
}
|
||||
|
||||
- (void)assertDetections:(NSArray<MPPDetection *> *)detections
|
||||
containExpectedKeypoints:(NSArray<NSArray *> *)expectedKeypoints {
|
||||
XCTAssertEqual(detections.count, 1);
|
||||
MPPDetection *detection = detections[0];
|
||||
XCTAssertNotNil(detection);
|
||||
[self assertKeypoints:detections[0].keypoints areEqualToExpectedKeypoints:expectedKeypoints];
|
||||
}
|
||||
|
||||
- (void)assertFaceDetectorResult:(MPPFaceDetectorResult *)faceDetectorResult
|
||||
containsExpectedKeypoints:(NSArray<NSArray *> *)expectedKeypoints {
|
||||
[self assertDetections:faceDetectorResult.detections containExpectedKeypoints:expectedKeypoints];
|
||||
}
|
||||
|
||||
#pragma mark Face Detector Initializers
|
||||
|
||||
- (MPPFaceDetectorOptions *)faceDetectorOptionsWithModelName:(NSString *)modelName {
|
||||
NSString *modelPath = [MPPFaceDetectorTests filePathWithName:modelName extension:@"tflite"];
|
||||
MPPFaceDetectorOptions *faceDetectorOptions = [[MPPFaceDetectorOptions alloc] init];
|
||||
faceDetectorOptions.baseOptions.modelAssetPath = modelPath;
|
||||
|
||||
return faceDetectorOptions;
|
||||
}
|
||||
|
||||
- (void)assertCreateFaceDetectorWithOptions:(MPPFaceDetectorOptions *)faceDetectorOptions
|
||||
failsWithExpectedError:(NSError *)expectedError {
|
||||
NSError *error = nil;
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithOptions:faceDetectorOptions
|
||||
error:&error];
|
||||
XCTAssertNil(faceDetector);
|
||||
AssertEqualErrors(error, expectedError);
|
||||
}
|
||||
|
||||
- (MPPFaceDetector *)faceDetectorWithOptionsSucceeds:(MPPFaceDetectorOptions *)faceDetectorOptions {
|
||||
MPPFaceDetector *faceDetector = [[MPPFaceDetector alloc] initWithOptions:faceDetectorOptions
|
||||
error:nil];
|
||||
XCTAssertNotNil(faceDetector);
|
||||
|
||||
return faceDetector;
|
||||
}
|
||||
|
||||
#pragma mark Assert Detection Results
|
||||
|
||||
- (MPPImage *)imageWithFileInfo:(NSDictionary *)fileInfo {
|
||||
UIImageOrientation orientation = (UIImageOrientation)[fileInfo[@"orientation"] intValue];
|
||||
MPPImage *image = [MPPImage imageFromBundleWithClass:[MPPFaceDetectorTests class]
|
||||
fileName:fileInfo[@"name"]
|
||||
ofType:fileInfo[@"type"]
|
||||
orientation:orientation];
|
||||
XCTAssertNotNil(image);
|
||||
return image;
|
||||
}
|
||||
|
||||
- (void)assertResultsOfDetectInImage:(MPPImage *)mppImage
|
||||
usingFaceDetector:(MPPFaceDetector *)faceDetector
|
||||
containsExpectedKeypoints:(NSArray<NSArray *> *)expectedKeypoints {
|
||||
NSError *error;
|
||||
MPPFaceDetectorResult *faceDetectorResult = [faceDetector detectInImage:mppImage error:&error];
|
||||
XCTAssertNil(error);
|
||||
XCTAssertNotNil(faceDetectorResult);
|
||||
[self assertFaceDetectorResult:faceDetectorResult containsExpectedKeypoints:expectedKeypoints];
|
||||
}
|
||||
|
||||
- (void)assertResultsOfDetectInImageWithFileInfo:(NSDictionary *)fileInfo
|
||||
usingFaceDetector:(MPPFaceDetector *)faceDetector
|
||||
containsExpectedKeypoints:(NSArray<NSArray *> *)expectedKeypoints {
|
||||
MPPImage *mppImage = [self imageWithFileInfo:fileInfo];
|
||||
|
||||
[self assertResultsOfDetectInImage:mppImage
|
||||
usingFaceDetector:faceDetector
|
||||
containsExpectedKeypoints:expectedKeypoints];
|
||||
}
|
||||
|
||||
@end
|
62
mediapipe/tasks/ios/vision/face_detector/BUILD
Normal file
62
mediapipe/tasks/ios/vision/face_detector/BUILD
Normal file
|
@ -0,0 +1,62 @@
|
|||
# Copyright 2023 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetectorResult",
|
||||
srcs = ["sources/MPPFaceDetectorResult.m"],
|
||||
hdrs = ["sources/MPPFaceDetectorResult.h"],
|
||||
deps = [
|
||||
"//mediapipe/tasks/ios/components/containers:MPPDetection",
|
||||
"//mediapipe/tasks/ios/core:MPPTaskResult",
|
||||
],
|
||||
)
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetectorOptions",
|
||||
srcs = ["sources/MPPFaceDetectorOptions.m"],
|
||||
hdrs = ["sources/MPPFaceDetectorOptions.h"],
|
||||
deps = [
|
||||
":MPPFaceDetectorResult",
|
||||
"//mediapipe/tasks/ios/core:MPPTaskOptions",
|
||||
"//mediapipe/tasks/ios/vision/core:MPPRunningMode",
|
||||
],
|
||||
)
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetector",
|
||||
srcs = ["sources/MPPFaceDetector.mm"],
|
||||
hdrs = ["sources/MPPFaceDetector.h"],
|
||||
copts = [
|
||||
"-ObjC++",
|
||||
"-std=c++17",
|
||||
"-x objective-c++",
|
||||
],
|
||||
deps = [
|
||||
":MPPFaceDetectorOptions",
|
||||
":MPPFaceDetectorResult",
|
||||
"//mediapipe/tasks/cc/vision/face_detector:face_detector_graph",
|
||||
"//mediapipe/tasks/ios/common/utils:MPPCommonUtils",
|
||||
"//mediapipe/tasks/ios/common/utils:NSStringHelpers",
|
||||
"//mediapipe/tasks/ios/core:MPPTaskInfo",
|
||||
"//mediapipe/tasks/ios/vision/core:MPPImage",
|
||||
"//mediapipe/tasks/ios/vision/core:MPPVisionPacketCreator",
|
||||
"//mediapipe/tasks/ios/vision/core:MPPVisionTaskRunner",
|
||||
"//mediapipe/tasks/ios/vision/face_detector/utils:MPPFaceDetectorOptionsHelpers",
|
||||
"//mediapipe/tasks/ios/vision/face_detector/utils:MPPFaceDetectorResultHelpers",
|
||||
],
|
||||
)
|
|
@ -0,0 +1,190 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/core/sources/MPPImage.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorOptions.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorResult.h"
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
/**
|
||||
* @brief Class that performs face detection on images.
|
||||
*
|
||||
* The API expects a TFLite model with mandatory TFLite Model Metadata.
|
||||
*
|
||||
* The API supports models with one image input tensor and one or more output tensors. To be more
|
||||
* specific, here are the requirements:
|
||||
*
|
||||
* Input tensor
|
||||
* (kTfLiteUInt8/kTfLiteFloat32)
|
||||
* - image input of size `[batch x height x width x channels]`.
|
||||
* - batch inference is not supported (`batch` is required to be 1).
|
||||
* - only RGB inputs are supported (`channels` is required to be 3).
|
||||
* - if type is kTfLiteFloat32, NormalizationOptions are required to be attached to the metadata
|
||||
* for input normalization.
|
||||
*
|
||||
* Output tensors must be the 4 outputs of a `DetectionPostProcess` op, i.e:(kTfLiteFloat32)
|
||||
* (kTfLiteUInt8/kTfLiteFloat32)
|
||||
* - locations tensor of size `[num_results x 4]`, the inner array representing bounding boxes
|
||||
* in the form [top, left, right, bottom].
|
||||
* - BoundingBoxProperties are required to be attached to the metadata and must specify
|
||||
* type=BOUNDARIES and coordinate_type=RATIO.
|
||||
* (kTfLiteFloat32)
|
||||
* - classes tensor of size `[num_results]`, each value representing the integer index of a
|
||||
* class.
|
||||
* - scores tensor of size `[num_results]`, each value representing the score of the detected
|
||||
* face.
|
||||
* - optional score calibration can be attached using ScoreCalibrationOptions and an
|
||||
* AssociatedFile with type TENSOR_AXIS_SCORE_CALIBRATION. See metadata_schema.fbs [1] for more
|
||||
* details.
|
||||
* (kTfLiteFloat32)
|
||||
* - integer num_results as a tensor of size `[1]`
|
||||
*/
|
||||
NS_SWIFT_NAME(FaceDetector)
|
||||
@interface MPPFaceDetector : NSObject
|
||||
|
||||
/**
|
||||
* Creates a new instance of `MPPFaceDetector` from an absolute path to a TensorFlow Lite model
|
||||
* file stored locally on the device and the default `MPPFaceDetector`.
|
||||
*
|
||||
* @param modelPath An absolute path to a TensorFlow Lite model file stored locally on the device.
|
||||
* @param error An optional error parameter populated when there is an error in initializing the
|
||||
* face detector.
|
||||
*
|
||||
* @return A new instance of `MPPFaceDetector` with the given model path. `nil` if there is an
|
||||
* error in initializing the face detector.
|
||||
*/
|
||||
- (nullable instancetype)initWithModelPath:(NSString *)modelPath error:(NSError **)error;
|
||||
|
||||
/**
|
||||
* Creates a new instance of `MPPFaceDetector` from the given `MPPFaceDetectorOptions`.
|
||||
*
|
||||
* @param options The options of type `MPPFaceDetectorOptions` to use for configuring the
|
||||
* `MPPFaceDetector`.
|
||||
* @param error An optional error parameter populated when there is an error in initializing the
|
||||
* face detector.
|
||||
*
|
||||
* @return A new instance of `MPPFaceDetector` with the given options. `nil` if there is an error
|
||||
* in initializing the face detector.
|
||||
*/
|
||||
- (nullable instancetype)initWithOptions:(MPPFaceDetectorOptions *)options
|
||||
error:(NSError **)error NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
* Performs face detection on the provided MPPImage using the whole image as region of
|
||||
* interest. Rotation will be applied according to the `orientation` property of the provided
|
||||
* `MPPImage`. Only use this method when the `MPPFaceDetector` is created with
|
||||
* `MPPRunningModeImage`.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
* 2. kCVPixelFormatType_32RGBA
|
||||
*
|
||||
* If your `MPPImage` has a source type of `MPPImageSourceTypeImage` ensure that the color space is
|
||||
* RGB with an Alpha channel.
|
||||
*
|
||||
* @param image The `MPPImage` on which face detection is to be performed.
|
||||
* @param error An optional error parameter populated when there is an error in performing face
|
||||
* detection on the input image.
|
||||
*
|
||||
* @return An `MPPFaceDetectorResult` face that contains a list of detections, each detection
|
||||
* has a bounding box that is expressed in the unrotated input frame of reference coordinates
|
||||
* system, i.e. in `[0,image_width) x [0,image_height)`, which are the dimensions of the underlying
|
||||
* image data.
|
||||
*/
|
||||
- (nullable MPPFaceDetectorResult *)detectInImage:(MPPImage *)image
|
||||
error:(NSError **)error NS_SWIFT_NAME(detect(image:));
|
||||
|
||||
/**
|
||||
* Performs face detection on the provided video frame of type `MPPImage` using the whole
|
||||
* image as region of interest. Rotation will be applied according to the `orientation` property of
|
||||
* the provided `MPPImage`. Only use this method when the `MPPFaceDetector` is created with
|
||||
* `MPPRunningModeVideo`.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
* 2. kCVPixelFormatType_32RGBA
|
||||
*
|
||||
* If your `MPPImage` has a source type of `MPPImageSourceTypeImage` ensure that the color space is
|
||||
* RGB with an Alpha channel.
|
||||
*
|
||||
* @param image The `MPPImage` on which face detection is to be performed.
|
||||
* @param timestampInMilliseconds The video frame's timestamp (in milliseconds). The input
|
||||
* timestamps must be monotonically increasing.
|
||||
* @param error An optional error parameter populated when there is an error in performing face
|
||||
* detection on the input image.
|
||||
*
|
||||
* @return An `MPPFaceDetectorResult` face that contains a list of detections, each detection
|
||||
* has a bounding box that is expressed in the unrotated input frame of reference coordinates
|
||||
* system, i.e. in `[0,image_width) x [0,image_height)`, which are the dimensions of the underlying
|
||||
* image data.
|
||||
*/
|
||||
- (nullable MPPFaceDetectorResult *)detectInVideoFrame:(MPPImage *)image
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError **)error
|
||||
NS_SWIFT_NAME(detect(videoFrame:timestampInMilliseconds:));
|
||||
|
||||
/**
|
||||
* Sends live stream image data of type `MPPImage` to perform face detection using the whole
|
||||
* image as region of interest. Rotation will be applied according to the `orientation` property of
|
||||
* the provided `MPPImage`. Only use this method when the `MPPFaceDetector` is created with
|
||||
* `MPPRunningModeLiveStream`.
|
||||
*
|
||||
* The object which needs to be continuously notified of the available results of face
|
||||
* detection must confirm to `MPPFaceDetectorLiveStreamDelegate` protocol and implement the
|
||||
* `faceDetector:didFinishDetectionWithResult:timestampInMilliseconds:error:` delegate method.
|
||||
*
|
||||
* It's required to provide a timestamp (in milliseconds) to indicate when the input image is sent
|
||||
* to the face detector. The input timestamps must be monotonically increasing.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
* 2. kCVPixelFormatType_32RGBA
|
||||
*
|
||||
* If the input `MPPImage` has a source type of `MPPImageSourceTypeImage` ensure that the color
|
||||
* space is RGB with an Alpha channel.
|
||||
*
|
||||
* If this method is used for classifying live camera frames using `AVFoundation`, ensure that you
|
||||
* request `AVCaptureVideoDataOutput` to output frames in `kCMPixelFormat_32RGBA` using its
|
||||
* `videoSettings` property.
|
||||
*
|
||||
* @param image A live stream image data of type `MPPImage` on which face detection is to be
|
||||
* performed.
|
||||
* @param timestampInMilliseconds The timestamp (in milliseconds) which indicates when the input
|
||||
* image is sent to the face detector. The input timestamps must be monotonically increasing.
|
||||
* @param error An optional error parameter populated when there is an error in performing face
|
||||
* detection on the input live stream image data.
|
||||
*
|
||||
* @return `YES` if the image was sent to the task successfully, otherwise `NO`.
|
||||
*/
|
||||
- (BOOL)detectAsyncInImage:(MPPImage *)image
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError **)error
|
||||
NS_SWIFT_NAME(detectAsync(image:timestampInMilliseconds:));
|
||||
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
|
||||
+ (instancetype)new NS_UNAVAILABLE;
|
||||
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
|
@ -0,0 +1,259 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetector.h"
|
||||
|
||||
#import "mediapipe/tasks/ios/common/utils/sources/MPPCommonUtils.h"
|
||||
#import "mediapipe/tasks/ios/common/utils/sources/NSString+Helpers.h"
|
||||
#import "mediapipe/tasks/ios/core/sources/MPPTaskInfo.h"
|
||||
#import "mediapipe/tasks/ios/vision/core/sources/MPPVisionPacketCreator.h"
|
||||
#import "mediapipe/tasks/ios/vision/core/sources/MPPVisionTaskRunner.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/utils/sources/MPPFaceDetectorOptions+Helpers.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/utils/sources/MPPFaceDetectorResult+Helpers.h"
|
||||
|
||||
using ::mediapipe::NormalizedRect;
|
||||
using ::mediapipe::Packet;
|
||||
using ::mediapipe::Timestamp;
|
||||
using ::mediapipe::tasks::core::PacketMap;
|
||||
using ::mediapipe::tasks::core::PacketsCallback;
|
||||
|
||||
static constexpr int kMicrosecondsPerMillisecond = 1000;
|
||||
|
||||
// Constants for the underlying MP Tasks Graph. See
|
||||
// https://github.com/google/mediapipe/tree/master/mediapipe/tasks/cc/vision/face_detector/face_detector_graph.cc
|
||||
static NSString *const kDetectionsStreamName = @"detections_out";
|
||||
static NSString *const kDetectionsTag = @"DETECTIONS";
|
||||
static NSString *const kImageInStreamName = @"image_in";
|
||||
static NSString *const kImageOutStreamName = @"image_out";
|
||||
static NSString *const kImageTag = @"IMAGE";
|
||||
static NSString *const kNormRectStreamName = @"norm_rect_in";
|
||||
static NSString *const kNormRectTag = @"NORM_RECT";
|
||||
static NSString *const kTaskGraphName = @"mediapipe.tasks.vision.face_detector.FaceDetectorGraph";
|
||||
static NSString *const kTaskName = @"faceDetector";
|
||||
|
||||
#define InputPacketMap(imagePacket, normalizedRectPacket) \
|
||||
{ \
|
||||
{kImageInStreamName.cppString, imagePacket}, { \
|
||||
kNormRectStreamName.cppString, normalizedRectPacket \
|
||||
} \
|
||||
}
|
||||
|
||||
@interface MPPFaceDetector () {
|
||||
/** iOS Vision Task Runner */
|
||||
MPPVisionTaskRunner *_visionTaskRunner;
|
||||
dispatch_queue_t _callbackQueue;
|
||||
}
|
||||
@property(nonatomic, weak) id<MPPFaceDetectorLiveStreamDelegate> faceDetectorLiveStreamDelegate;
|
||||
|
||||
- (void)processLiveStreamResult:(absl::StatusOr<PacketMap>)liveStreamResult;
|
||||
@end
|
||||
|
||||
@implementation MPPFaceDetector
|
||||
|
||||
- (instancetype)initWithOptions:(MPPFaceDetectorOptions *)options error:(NSError **)error {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
MPPTaskInfo *taskInfo = [[MPPTaskInfo alloc]
|
||||
initWithTaskGraphName:kTaskGraphName
|
||||
inputStreams:@[
|
||||
[NSString stringWithFormat:@"%@:%@", kImageTag, kImageInStreamName],
|
||||
[NSString stringWithFormat:@"%@:%@", kNormRectTag, kNormRectStreamName]
|
||||
]
|
||||
outputStreams:@[
|
||||
[NSString stringWithFormat:@"%@:%@", kDetectionsTag, kDetectionsStreamName],
|
||||
[NSString stringWithFormat:@"%@:%@", kImageTag, kImageOutStreamName]
|
||||
]
|
||||
taskOptions:options
|
||||
enableFlowLimiting:options.runningMode == MPPRunningModeLiveStream
|
||||
error:error];
|
||||
|
||||
if (!taskInfo) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
PacketsCallback packetsCallback = nullptr;
|
||||
|
||||
if (options.faceDetectorLiveStreamDelegate) {
|
||||
_faceDetectorLiveStreamDelegate = options.faceDetectorLiveStreamDelegate;
|
||||
|
||||
// Create a private serial dispatch queue in which the delegate method will be called
|
||||
// asynchronously. This is to ensure that if the client performs a long running operation in
|
||||
// the delegate method, the queue on which the C++ callbacks is invoked is not blocked and is
|
||||
// freed up to continue with its operations.
|
||||
_callbackQueue = dispatch_queue_create(
|
||||
[MPPVisionTaskRunner uniqueDispatchQueueNameWithSuffix:kTaskName], NULL);
|
||||
|
||||
// Capturing `self` as weak in order to avoid `self` being kept in memory
|
||||
// and cause a retain cycle, after self is set to `nil`.
|
||||
MPPFaceDetector *__weak weakSelf = self;
|
||||
packetsCallback = [=](absl::StatusOr<PacketMap> liveStreamResult) {
|
||||
[weakSelf processLiveStreamResult:liveStreamResult];
|
||||
};
|
||||
}
|
||||
|
||||
_visionTaskRunner =
|
||||
[[MPPVisionTaskRunner alloc] initWithCalculatorGraphConfig:[taskInfo generateGraphConfig]
|
||||
runningMode:options.runningMode
|
||||
packetsCallback:std::move(packetsCallback)
|
||||
error:error];
|
||||
|
||||
if (!_visionTaskRunner) {
|
||||
return nil;
|
||||
}
|
||||
}
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
- (instancetype)initWithModelPath:(NSString *)modelPath error:(NSError **)error {
|
||||
MPPFaceDetectorOptions *options = [[MPPFaceDetectorOptions alloc] init];
|
||||
|
||||
options.baseOptions.modelAssetPath = modelPath;
|
||||
|
||||
return [self initWithOptions:options error:error];
|
||||
}
|
||||
|
||||
- (std::optional<PacketMap>)inputPacketMapWithMPPImage:(MPPImage *)image
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError **)error {
|
||||
std::optional<NormalizedRect> rect =
|
||||
[_visionTaskRunner normalizedRectFromRegionOfInterest:CGRectZero
|
||||
imageSize:CGSizeMake(image.width, image.height)
|
||||
imageOrientation:image.orientation
|
||||
ROIAllowed:NO
|
||||
error:error];
|
||||
if (!rect.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
Packet imagePacket = [MPPVisionPacketCreator createPacketWithMPPImage:image
|
||||
timestampInMilliseconds:timestampInMilliseconds
|
||||
error:error];
|
||||
if (imagePacket.IsEmpty()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
Packet normalizedRectPacket =
|
||||
[MPPVisionPacketCreator createPacketWithNormalizedRect:rect.value()
|
||||
timestampInMilliseconds:timestampInMilliseconds];
|
||||
|
||||
PacketMap inputPacketMap = InputPacketMap(imagePacket, normalizedRectPacket);
|
||||
return inputPacketMap;
|
||||
}
|
||||
|
||||
- (nullable MPPFaceDetectorResult *)detectInImage:(MPPImage *)image error:(NSError **)error {
|
||||
std::optional<NormalizedRect> rect =
|
||||
[_visionTaskRunner normalizedRectFromRegionOfInterest:CGRectZero
|
||||
imageSize:CGSizeMake(image.width, image.height)
|
||||
imageOrientation:image.orientation
|
||||
ROIAllowed:NO
|
||||
error:error];
|
||||
if (!rect.has_value()) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
Packet imagePacket = [MPPVisionPacketCreator createPacketWithMPPImage:image error:error];
|
||||
if (imagePacket.IsEmpty()) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
Packet normalizedRectPacket =
|
||||
[MPPVisionPacketCreator createPacketWithNormalizedRect:rect.value()];
|
||||
|
||||
PacketMap inputPacketMap = InputPacketMap(imagePacket, normalizedRectPacket);
|
||||
|
||||
std::optional<PacketMap> outputPacketMap = [_visionTaskRunner processImagePacketMap:inputPacketMap
|
||||
error:error];
|
||||
if (!outputPacketMap.has_value()) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
return [MPPFaceDetectorResult
|
||||
faceDetectorResultWithDetectionsPacket:outputPacketMap
|
||||
.value()[kDetectionsStreamName.cppString]];
|
||||
}
|
||||
|
||||
- (nullable MPPFaceDetectorResult *)detectInVideoFrame:(MPPImage *)image
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError **)error {
|
||||
std::optional<PacketMap> inputPacketMap = [self inputPacketMapWithMPPImage:image
|
||||
timestampInMilliseconds:timestampInMilliseconds
|
||||
error:error];
|
||||
if (!inputPacketMap.has_value()) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
std::optional<PacketMap> outputPacketMap =
|
||||
[_visionTaskRunner processVideoFramePacketMap:inputPacketMap.value() error:error];
|
||||
|
||||
if (!outputPacketMap.has_value()) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
return [MPPFaceDetectorResult
|
||||
faceDetectorResultWithDetectionsPacket:outputPacketMap
|
||||
.value()[kDetectionsStreamName.cppString]];
|
||||
}
|
||||
|
||||
- (BOOL)detectAsyncInImage:(MPPImage *)image
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(NSError **)error {
|
||||
std::optional<PacketMap> inputPacketMap = [self inputPacketMapWithMPPImage:image
|
||||
timestampInMilliseconds:timestampInMilliseconds
|
||||
error:error];
|
||||
if (!inputPacketMap.has_value()) {
|
||||
return NO;
|
||||
}
|
||||
|
||||
return [_visionTaskRunner processLiveStreamPacketMap:inputPacketMap.value() error:error];
|
||||
}
|
||||
|
||||
- (void)processLiveStreamResult:(absl::StatusOr<PacketMap>)liveStreamResult {
|
||||
if (![self.faceDetectorLiveStreamDelegate
|
||||
respondsToSelector:@selector(faceDetector:
|
||||
didFinishDetectionWithResult:timestampInMilliseconds:error:)]) {
|
||||
return;
|
||||
}
|
||||
NSError *callbackError = nil;
|
||||
if (![MPPCommonUtils checkCppError:liveStreamResult.status() toError:&callbackError]) {
|
||||
dispatch_async(_callbackQueue, ^{
|
||||
[self.faceDetectorLiveStreamDelegate faceDetector:self
|
||||
didFinishDetectionWithResult:nil
|
||||
timestampInMilliseconds:Timestamp::Unset().Value()
|
||||
error:callbackError];
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
PacketMap &outputPacketMap = liveStreamResult.value();
|
||||
if (outputPacketMap[kImageOutStreamName.cppString].IsEmpty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
MPPFaceDetectorResult *result = [MPPFaceDetectorResult
|
||||
faceDetectorResultWithDetectionsPacket:liveStreamResult
|
||||
.value()[kDetectionsStreamName.cppString]];
|
||||
|
||||
NSInteger timeStampInMilliseconds =
|
||||
outputPacketMap[kImageOutStreamName.cppString].Timestamp().Value() /
|
||||
kMicrosecondsPerMillisecond;
|
||||
dispatch_async(_callbackQueue, ^{
|
||||
[self.faceDetectorLiveStreamDelegate faceDetector:self
|
||||
didFinishDetectionWithResult:result
|
||||
timestampInMilliseconds:timeStampInMilliseconds
|
||||
error:callbackError];
|
||||
});
|
||||
}
|
||||
|
||||
@end
|
|
@ -0,0 +1,101 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
|
||||
#import "mediapipe/tasks/ios/core/sources/MPPTaskOptions.h"
|
||||
#import "mediapipe/tasks/ios/vision/core/sources/MPPRunningMode.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorResult.h"
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
@class MPPFaceDetector;
|
||||
|
||||
/**
|
||||
* This protocol defines an interface for the delegates of `MPPFaceDetector` face to receive
|
||||
* results of performing asynchronous face detection on images (i.e, when `runningMode` =
|
||||
* `MPPRunningModeLiveStream`).
|
||||
*
|
||||
* The delegate of `MPPFaceDetector` must adopt `MPPFaceDetectorLiveStreamDelegate` protocol.
|
||||
* The methods in this protocol are optional.
|
||||
*/
|
||||
NS_SWIFT_NAME(FaceDetectorLiveStreamDelegate)
|
||||
@protocol MPPFaceDetectorLiveStreamDelegate <NSObject>
|
||||
|
||||
@optional
|
||||
|
||||
/**
|
||||
* This method notifies a delegate that the results of asynchronous face detection of
|
||||
* an image submitted to the `MPPFaceDetector` is available.
|
||||
*
|
||||
* This method is called on a private serial dispatch queue created by the `MPPFaceDetector`
|
||||
* for performing the asynchronous delegates calls.
|
||||
*
|
||||
* @param faceDetector The face detector which performed the face detection.
|
||||
* This is useful to test equality when there are multiple instances of `MPPFaceDetector`.
|
||||
* @param result The `MPPFaceDetectorResult` object that contains a list of detections, each
|
||||
* detection has a bounding box that is expressed in the unrotated input frame of reference
|
||||
* coordinates system, i.e. in `[0,image_width) x [0,image_height)`, which are the dimensions of the
|
||||
* underlying image data.
|
||||
* @param timestampInMilliseconds The timestamp (in milliseconds) which indicates when the input
|
||||
* image was sent to the face detector.
|
||||
* @param error An optional error parameter populated when there is an error in performing face
|
||||
* detection on the input live stream image data.
|
||||
*/
|
||||
- (void)faceDetector:(MPPFaceDetector *)faceDetector
|
||||
didFinishDetectionWithResult:(nullable MPPFaceDetectorResult *)result
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds
|
||||
error:(nullable NSError *)error
|
||||
NS_SWIFT_NAME(faceDetector(_:didFinishDetection:timestampInMilliseconds:error:));
|
||||
@end
|
||||
|
||||
/** Options for setting up a `MPPFaceDetector`. */
|
||||
NS_SWIFT_NAME(FaceDetectorOptions)
|
||||
@interface MPPFaceDetectorOptions : MPPTaskOptions <NSCopying>
|
||||
|
||||
/**
|
||||
* Running mode of the face detector task. Defaults to `MPPRunningModeImage`.
|
||||
* `MPPFaceDetector` can be created with one of the following running modes:
|
||||
* 1. `MPPRunningModeImage`: The mode for performing face detection on single image inputs.
|
||||
* 2. `MPPRunningModeVideo`: The mode for performing face detection on the decoded frames of a
|
||||
* video.
|
||||
* 3. `MPPRunningModeLiveStream`: The mode for performing face detection on a live stream of
|
||||
* input data, such as from the camera.
|
||||
*/
|
||||
@property(nonatomic) MPPRunningMode runningMode;
|
||||
|
||||
/**
|
||||
* An object that confirms to `MPPFaceDetectorLiveStreamDelegate` protocol. This object must
|
||||
* implement `faceDetector:didFinishDetectionWithResult:timestampInMilliseconds:error:` to receive
|
||||
* the results of performing asynchronous face detection on images (i.e, when `runningMode` =
|
||||
* `MPPRunningModeLiveStream`).
|
||||
*/
|
||||
@property(nonatomic, weak, nullable) id<MPPFaceDetectorLiveStreamDelegate>
|
||||
faceDetectorLiveStreamDelegate;
|
||||
|
||||
/**
|
||||
* The minimum confidence score for the face detection to be considered successful. Defaults to
|
||||
* 0.5.
|
||||
*/
|
||||
@property(nonatomic) float minDetectionConfidence;
|
||||
|
||||
/**
|
||||
* The minimum non-maximum-suppression threshold for face detection to be considered overlapped.
|
||||
* Defaults to 0.3.
|
||||
*/
|
||||
@property(nonatomic) float minSuppressionThreshold;
|
||||
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
|
@ -0,0 +1,38 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorOptions.h"
|
||||
|
||||
@implementation MPPFaceDetectorOptions
|
||||
|
||||
- (instancetype)init {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_minDetectionConfidence = 0.5;
|
||||
_minSuppressionThreshold = 0.3;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (id)copyWithZone:(NSZone *)zone {
|
||||
MPPFaceDetectorOptions *faceDetectorOptions = [super copyWithZone:zone];
|
||||
|
||||
faceDetectorOptions.minDetectionConfidence = self.minDetectionConfidence;
|
||||
faceDetectorOptions.minSuppressionThreshold = self.minSuppressionThreshold;
|
||||
faceDetectorOptions.faceDetectorLiveStreamDelegate = self.faceDetectorLiveStreamDelegate;
|
||||
|
||||
return faceDetectorOptions;
|
||||
}
|
||||
|
||||
@end
|
|
@ -0,0 +1,49 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import "mediapipe/tasks/ios/components/containers/sources/MPPDetection.h"
|
||||
#import "mediapipe/tasks/ios/core/sources/MPPTaskResult.h"
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
/** Represents the detection results generated by `MPPFaceDetector`. */
|
||||
NS_SWIFT_NAME(FaceDetectorResult)
|
||||
@interface MPPFaceDetectorResult : MPPTaskResult
|
||||
|
||||
/**
|
||||
* The array of `MPPDetection` objects each of which has a bounding box that is expressed in the
|
||||
* unrotated input frame of reference coordinates system, i.e. in `[0,image_width) x
|
||||
* [0,image_height)`, which are the dimensions of the underlying image data.
|
||||
*/
|
||||
@property(nonatomic, readonly) NSArray<MPPDetection *> *detections;
|
||||
|
||||
/**
|
||||
* Initializes a new `MPPFaceDetectorResult` with the given array of detections and timestamp (in
|
||||
* milliseconds).
|
||||
*
|
||||
* @param detections An array of `MPPDetection` objects each of which has a bounding box that is
|
||||
* expressed in the unrotated input frame of reference coordinates system, i.e. in `[0,image_width)
|
||||
* x [0,image_height)`, which are the dimensions of the underlying image data.
|
||||
* @param timestampInMilliseconds The timestamp (in milliseconds) for this result.
|
||||
*
|
||||
* @return An instance of `MPPFaceDetectorResult` initialized with the given array of detections
|
||||
* and timestamp (in milliseconds).
|
||||
*/
|
||||
- (instancetype)initWithDetections:(NSArray<MPPDetection *> *)detections
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds;
|
||||
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
|
@ -0,0 +1,28 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorResult.h"
|
||||
|
||||
@implementation MPPFaceDetectorResult
|
||||
|
||||
- (instancetype)initWithDetections:(NSArray<MPPDetection *> *)detections
|
||||
timestampInMilliseconds:(NSInteger)timestampInMilliseconds {
|
||||
self = [super initWithTimestampInMilliseconds:timestampInMilliseconds];
|
||||
if (self) {
|
||||
_detections = [detections copy];
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
@end
|
42
mediapipe/tasks/ios/vision/face_detector/utils/BUILD
Normal file
42
mediapipe/tasks/ios/vision/face_detector/utils/BUILD
Normal file
|
@ -0,0 +1,42 @@
|
|||
# Copyright 2023 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetectorOptionsHelpers",
|
||||
srcs = ["sources/MPPFaceDetectorOptions+Helpers.mm"],
|
||||
hdrs = ["sources/MPPFaceDetectorOptions+Helpers.h"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_options_cc_proto",
|
||||
"//mediapipe/tasks/cc/vision/face_detector/proto:face_detector_graph_options_cc_proto",
|
||||
"//mediapipe/tasks/ios/common/utils:NSStringHelpers",
|
||||
"//mediapipe/tasks/ios/core:MPPTaskOptionsProtocol",
|
||||
"//mediapipe/tasks/ios/core/utils:MPPBaseOptionsHelpers",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:MPPFaceDetectorOptions",
|
||||
],
|
||||
)
|
||||
|
||||
objc_library(
|
||||
name = "MPPFaceDetectorResultHelpers",
|
||||
srcs = ["sources/MPPFaceDetectorResult+Helpers.mm"],
|
||||
hdrs = ["sources/MPPFaceDetectorResult+Helpers.h"],
|
||||
deps = [
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/tasks/ios/components/containers/utils:MPPDetectionHelpers",
|
||||
"//mediapipe/tasks/ios/vision/face_detector:MPPFaceDetectorResult",
|
||||
],
|
||||
)
|
|
@ -0,0 +1,36 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __cplusplus
|
||||
#error "This file requires Objective-C++."
|
||||
#endif // __cplusplus
|
||||
|
||||
#include "mediapipe/framework/calculator_options.pb.h"
|
||||
#import "mediapipe/tasks/ios/core/sources/MPPTaskOptionsProtocol.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorOptions.h"
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
@interface MPPFaceDetectorOptions (Helpers) <MPPTaskOptionsProtocol>
|
||||
|
||||
/**
|
||||
* Populates the provided `CalculatorOptions` proto container with the current settings.
|
||||
*
|
||||
* @param optionsProto The `CalculatorOptions` proto object to copy the settings to.
|
||||
*/
|
||||
- (void)copyToProto:(::mediapipe::CalculatorOptions *)optionsProto;
|
||||
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
|
@ -0,0 +1,39 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/utils/sources/MPPFaceDetectorOptions+Helpers.h"
|
||||
|
||||
#import "mediapipe/tasks/ios/common/utils/sources/NSString+Helpers.h"
|
||||
#import "mediapipe/tasks/ios/core/utils/sources/MPPBaseOptions+Helpers.h"
|
||||
|
||||
#include "mediapipe/tasks/cc/vision/face_detector/proto/face_detector_graph_options.pb.h"
|
||||
|
||||
using CalculatorOptionsProto = ::mediapipe::CalculatorOptions;
|
||||
using FaceDetectorGraphOptionsProto =
|
||||
::mediapipe::tasks::vision::face_detector::proto::FaceDetectorGraphOptions;
|
||||
|
||||
@implementation MPPFaceDetectorOptions (Helpers)
|
||||
|
||||
- (void)copyToProto:(CalculatorOptionsProto *)optionsProto {
|
||||
FaceDetectorGraphOptionsProto *graphOptions =
|
||||
optionsProto->MutableExtension(FaceDetectorGraphOptionsProto::ext);
|
||||
|
||||
graphOptions->Clear();
|
||||
|
||||
[self.baseOptions copyToProto:graphOptions->mutable_base_options()];
|
||||
graphOptions->set_min_detection_confidence(self.minDetectionConfidence);
|
||||
graphOptions->set_min_suppression_threshold(self.minSuppressionThreshold);
|
||||
}
|
||||
|
||||
@end
|
|
@ -0,0 +1,39 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __cplusplus
|
||||
#error "This file requires Objective-C++."
|
||||
#endif // __cplusplus
|
||||
|
||||
#include "mediapipe/framework/packet.h"
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/sources/MPPFaceDetectorResult.h"
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
@interface MPPFaceDetectorResult (Helpers)
|
||||
|
||||
/**
|
||||
* Creates an `MPPFaceDetectorResult` from a MediaPipe packet containing a
|
||||
* `std::vector<DetectionProto>`.
|
||||
*
|
||||
* @param packet a MediaPipe packet wrapping a `std::vector<DetectionProto>`.
|
||||
*
|
||||
* @return An `MPPFaceDetectorResult` object that contains a list of detections.
|
||||
*/
|
||||
+ (nullable MPPFaceDetectorResult *)faceDetectorResultWithDetectionsPacket:
|
||||
(const ::mediapipe::Packet &)packet;
|
||||
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
|
@ -0,0 +1,45 @@
|
|||
// Copyright 2023 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "mediapipe/tasks/ios/vision/face_detector/utils/sources/MPPFaceDetectorResult+Helpers.h"
|
||||
|
||||
#import "mediapipe/tasks/ios/components/containers/utils/sources/MPPDetection+Helpers.h"
|
||||
|
||||
using DetectionProto = ::mediapipe::Detection;
|
||||
using ::mediapipe::Packet;
|
||||
|
||||
static constexpr int kMicrosecondsPerMillisecond = 1000;
|
||||
|
||||
@implementation MPPFaceDetectorResult (Helpers)
|
||||
|
||||
+ (nullable MPPFaceDetectorResult *)faceDetectorResultWithDetectionsPacket:(const Packet &)packet {
|
||||
NSMutableArray<MPPDetection *> *detections;
|
||||
|
||||
if (packet.ValidateAsType<std::vector<DetectionProto>>().ok()) {
|
||||
const std::vector<DetectionProto> &detectionProtos = packet.Get<std::vector<DetectionProto>>();
|
||||
detections = [NSMutableArray arrayWithCapacity:(NSUInteger)detectionProtos.size()];
|
||||
for (const auto &detectionProto : detectionProtos) {
|
||||
[detections addObject:[MPPDetection detectionWithProto:detectionProto]];
|
||||
}
|
||||
} else {
|
||||
detections = [NSMutableArray arrayWithCapacity:0];
|
||||
}
|
||||
|
||||
return
|
||||
[[MPPFaceDetectorResult alloc] initWithDetections:detections
|
||||
timestampInMilliseconds:(NSInteger)(packet.Timestamp().Value() /
|
||||
kMicrosecondsPerMillisecond)];
|
||||
}
|
||||
|
||||
@end
|
|
@ -87,7 +87,7 @@ NS_SWIFT_NAME(GestureRecognizerOptions)
|
|||
gestureRecognizerLiveStreamDelegate;
|
||||
|
||||
/** Sets the maximum number of hands can be detected by the GestureRecognizer. */
|
||||
@property(nonatomic) NSInteger numberOfHands NS_SWIFT_NAME(numHands);
|
||||
@property(nonatomic) NSInteger numHands;
|
||||
|
||||
/** Sets minimum confidence score for the hand detection to be considered successful */
|
||||
@property(nonatomic) float minHandDetectionConfidence;
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
- (instancetype)init {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_numberOfHands = 1;
|
||||
_numHands = 1;
|
||||
_minHandDetectionConfidence = 0.5f;
|
||||
_minHandPresenceConfidence = 0.5f;
|
||||
_minTrackingConfidence = 0.5f;
|
||||
|
@ -33,7 +33,7 @@
|
|||
gestureRecognizerOptions.runningMode = self.runningMode;
|
||||
gestureRecognizerOptions.gestureRecognizerLiveStreamDelegate =
|
||||
self.gestureRecognizerLiveStreamDelegate;
|
||||
gestureRecognizerOptions.numberOfHands = self.numberOfHands;
|
||||
gestureRecognizerOptions.numHands = self.numHands;
|
||||
gestureRecognizerOptions.minHandDetectionConfidence = self.minHandDetectionConfidence;
|
||||
gestureRecognizerOptions.minHandPresenceConfidence = self.minHandPresenceConfidence;
|
||||
gestureRecognizerOptions.minTrackingConfidence = self.minTrackingConfidence;
|
||||
|
|
|
@ -60,7 +60,7 @@ using ClassifierOptionsProto = ::mediapipe::tasks::components::processors::proto
|
|||
HandDetectorGraphOptionsProto *handDetectorGraphOptionsProto =
|
||||
handLandmarkerGraphOptionsProto->mutable_hand_detector_graph_options();
|
||||
handDetectorGraphOptionsProto->Clear();
|
||||
handDetectorGraphOptionsProto->set_num_hands(self.numberOfHands);
|
||||
handDetectorGraphOptionsProto->set_num_hands(self.numHands);
|
||||
handDetectorGraphOptionsProto->set_min_detection_confidence(self.minHandDetectionConfidence);
|
||||
|
||||
HandLandmarksDetectorGraphOptionsProto *handLandmarksDetectorGraphOptionsProto =
|
||||
|
|
|
@ -80,7 +80,7 @@ NS_SWIFT_NAME(ObjectDetector)
|
|||
* Creates a new instance of `MPPObjectDetector` from the given `MPPObjectDetectorOptions`.
|
||||
*
|
||||
* @param options The options of type `MPPObjectDetectorOptions` to use for configuring the
|
||||
* `MPPImageClassifMPPObjectDetectorier`.
|
||||
* `MPPObjectDetector`.
|
||||
* @param error An optional error parameter populated when there is an error in initializing the
|
||||
* object detector.
|
||||
*
|
||||
|
@ -96,7 +96,7 @@ NS_SWIFT_NAME(ObjectDetector)
|
|||
* `MPPImage`. Only use this method when the `MPPObjectDetector` is created with
|
||||
* `MPPRunningModeImage`.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* This method supports detecting objects in RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
|
@ -123,7 +123,7 @@ NS_SWIFT_NAME(ObjectDetector)
|
|||
* the provided `MPPImage`. Only use this method when the `MPPObjectDetector` is created with
|
||||
* `MPPRunningModeVideo`.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* This method supports detecting objects in of RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
|
@ -161,7 +161,7 @@ NS_SWIFT_NAME(ObjectDetector)
|
|||
* It's required to provide a timestamp (in milliseconds) to indicate when the input image is sent
|
||||
* to the object detector. The input timestamps must be monotonically increasing.
|
||||
*
|
||||
* This method supports classification of RGBA images. If your `MPPImage` has a source type of
|
||||
* This method supports detecting objects in RGBA images. If your `MPPImage` has a source type of
|
||||
* `MPPImageSourceTypePixelBuffer` or `MPPImageSourceTypeSampleBuffer`, the underlying pixel buffer
|
||||
* must have one of the following pixel format types:
|
||||
* 1. kCVPixelFormatType_32BGRA
|
||||
|
@ -170,8 +170,8 @@ NS_SWIFT_NAME(ObjectDetector)
|
|||
* If the input `MPPImage` has a source type of `MPPImageSourceTypeImage` ensure that the color
|
||||
* space is RGB with an Alpha channel.
|
||||
*
|
||||
* If this method is used for classifying live camera frames using `AVFoundation`, ensure that you
|
||||
* request `AVCaptureVideoDataOutput` to output frames in `kCMPixelFormat_32RGBA` using its
|
||||
* If this method is used for detecting objects in live camera frames using `AVFoundation`, ensure
|
||||
* that you request `AVCaptureVideoDataOutput` to output frames in `kCMPixelFormat_32RGBA` using its
|
||||
* `videoSettings` property.
|
||||
*
|
||||
* @param image A live stream image data of type `MPPImage` on which object detection is to be
|
||||
|
|
|
@ -25,8 +25,12 @@ using ::mediapipe::Packet;
|
|||
|
||||
+ (nullable MPPObjectDetectorResult *)objectDetectorResultWithDetectionsPacket:
|
||||
(const Packet &)packet {
|
||||
|
||||
NSInteger timestampInMilliseconds = (NSInteger)(packet.Timestamp().Value() /
|
||||
kMicroSecondsPerMilliSecond);
|
||||
if (!packet.ValidateAsType<std::vector<DetectionProto>>().ok()) {
|
||||
return nil;
|
||||
return [[MPPObjectDetectorResult alloc] initWithDetections:@[]
|
||||
timestampInMilliseconds:timestampInMilliseconds];
|
||||
}
|
||||
|
||||
const std::vector<DetectionProto> &detectionProtos = packet.Get<std::vector<DetectionProto>>();
|
||||
|
@ -39,8 +43,7 @@ using ::mediapipe::Packet;
|
|||
|
||||
return
|
||||
[[MPPObjectDetectorResult alloc] initWithDetections:detections
|
||||
timestampInMilliseconds:(NSInteger)(packet.Timestamp().Value() /
|
||||
kMicroSecondsPerMilliSecond)];
|
||||
timestampInMilliseconds:timestampInMilliseconds];
|
||||
}
|
||||
|
||||
@end
|
||||
|
|
|
@ -71,6 +71,7 @@ android_library(
|
|||
srcs = [
|
||||
"objectdetector/ObjectDetectionResult.java",
|
||||
"objectdetector/ObjectDetector.java",
|
||||
"objectdetector/ObjectDetectorResult.java",
|
||||
],
|
||||
javacopts = [
|
||||
"-Xep:AndroidJdkLibsChecker:OFF",
|
||||
|
|
|
@ -14,15 +14,16 @@
|
|||
|
||||
package com.google.mediapipe.tasks.vision.objectdetector;
|
||||
|
||||
import com.google.auto.value.AutoValue;
|
||||
import com.google.mediapipe.tasks.core.TaskResult;
|
||||
import com.google.mediapipe.formats.proto.DetectionProto.Detection;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
/** Represents the detection results generated by {@link ObjectDetector}. */
|
||||
@AutoValue
|
||||
/**
|
||||
* Represents the detection results generated by {@link ObjectDetector}.
|
||||
*
|
||||
* @deprecated Use {@link ObjectDetectorResult} instead.
|
||||
*/
|
||||
@Deprecated
|
||||
public abstract class ObjectDetectionResult implements TaskResult {
|
||||
|
||||
@Override
|
||||
|
@ -36,15 +37,10 @@ public abstract class ObjectDetectionResult implements TaskResult {
|
|||
*
|
||||
* @param detectionList a list of {@link DetectionOuterClass.Detection} protobuf messages.
|
||||
* @param timestampMs a timestamp for this result.
|
||||
* @deprecated Use {@link ObjectDetectorResult#create} instead.
|
||||
*/
|
||||
@Deprecated
|
||||
public static ObjectDetectionResult create(List<Detection> detectionList, long timestampMs) {
|
||||
List<com.google.mediapipe.tasks.components.containers.Detection> detections = new ArrayList<>();
|
||||
for (Detection detectionProto : detectionList) {
|
||||
detections.add(
|
||||
com.google.mediapipe.tasks.components.containers.Detection.createFromProto(
|
||||
detectionProto));
|
||||
}
|
||||
return new AutoValue_ObjectDetectionResult(
|
||||
timestampMs, Collections.unmodifiableList(detections));
|
||||
return ObjectDetectorResult.create(detectionList, timestampMs);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -99,11 +99,16 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
private static final String TAG = ObjectDetector.class.getSimpleName();
|
||||
private static final String IMAGE_IN_STREAM_NAME = "image_in";
|
||||
private static final String NORM_RECT_IN_STREAM_NAME = "norm_rect_in";
|
||||
|
||||
@SuppressWarnings("ConstantCaseForConstants")
|
||||
private static final List<String> INPUT_STREAMS =
|
||||
Collections.unmodifiableList(
|
||||
Arrays.asList("IMAGE:" + IMAGE_IN_STREAM_NAME, "NORM_RECT:" + NORM_RECT_IN_STREAM_NAME));
|
||||
|
||||
@SuppressWarnings("ConstantCaseForConstants")
|
||||
private static final List<String> OUTPUT_STREAMS =
|
||||
Collections.unmodifiableList(Arrays.asList("DETECTIONS:detections_out", "IMAGE:image_out"));
|
||||
|
||||
private static final int DETECTIONS_OUT_STREAM_INDEX = 0;
|
||||
private static final int IMAGE_OUT_STREAM_INDEX = 1;
|
||||
private static final String TASK_GRAPH_NAME = "mediapipe.tasks.vision.ObjectDetectorGraph";
|
||||
|
@ -166,19 +171,19 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
public static ObjectDetector createFromOptions(
|
||||
Context context, ObjectDetectorOptions detectorOptions) {
|
||||
// TODO: Consolidate OutputHandler and TaskRunner.
|
||||
OutputHandler<ObjectDetectionResult, MPImage> handler = new OutputHandler<>();
|
||||
OutputHandler<ObjectDetectorResult, MPImage> handler = new OutputHandler<>();
|
||||
handler.setOutputPacketConverter(
|
||||
new OutputHandler.OutputPacketConverter<ObjectDetectionResult, MPImage>() {
|
||||
new OutputHandler.OutputPacketConverter<ObjectDetectorResult, MPImage>() {
|
||||
@Override
|
||||
public ObjectDetectionResult convertToTaskResult(List<Packet> packets) {
|
||||
public ObjectDetectorResult convertToTaskResult(List<Packet> packets) {
|
||||
// If there is no object detected in the image, just returns empty lists.
|
||||
if (packets.get(DETECTIONS_OUT_STREAM_INDEX).isEmpty()) {
|
||||
return ObjectDetectionResult.create(
|
||||
return ObjectDetectorResult.create(
|
||||
new ArrayList<>(),
|
||||
BaseVisionTaskApi.generateResultTimestampMs(
|
||||
detectorOptions.runningMode(), packets.get(DETECTIONS_OUT_STREAM_INDEX)));
|
||||
}
|
||||
return ObjectDetectionResult.create(
|
||||
return ObjectDetectorResult.create(
|
||||
PacketGetter.getProtoVector(
|
||||
packets.get(DETECTIONS_OUT_STREAM_INDEX), Detection.parser()),
|
||||
BaseVisionTaskApi.generateResultTimestampMs(
|
||||
|
@ -235,7 +240,7 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
* @param image a MediaPipe {@link MPImage} object for processing.
|
||||
* @throws MediaPipeException if there is an internal error.
|
||||
*/
|
||||
public ObjectDetectionResult detect(MPImage image) {
|
||||
public ObjectDetectorResult detect(MPImage image) {
|
||||
return detect(image, ImageProcessingOptions.builder().build());
|
||||
}
|
||||
|
||||
|
@ -258,10 +263,9 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
* region-of-interest.
|
||||
* @throws MediaPipeException if there is an internal error.
|
||||
*/
|
||||
public ObjectDetectionResult detect(
|
||||
MPImage image, ImageProcessingOptions imageProcessingOptions) {
|
||||
public ObjectDetectorResult detect(MPImage image, ImageProcessingOptions imageProcessingOptions) {
|
||||
validateImageProcessingOptions(imageProcessingOptions);
|
||||
return (ObjectDetectionResult) processImageData(image, imageProcessingOptions);
|
||||
return (ObjectDetectorResult) processImageData(image, imageProcessingOptions);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -282,7 +286,7 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
* @param timestampMs the input timestamp (in milliseconds).
|
||||
* @throws MediaPipeException if there is an internal error.
|
||||
*/
|
||||
public ObjectDetectionResult detectForVideo(MPImage image, long timestampMs) {
|
||||
public ObjectDetectorResult detectForVideo(MPImage image, long timestampMs) {
|
||||
return detectForVideo(image, ImageProcessingOptions.builder().build(), timestampMs);
|
||||
}
|
||||
|
||||
|
@ -309,10 +313,10 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
* region-of-interest.
|
||||
* @throws MediaPipeException if there is an internal error.
|
||||
*/
|
||||
public ObjectDetectionResult detectForVideo(
|
||||
public ObjectDetectorResult detectForVideo(
|
||||
MPImage image, ImageProcessingOptions imageProcessingOptions, long timestampMs) {
|
||||
validateImageProcessingOptions(imageProcessingOptions);
|
||||
return (ObjectDetectionResult) processVideoData(image, imageProcessingOptions, timestampMs);
|
||||
return (ObjectDetectorResult) processVideoData(image, imageProcessingOptions, timestampMs);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -435,7 +439,7 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
* object detector is in the live stream mode.
|
||||
*/
|
||||
public abstract Builder setResultListener(
|
||||
ResultListener<ObjectDetectionResult, MPImage> value);
|
||||
ResultListener<ObjectDetectorResult, MPImage> value);
|
||||
|
||||
/** Sets an optional {@link ErrorListener}}. */
|
||||
public abstract Builder setErrorListener(ErrorListener value);
|
||||
|
@ -476,11 +480,13 @@ public final class ObjectDetector extends BaseVisionTaskApi {
|
|||
|
||||
abstract Optional<Float> scoreThreshold();
|
||||
|
||||
@SuppressWarnings("AutoValueImmutableFields")
|
||||
abstract List<String> categoryAllowlist();
|
||||
|
||||
@SuppressWarnings("AutoValueImmutableFields")
|
||||
abstract List<String> categoryDenylist();
|
||||
|
||||
abstract Optional<ResultListener<ObjectDetectionResult, MPImage>> resultListener();
|
||||
abstract Optional<ResultListener<ObjectDetectorResult, MPImage>> resultListener();
|
||||
|
||||
abstract Optional<ErrorListener> errorListener();
|
||||
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
// Copyright 2022 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package com.google.mediapipe.tasks.vision.objectdetector;
|
||||
|
||||
import com.google.auto.value.AutoValue;
|
||||
import com.google.mediapipe.formats.proto.DetectionProto.Detection;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
/** Represents the detection results generated by {@link ObjectDetector}. */
|
||||
@AutoValue
|
||||
@SuppressWarnings("deprecation")
|
||||
public abstract class ObjectDetectorResult extends ObjectDetectionResult {
|
||||
/**
|
||||
* Creates an {@link ObjectDetectorResult} instance from a list of {@link Detection} protobuf
|
||||
* messages.
|
||||
*
|
||||
* @param detectionList a list of {@link DetectionOuterClass.Detection} protobuf messages.
|
||||
* @param timestampMs a timestamp for this result.
|
||||
*/
|
||||
public static ObjectDetectorResult create(List<Detection> detectionList, long timestampMs) {
|
||||
List<com.google.mediapipe.tasks.components.containers.Detection> detections = new ArrayList<>();
|
||||
for (Detection detectionProto : detectionList) {
|
||||
detections.add(
|
||||
com.google.mediapipe.tasks.components.containers.Detection.createFromProto(
|
||||
detectionProto));
|
||||
}
|
||||
return new AutoValue_ObjectDetectorResult(
|
||||
timestampMs, Collections.unmodifiableList(detections));
|
||||
}
|
||||
}
|
|
@ -69,7 +69,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
assertContainsOnlyCat(results, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
}
|
||||
|
||||
|
@ -77,7 +77,7 @@ public class ObjectDetectorTest {
|
|||
public void detect_successWithNoOptions() throws Exception {
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromFile(ApplicationProvider.getApplicationContext(), MODEL_FILE);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Check if the object with the highest score is cat.
|
||||
assertIsCat(results.detections().get(0).categories().get(0), CAT_SCORE);
|
||||
}
|
||||
|
@ -91,7 +91,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// results should have 8 detected objects because maxResults was set to 8.
|
||||
assertThat(results.detections()).hasSize(8);
|
||||
}
|
||||
|
@ -105,7 +105,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// The score threshold should block all other other objects, except cat.
|
||||
assertContainsOnlyCat(results, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
}
|
||||
|
@ -119,7 +119,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// The score threshold should block objects.
|
||||
assertThat(results.detections()).isEmpty();
|
||||
}
|
||||
|
@ -133,7 +133,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Because of the allowlist, results should only contain cat, and there are 6 detected
|
||||
// bounding boxes of cats in CAT_AND_DOG_IMAGE.
|
||||
assertThat(results.detections()).hasSize(5);
|
||||
|
@ -148,7 +148,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Because of the denylist, the highest result is not cat anymore.
|
||||
assertThat(results.detections().get(0).categories().get(0).categoryName())
|
||||
.isNotEqualTo("cat");
|
||||
|
@ -160,7 +160,7 @@ public class ObjectDetectorTest {
|
|||
ObjectDetector.createFromFile(
|
||||
ApplicationProvider.getApplicationContext(),
|
||||
TestUtils.loadFile(ApplicationProvider.getApplicationContext(), MODEL_FILE));
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Check if the object with the highest score is cat.
|
||||
assertIsCat(results.detections().get(0).categories().get(0), CAT_SCORE);
|
||||
}
|
||||
|
@ -172,7 +172,7 @@ public class ObjectDetectorTest {
|
|||
ApplicationProvider.getApplicationContext(),
|
||||
TestUtils.loadToDirectByteBuffer(
|
||||
ApplicationProvider.getApplicationContext(), MODEL_FILE));
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Check if the object with the highest score is cat.
|
||||
assertIsCat(results.detections().get(0).categories().get(0), CAT_SCORE);
|
||||
}
|
||||
|
@ -191,7 +191,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
assertContainsOnlyCat(results, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
}
|
||||
|
||||
|
@ -256,7 +256,7 @@ public class ObjectDetectorTest {
|
|||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageProcessingOptions imageProcessingOptions =
|
||||
ImageProcessingOptions.builder().setRotationDegrees(-90).build();
|
||||
ObjectDetectionResult results =
|
||||
ObjectDetectorResult results =
|
||||
objectDetector.detect(
|
||||
getImageFromAsset(CAT_AND_DOG_ROTATED_IMAGE), imageProcessingOptions);
|
||||
|
||||
|
@ -302,7 +302,7 @@ public class ObjectDetectorTest {
|
|||
ObjectDetectorOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
|
||||
.setRunningMode(mode)
|
||||
.setResultListener((objectDetectionResult, inputImage) -> {})
|
||||
.setResultListener((ObjectDetectorResult, inputImage) -> {})
|
||||
.build());
|
||||
assertThat(exception)
|
||||
.hasMessageThat()
|
||||
|
@ -381,7 +381,7 @@ public class ObjectDetectorTest {
|
|||
ObjectDetectorOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
|
||||
.setRunningMode(RunningMode.LIVE_STREAM)
|
||||
.setResultListener((objectDetectionResult, inputImage) -> {})
|
||||
.setResultListener((ObjectDetectorResult, inputImage) -> {})
|
||||
.build();
|
||||
|
||||
ObjectDetector objectDetector =
|
||||
|
@ -411,7 +411,7 @@ public class ObjectDetectorTest {
|
|||
.build();
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
ObjectDetectorResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
assertContainsOnlyCat(results, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
}
|
||||
|
||||
|
@ -426,7 +426,7 @@ public class ObjectDetectorTest {
|
|||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
for (int i = 0; i < 3; i++) {
|
||||
ObjectDetectionResult results =
|
||||
ObjectDetectorResult results =
|
||||
objectDetector.detectForVideo(
|
||||
getImageFromAsset(CAT_AND_DOG_IMAGE), /* timestampsMs= */ i);
|
||||
assertContainsOnlyCat(results, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
|
@ -441,8 +441,8 @@ public class ObjectDetectorTest {
|
|||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
|
||||
.setRunningMode(RunningMode.LIVE_STREAM)
|
||||
.setResultListener(
|
||||
(objectDetectionResult, inputImage) -> {
|
||||
assertContainsOnlyCat(objectDetectionResult, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
(ObjectDetectorResult, inputImage) -> {
|
||||
assertContainsOnlyCat(ObjectDetectorResult, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
assertImageSizeIsExpected(inputImage);
|
||||
})
|
||||
.setMaxResults(1)
|
||||
|
@ -468,8 +468,8 @@ public class ObjectDetectorTest {
|
|||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
|
||||
.setRunningMode(RunningMode.LIVE_STREAM)
|
||||
.setResultListener(
|
||||
(objectDetectionResult, inputImage) -> {
|
||||
assertContainsOnlyCat(objectDetectionResult, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
(ObjectDetectorResult, inputImage) -> {
|
||||
assertContainsOnlyCat(ObjectDetectorResult, CAT_BOUNDING_BOX, CAT_SCORE);
|
||||
assertImageSizeIsExpected(inputImage);
|
||||
})
|
||||
.setMaxResults(1)
|
||||
|
@ -483,6 +483,16 @@ public class ObjectDetectorTest {
|
|||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
@SuppressWarnings("deprecation")
|
||||
public void detect_canUseDeprecatedApi() throws Exception {
|
||||
ObjectDetector objectDetector =
|
||||
ObjectDetector.createFromFile(ApplicationProvider.getApplicationContext(), MODEL_FILE);
|
||||
ObjectDetectionResult results = objectDetector.detect(getImageFromAsset(CAT_AND_DOG_IMAGE));
|
||||
// Check if the object with the highest score is cat.
|
||||
assertIsCat(results.detections().get(0).categories().get(0), CAT_SCORE);
|
||||
}
|
||||
|
||||
private static MPImage getImageFromAsset(String filePath) throws Exception {
|
||||
AssetManager assetManager = ApplicationProvider.getApplicationContext().getAssets();
|
||||
InputStream istr = assetManager.open(filePath);
|
||||
|
@ -491,7 +501,7 @@ public class ObjectDetectorTest {
|
|||
|
||||
// Checks if results has one and only detection result, which is a cat.
|
||||
private static void assertContainsOnlyCat(
|
||||
ObjectDetectionResult result, RectF expectedBoundingBox, float expectedScore) {
|
||||
ObjectDetectorResult result, RectF expectedBoundingBox, float expectedScore) {
|
||||
assertThat(result.detections()).hasSize(1);
|
||||
Detection catResult = result.detections().get(0);
|
||||
assertApproximatelyEqualBoundingBoxes(catResult.boundingBox(), expectedBoundingBox);
|
||||
|
|
|
@ -34,6 +34,8 @@ py_library(
|
|||
],
|
||||
deps = [
|
||||
":optional_dependencies",
|
||||
"//mediapipe/calculators/tensor:inference_calculator_py_pb2",
|
||||
"//mediapipe/tasks/cc/core/proto:acceleration_py_pb2",
|
||||
"//mediapipe/tasks/cc/core/proto:base_options_py_pb2",
|
||||
"//mediapipe/tasks/cc/core/proto:external_file_py_pb2",
|
||||
],
|
||||
|
|
|
@ -14,13 +14,19 @@
|
|||
"""Base options for MediaPipe Task APIs."""
|
||||
|
||||
import dataclasses
|
||||
import enum
|
||||
import os
|
||||
import platform
|
||||
from typing import Any, Optional
|
||||
|
||||
from mediapipe.calculators.tensor import inference_calculator_pb2
|
||||
from mediapipe.tasks.cc.core.proto import acceleration_pb2
|
||||
from mediapipe.tasks.cc.core.proto import base_options_pb2
|
||||
from mediapipe.tasks.cc.core.proto import external_file_pb2
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
_DelegateProto = inference_calculator_pb2.InferenceCalculatorOptions.Delegate
|
||||
_AccelerationProto = acceleration_pb2.Acceleration
|
||||
_BaseOptionsProto = base_options_pb2.BaseOptions
|
||||
_ExternalFileProto = external_file_pb2.ExternalFile
|
||||
|
||||
|
@ -41,11 +47,17 @@ class BaseOptions:
|
|||
Attributes:
|
||||
model_asset_path: Path to the model asset file.
|
||||
model_asset_buffer: The model asset file contents as bytes.
|
||||
delegate: Accelaration to use. Supported values are GPU and CPU. GPU support
|
||||
is currently limited to Ubuntu platforms.
|
||||
"""
|
||||
|
||||
class Delegate(enum.Enum):
|
||||
CPU = 0
|
||||
GPU = 1
|
||||
|
||||
model_asset_path: Optional[str] = None
|
||||
model_asset_buffer: Optional[bytes] = None
|
||||
# TODO: Allow Python API to specify acceleration settings.
|
||||
delegate: Optional[Delegate] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _BaseOptionsProto:
|
||||
|
@ -55,17 +67,44 @@ class BaseOptions:
|
|||
else:
|
||||
full_path = None
|
||||
|
||||
platform_name = platform.system()
|
||||
|
||||
if self.delegate == BaseOptions.Delegate.GPU:
|
||||
if platform_name == 'Linux':
|
||||
acceleration_proto = _AccelerationProto(gpu=_DelegateProto.Gpu())
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
'GPU Delegate is not yet supported for ' + platform_name
|
||||
)
|
||||
elif self.delegate == BaseOptions.Delegate.CPU:
|
||||
acceleration_proto = _AccelerationProto(tflite=_DelegateProto.TfLite())
|
||||
else:
|
||||
acceleration_proto = None
|
||||
|
||||
return _BaseOptionsProto(
|
||||
model_asset=_ExternalFileProto(
|
||||
file_name=full_path, file_content=self.model_asset_buffer))
|
||||
file_name=full_path, file_content=self.model_asset_buffer
|
||||
),
|
||||
acceleration=acceleration_proto,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@doc_controls.do_not_generate_docs
|
||||
def create_from_pb2(cls, pb2_obj: _BaseOptionsProto) -> 'BaseOptions':
|
||||
"""Creates a `BaseOptions` object from the given protobuf object."""
|
||||
delegate = None
|
||||
if pb2_obj.acceleration is not None:
|
||||
delegate = (
|
||||
BaseOptions.Delegate.GPU
|
||||
if pb2_obj.acceleration.gpu is not None
|
||||
else BaseOptions.Delegate.CPU
|
||||
)
|
||||
|
||||
return BaseOptions(
|
||||
model_asset_path=pb2_obj.model_asset.file_name,
|
||||
model_asset_buffer=pb2_obj.model_asset.file_content)
|
||||
model_asset_buffer=pb2_obj.model_asset.file_content,
|
||||
delegate=delegate,
|
||||
)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Checks if this object is equal to the given object.
|
||||
|
|
|
@ -59,7 +59,11 @@ const DEFAULT_SCORE_THRESHOLD = 0.5;
|
|||
* This API expects a pre-trained face landmarker model asset bundle.
|
||||
*/
|
||||
export class FaceLandmarker extends VisionTaskRunner {
|
||||
private result: FaceLandmarkerResult = {faceLandmarks: []};
|
||||
private result: FaceLandmarkerResult = {
|
||||
faceLandmarks: [],
|
||||
faceBlendshapes: [],
|
||||
facialTransformationMatrixes: []
|
||||
};
|
||||
private outputFaceBlendshapes = false;
|
||||
private outputFacialTransformationMatrixes = false;
|
||||
|
||||
|
@ -256,13 +260,11 @@ export class FaceLandmarker extends VisionTaskRunner {
|
|||
}
|
||||
|
||||
private resetResults(): void {
|
||||
this.result = {faceLandmarks: []};
|
||||
if (this.outputFaceBlendshapes) {
|
||||
this.result.faceBlendshapes = [];
|
||||
}
|
||||
if (this.outputFacialTransformationMatrixes) {
|
||||
this.result.facialTransformationMatrixes = [];
|
||||
}
|
||||
this.result = {
|
||||
faceLandmarks: [],
|
||||
faceBlendshapes: [],
|
||||
facialTransformationMatrixes: []
|
||||
};
|
||||
}
|
||||
|
||||
/** Sets the default values for the graph. */
|
||||
|
@ -286,7 +288,7 @@ export class FaceLandmarker extends VisionTaskRunner {
|
|||
|
||||
/** Adds new blendshapes from the given proto. */
|
||||
private addBlenshape(data: Uint8Array[]): void {
|
||||
if (!this.result.faceBlendshapes) {
|
||||
if (!this.outputFaceBlendshapes) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -300,7 +302,7 @@ export class FaceLandmarker extends VisionTaskRunner {
|
|||
|
||||
/** Adds new transformation matrixes from the given proto. */
|
||||
private addFacialTransformationMatrixes(data: Uint8Array[]): void {
|
||||
if (!this.result.facialTransformationMatrixes) {
|
||||
if (!this.outputFacialTransformationMatrixes) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -29,8 +29,8 @@ export declare interface FaceLandmarkerResult {
|
|||
faceLandmarks: NormalizedLandmark[][];
|
||||
|
||||
/** Optional face blendshapes results. */
|
||||
faceBlendshapes?: Classifications[];
|
||||
faceBlendshapes: Classifications[];
|
||||
|
||||
/** Optional facial transformation matrix. */
|
||||
facialTransformationMatrixes?: Matrix[];
|
||||
facialTransformationMatrixes: Matrix[];
|
||||
}
|
||||
|
|
21
setup.py
21
setup.py
|
@ -30,6 +30,7 @@ from setuptools.command import build_py
|
|||
from setuptools.command import install
|
||||
|
||||
__version__ = 'dev'
|
||||
MP_DISABLE_GPU = os.environ.get('MEDIAPIPE_DISABLE_GPU') != '0'
|
||||
IS_WINDOWS = (platform.system() == 'Windows')
|
||||
IS_MAC = (platform.system() == 'Darwin')
|
||||
MP_ROOT_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
|
@ -279,10 +280,16 @@ class BuildModules(build_ext.build_ext):
|
|||
'build',
|
||||
'--compilation_mode=opt',
|
||||
'--copt=-DNDEBUG',
|
||||
'--define=MEDIAPIPE_DISABLE_GPU=1',
|
||||
'--action_env=PYTHON_BIN_PATH=' + _normalize_path(sys.executable),
|
||||
binary_graph_target,
|
||||
]
|
||||
|
||||
if MP_DISABLE_GPU:
|
||||
bazel_command.append('--define=MEDIAPIPE_DISABLE_GPU=1')
|
||||
else:
|
||||
bazel_command.append('--copt=-DMESA_EGL_NO_X11_HEADERS')
|
||||
bazel_command.append('--copt=-DEGL_NO_X11')
|
||||
|
||||
if not self.link_opencv and not IS_WINDOWS:
|
||||
bazel_command.append('--define=OPENCV=source')
|
||||
if subprocess.call(bazel_command) != 0:
|
||||
|
@ -300,14 +307,21 @@ class GenerateMetadataSchema(build_ext.build_ext):
|
|||
'object_detector_metadata_schema_py',
|
||||
'schema_py',
|
||||
]:
|
||||
|
||||
bazel_command = [
|
||||
'bazel',
|
||||
'build',
|
||||
'--compilation_mode=opt',
|
||||
'--define=MEDIAPIPE_DISABLE_GPU=1',
|
||||
'--action_env=PYTHON_BIN_PATH=' + _normalize_path(sys.executable),
|
||||
'//mediapipe/tasks/metadata:' + target,
|
||||
]
|
||||
|
||||
if MP_DISABLE_GPU:
|
||||
bazel_command.append('--define=MEDIAPIPE_DISABLE_GPU=1')
|
||||
else:
|
||||
bazel_command.append('--copt=-DMESA_EGL_NO_X11_HEADERS')
|
||||
bazel_command.append('--copt=-DEGL_NO_X11')
|
||||
|
||||
if subprocess.call(bazel_command) != 0:
|
||||
sys.exit(-1)
|
||||
_copy_to_build_lib_dir(
|
||||
|
@ -393,7 +407,8 @@ class BuildExtension(build_ext.build_ext):
|
|||
'build',
|
||||
'--compilation_mode=opt',
|
||||
'--copt=-DNDEBUG',
|
||||
'--define=MEDIAPIPE_DISABLE_GPU=1',
|
||||
'--copt=-DMESA_EGL_NO_X11_HEADERS',
|
||||
'--copt=-DEGL_NO_X11',
|
||||
'--action_env=PYTHON_BIN_PATH=' + _normalize_path(sys.executable),
|
||||
str(ext.bazel_target + '.so'),
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue
Block a user