Support new output format for InteractiveSegmenter

PiperOrigin-RevId: 524940992
This commit is contained in:
Sebastian Schmidt 2023-04-17 13:51:59 -07:00 committed by Copybara-Service
parent 48cc96cf3c
commit b147002b7e
6 changed files with 211 additions and 113 deletions

View File

@ -25,17 +25,6 @@ import {NormalizedKeypoint} from '../../../../tasks/web/components/containers/ke
*/ */
export type SegmentationMask = Uint8ClampedArray|Float32Array|WebGLTexture; export type SegmentationMask = Uint8ClampedArray|Float32Array|WebGLTexture;
/**
* A callback that receives the computed masks from the segmentation tasks. The
* callback either receives a single element array with a category mask (as a
* `[Uint8ClampedArray]`) or multiple confidence masks (as a `Float32Array[]`).
* The returned data is only valid for the duration of the callback. If
* asynchronous processing is needed, all data needs to be copied before the
* callback returns.
*/
export type SegmentationMaskCallback =
(masks: SegmentationMask[], width: number, height: number) => void;
/** /**
* A callback that receives an `ImageData` object from a Vision task. The * A callback that receives an `ImageData` object from a Vision task. The
* lifetime of the underlying data is limited to the duration of the callback. * lifetime of the underlying data is limited to the duration of the callback.

View File

@ -30,7 +30,10 @@ mediapipe_ts_library(
mediapipe_ts_declaration( mediapipe_ts_declaration(
name = "interactive_segmenter_types", name = "interactive_segmenter_types",
srcs = ["interactive_segmenter_options.d.ts"], srcs = [
"interactive_segmenter_options.d.ts",
"interactive_segmenter_result.d.ts",
],
deps = [ deps = [
"//mediapipe/tasks/web/core", "//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/core:classifier_options", "//mediapipe/tasks/web/core:classifier_options",

View File

@ -21,7 +21,7 @@ import {ImageSegmenterGraphOptions as ImageSegmenterGraphOptionsProto} from '../
import {SegmenterOptions as SegmenterOptionsProto} from '../../../../tasks/cc/vision/image_segmenter/proto/segmenter_options_pb'; import {SegmenterOptions as SegmenterOptionsProto} from '../../../../tasks/cc/vision/image_segmenter/proto/segmenter_options_pb';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset'; import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options'; import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {RegionOfInterest, SegmentationMask, SegmentationMaskCallback} from '../../../../tasks/web/vision/core/types'; import {RegionOfInterest, SegmentationMask} from '../../../../tasks/web/vision/core/types';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner'; import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {Color as ColorProto} from '../../../../util/color_pb'; import {Color as ColorProto} from '../../../../util/color_pb';
import {RenderAnnotation as RenderAnnotationProto, RenderData as RenderDataProto} from '../../../../util/render_data_pb'; import {RenderAnnotation as RenderAnnotationProto, RenderData as RenderDataProto} from '../../../../util/render_data_pb';
@ -29,21 +29,35 @@ import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner
// Placeholder for internal dependency on trusted resource url // Placeholder for internal dependency on trusted resource url
import {InteractiveSegmenterOptions} from './interactive_segmenter_options'; import {InteractiveSegmenterOptions} from './interactive_segmenter_options';
import {InteractiveSegmenterResult} from './interactive_segmenter_result';
export * from './interactive_segmenter_options'; export * from './interactive_segmenter_options';
export {SegmentationMask, SegmentationMaskCallback, RegionOfInterest}; export * from './interactive_segmenter_result';
export {SegmentationMask, RegionOfInterest};
export {ImageSource}; export {ImageSource};
const IMAGE_IN_STREAM = 'image_in'; const IMAGE_IN_STREAM = 'image_in';
const NORM_RECT_IN_STREAM = 'norm_rect_in'; const NORM_RECT_IN_STREAM = 'norm_rect_in';
const ROI_IN_STREAM = 'roi_in'; const ROI_IN_STREAM = 'roi_in';
const IMAGE_OUT_STREAM = 'image_out'; const CONFIDENCE_MASKS_STREAM = 'confidence_masks';
const CATEGORY_MASK_STREAM = 'category_mask';
const IMAGEA_SEGMENTER_GRAPH = const IMAGEA_SEGMENTER_GRAPH =
'mediapipe.tasks.vision.interactive_segmenter.InteractiveSegmenterGraph'; 'mediapipe.tasks.vision.interactive_segmenter.InteractiveSegmenterGraph';
const DEFAULT_OUTPUT_CATEGORY_MASK = false;
const DEFAULT_OUTPUT_CONFIDENCE_MASKS = true;
// The OSS JS API does not support the builder pattern. // The OSS JS API does not support the builder pattern.
// tslint:disable:jspb-use-builder-pattern // tslint:disable:jspb-use-builder-pattern
/**
* A callback that receives the computed masks from the interactive segmenter.
* The returned data is only valid for the duration of the callback. If
* asynchronous processing is needed, all data needs to be copied before the
* callback returns.
*/
export type InteractiveSegmenterCallack =
(result: InteractiveSegmenterResult) => void;
/** /**
* Performs interactive segmentation on images. * Performs interactive segmentation on images.
* *
@ -69,7 +83,9 @@ const IMAGEA_SEGMENTER_GRAPH =
* - batch is always 1 * - batch is always 1
*/ */
export class InteractiveSegmenter extends VisionTaskRunner { export class InteractiveSegmenter extends VisionTaskRunner {
private userCallback: SegmentationMaskCallback = () => {}; private result: InteractiveSegmenterResult = {width: 0, height: 0};
private outputCategoryMask = DEFAULT_OUTPUT_CATEGORY_MASK;
private outputConfidenceMasks = DEFAULT_OUTPUT_CONFIDENCE_MASKS;
private readonly options: ImageSegmenterGraphOptionsProto; private readonly options: ImageSegmenterGraphOptionsProto;
private readonly segmenterOptions: SegmenterOptionsProto; private readonly segmenterOptions: SegmenterOptionsProto;
@ -154,12 +170,14 @@ export class InteractiveSegmenter extends VisionTaskRunner {
* @return A Promise that resolves when the settings have been applied. * @return A Promise that resolves when the settings have been applied.
*/ */
override setOptions(options: InteractiveSegmenterOptions): Promise<void> { override setOptions(options: InteractiveSegmenterOptions): Promise<void> {
if (options.outputType === 'CONFIDENCE_MASK') { if ('outputCategoryMask' in options) {
this.segmenterOptions.setOutputType( this.outputCategoryMask =
SegmenterOptionsProto.OutputType.CONFIDENCE_MASK); options.outputCategoryMask ?? DEFAULT_OUTPUT_CATEGORY_MASK;
} else { }
this.segmenterOptions.setOutputType(
SegmenterOptionsProto.OutputType.CATEGORY_MASK); if ('outputConfidenceMasks' in options) {
this.outputConfidenceMasks =
options.outputConfidenceMasks ?? DEFAULT_OUTPUT_CONFIDENCE_MASKS;
} }
return super.applyOptions(options); return super.applyOptions(options);
@ -184,7 +202,7 @@ export class InteractiveSegmenter extends VisionTaskRunner {
*/ */
segment( segment(
image: ImageSource, roi: RegionOfInterest, image: ImageSource, roi: RegionOfInterest,
callback: SegmentationMaskCallback): void; callback: InteractiveSegmenterCallack): void;
/** /**
* Performs interactive segmentation on the provided single image and invokes * Performs interactive segmentation on the provided single image and invokes
* the callback with the response. The `roi` parameter is used to represent a * the callback with the response. The `roi` parameter is used to represent a
@ -213,24 +231,29 @@ export class InteractiveSegmenter extends VisionTaskRunner {
segment( segment(
image: ImageSource, roi: RegionOfInterest, image: ImageSource, roi: RegionOfInterest,
imageProcessingOptions: ImageProcessingOptions, imageProcessingOptions: ImageProcessingOptions,
callback: SegmentationMaskCallback): void; callback: InteractiveSegmenterCallack): void;
segment( segment(
image: ImageSource, roi: RegionOfInterest, image: ImageSource, roi: RegionOfInterest,
imageProcessingOptionsOrCallback: ImageProcessingOptions| imageProcessingOptionsOrCallback: ImageProcessingOptions|
SegmentationMaskCallback, InteractiveSegmenterCallack,
callback?: SegmentationMaskCallback): void { callback?: InteractiveSegmenterCallack): void {
const imageProcessingOptions = const imageProcessingOptions =
typeof imageProcessingOptionsOrCallback !== 'function' ? typeof imageProcessingOptionsOrCallback !== 'function' ?
imageProcessingOptionsOrCallback : imageProcessingOptionsOrCallback :
{}; {};
const userCallback =
this.userCallback = typeof imageProcessingOptionsOrCallback === 'function' ? typeof imageProcessingOptionsOrCallback === 'function' ?
imageProcessingOptionsOrCallback : imageProcessingOptionsOrCallback :
callback!; callback!;
this.reset();
this.processRenderData(roi, this.getSynctheticTimestamp()); this.processRenderData(roi, this.getSynctheticTimestamp());
this.processImageData(image, imageProcessingOptions); this.processImageData(image, imageProcessingOptions);
this.userCallback = () => {}; userCallback(this.result);
}
private reset(): void {
this.result = {width: 0, height: 0};
} }
/** Updates the MediaPipe graph configuration. */ /** Updates the MediaPipe graph configuration. */
@ -239,7 +262,6 @@ export class InteractiveSegmenter extends VisionTaskRunner {
graphConfig.addInputStream(IMAGE_IN_STREAM); graphConfig.addInputStream(IMAGE_IN_STREAM);
graphConfig.addInputStream(ROI_IN_STREAM); graphConfig.addInputStream(ROI_IN_STREAM);
graphConfig.addInputStream(NORM_RECT_IN_STREAM); graphConfig.addInputStream(NORM_RECT_IN_STREAM);
graphConfig.addOutputStream(IMAGE_OUT_STREAM);
const calculatorOptions = new CalculatorOptions(); const calculatorOptions = new CalculatorOptions();
calculatorOptions.setExtension( calculatorOptions.setExtension(
@ -250,24 +272,47 @@ export class InteractiveSegmenter extends VisionTaskRunner {
segmenterNode.addInputStream('IMAGE:' + IMAGE_IN_STREAM); segmenterNode.addInputStream('IMAGE:' + IMAGE_IN_STREAM);
segmenterNode.addInputStream('ROI:' + ROI_IN_STREAM); segmenterNode.addInputStream('ROI:' + ROI_IN_STREAM);
segmenterNode.addInputStream('NORM_RECT:' + NORM_RECT_IN_STREAM); segmenterNode.addInputStream('NORM_RECT:' + NORM_RECT_IN_STREAM);
segmenterNode.addOutputStream('GROUPED_SEGMENTATION:' + IMAGE_OUT_STREAM);
segmenterNode.setOptions(calculatorOptions); segmenterNode.setOptions(calculatorOptions);
graphConfig.addNode(segmenterNode); graphConfig.addNode(segmenterNode);
if (this.outputConfidenceMasks) {
graphConfig.addOutputStream(CONFIDENCE_MASKS_STREAM);
segmenterNode.addOutputStream(
'CONFIDENCE_MASKS:' + CONFIDENCE_MASKS_STREAM);
this.graphRunner.attachImageVectorListener( this.graphRunner.attachImageVectorListener(
IMAGE_OUT_STREAM, (masks, timestamp) => { CONFIDENCE_MASKS_STREAM, (masks, timestamp) => {
if (masks.length === 0) { this.result.confidenceMasks = masks.map(m => m.data);
this.userCallback([], 0, 0); if (masks.length >= 0) {
} else { this.result.width = masks[0].width;
this.userCallback( this.result.height = masks[0].height;
masks.map(m => m.data), masks[0].width, masks[0].height);
} }
this.setLatestOutputTimestamp(timestamp); this.setLatestOutputTimestamp(timestamp);
}); });
this.graphRunner.attachEmptyPacketListener(IMAGE_OUT_STREAM, timestamp => { this.graphRunner.attachEmptyPacketListener(
CONFIDENCE_MASKS_STREAM, timestamp => {
this.setLatestOutputTimestamp(timestamp); this.setLatestOutputTimestamp(timestamp);
}); });
}
if (this.outputCategoryMask) {
graphConfig.addOutputStream(CATEGORY_MASK_STREAM);
segmenterNode.addOutputStream('CATEGORY_MASK:' + CATEGORY_MASK_STREAM);
this.graphRunner.attachImageListener(
CATEGORY_MASK_STREAM, (mask, timestamp) => {
this.result.categoryMask = mask.data;
this.result.width = mask.width;
this.result.height = mask.height;
this.setLatestOutputTimestamp(timestamp);
});
this.graphRunner.attachEmptyPacketListener(
CATEGORY_MASK_STREAM, timestamp => {
this.setLatestOutputTimestamp(timestamp);
});
}
const binaryGraph = graphConfig.serializeBinary(); const binaryGraph = graphConfig.serializeBinary();
this.setGraph(new Uint8Array(binaryGraph), /* isBinary= */ true); this.setGraph(new Uint8Array(binaryGraph), /* isBinary= */ true);

View File

@ -19,18 +19,9 @@ import {TaskRunnerOptions} from '../../../../tasks/web/core/task_runner_options'
/** Options to configure the MediaPipe Interactive Segmenter Task */ /** Options to configure the MediaPipe Interactive Segmenter Task */
export interface InteractiveSegmenterOptions extends TaskRunnerOptions { export interface InteractiveSegmenterOptions extends TaskRunnerOptions {
/** /** Whether to output confidence masks. Defaults to true. */
* The output type of segmentation results. outputConfidenceMasks?: boolean|undefined;
*
* The two supported modes are: /** Whether to output the category masks. Defaults to false. */
* - Category Mask: Gives a single output mask where each pixel represents outputCategoryMask?: boolean|undefined;
* the class which the pixel in the original image was
* predicted to belong to.
* - Confidence Mask: Gives a list of output masks (one for each class). For
* each mask, the pixel represents the prediction
* confidence, usually in the [0.0, 0.1] range.
*
* Defaults to `CATEGORY_MASK`.
*/
outputType?: 'CATEGORY_MASK'|'CONFIDENCE_MASK'|undefined;
} }

View File

@ -0,0 +1,37 @@
/**
* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** The output result of InteractiveSegmenter. */
export declare interface InteractiveSegmenterResult {
/**
* Multiple masks as Float32Arrays or WebGLTextures where, for each mask, each
* pixel represents the prediction confidence, usually in the [0, 1] range.
*/
confidenceMasks?: Float32Array[]|WebGLTexture[];
/**
* A category mask as a Uint8ClampedArray or WebGLTexture where each
* pixel represents the class which the pixel in the original image was
* predicted to belong to.
*/
categoryMask?: Uint8ClampedArray|WebGLTexture;
/** The width of the masks. */
width: number;
/** The height of the masks. */
height: number;
}

View File

@ -18,7 +18,7 @@ import 'jasmine';
// Placeholder for internal dependency on encodeByteArray // Placeholder for internal dependency on encodeByteArray
import {CalculatorGraphConfig} from '../../../../framework/calculator_pb'; import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
import {addJasmineCustomFloatEqualityTester, createSpyWasmModule, MediapipeTasksFake, SpyWasmModule, verifyGraph, verifyListenersRegistered} from '../../../../tasks/web/core/task_runner_test_utils'; import {addJasmineCustomFloatEqualityTester, createSpyWasmModule, MediapipeTasksFake, SpyWasmModule, verifyGraph} from '../../../../tasks/web/core/task_runner_test_utils';
import {RenderData as RenderDataProto} from '../../../../util/render_data_pb'; import {RenderData as RenderDataProto} from '../../../../util/render_data_pb';
import {WasmImage} from '../../../../web/graph_runner/graph_runner_image_lib'; import {WasmImage} from '../../../../web/graph_runner/graph_runner_image_lib';
@ -37,7 +37,9 @@ class InteractiveSegmenterFake extends InteractiveSegmenter implements
graph: CalculatorGraphConfig|undefined; graph: CalculatorGraphConfig|undefined;
fakeWasmModule: SpyWasmModule; fakeWasmModule: SpyWasmModule;
imageVectorListener: categoryMaskListener:
((images: WasmImage, timestamp: number) => void)|undefined;
confidenceMasksListener:
((images: WasmImage[], timestamp: number) => void)|undefined; ((images: WasmImage[], timestamp: number) => void)|undefined;
lastRoi?: RenderDataProto; lastRoi?: RenderDataProto;
@ -46,11 +48,16 @@ class InteractiveSegmenterFake extends InteractiveSegmenter implements
this.fakeWasmModule = this.fakeWasmModule =
this.graphRunner.wasmModule as unknown as SpyWasmModule; this.graphRunner.wasmModule as unknown as SpyWasmModule;
this.attachListenerSpies[0] = this.attachListenerSpies[0] = spyOn(this.graphRunner, 'attachImageListener')
.and.callFake((stream, listener) => {
expect(stream).toEqual('category_mask');
this.categoryMaskListener = listener;
});
this.attachListenerSpies[1] =
spyOn(this.graphRunner, 'attachImageVectorListener') spyOn(this.graphRunner, 'attachImageVectorListener')
.and.callFake((stream, listener) => { .and.callFake((stream, listener) => {
expect(stream).toEqual('image_out'); expect(stream).toEqual('confidence_masks');
this.imageVectorListener = listener; this.confidenceMasksListener = listener;
}); });
spyOn(this.graphRunner, 'setGraph').and.callFake(binaryGraph => { spyOn(this.graphRunner, 'setGraph').and.callFake(binaryGraph => {
this.graph = CalculatorGraphConfig.deserializeBinary(binaryGraph); this.graph = CalculatorGraphConfig.deserializeBinary(binaryGraph);
@ -79,17 +86,21 @@ describe('InteractiveSegmenter', () => {
it('initializes graph', async () => { it('initializes graph', async () => {
verifyGraph(interactiveSegmenter); verifyGraph(interactiveSegmenter);
verifyListenersRegistered(interactiveSegmenter);
// Verify default options
expect(interactiveSegmenter.categoryMaskListener).not.toBeDefined();
expect(interactiveSegmenter.confidenceMasksListener).toBeDefined();
}); });
it('reloads graph when settings are changed', async () => { it('reloads graph when settings are changed', async () => {
await interactiveSegmenter.setOptions({outputType: 'CATEGORY_MASK'}); await interactiveSegmenter.setOptions(
verifyGraph(interactiveSegmenter, [['segmenterOptions', 'outputType'], 1]); {outputConfidenceMasks: true, outputCategoryMask: false});
verifyListenersRegistered(interactiveSegmenter); expect(interactiveSegmenter.categoryMaskListener).not.toBeDefined();
expect(interactiveSegmenter.confidenceMasksListener).toBeDefined();
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'}); await interactiveSegmenter.setOptions(
verifyGraph(interactiveSegmenter, [['segmenterOptions', 'outputType'], 2]); {outputConfidenceMasks: false, outputCategoryMask: true});
verifyListenersRegistered(interactiveSegmenter); expect(interactiveSegmenter.categoryMaskListener).toBeDefined();
}); });
it('can use custom models', async () => { it('can use custom models', async () => {
@ -115,23 +126,6 @@ describe('InteractiveSegmenter', () => {
]); ]);
}); });
describe('setOptions()', () => {
const fieldPath = ['segmenterOptions', 'outputType'];
it(`can set outputType`, async () => {
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
verifyGraph(interactiveSegmenter, [fieldPath, 2]);
});
it(`can clear outputType`, async () => {
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
verifyGraph(interactiveSegmenter, [fieldPath, 2]);
await interactiveSegmenter.setOptions({outputType: undefined});
verifyGraph(interactiveSegmenter, [fieldPath, 1]);
});
});
it('doesn\'t support region of interest', () => { it('doesn\'t support region of interest', () => {
expect(() => { expect(() => {
interactiveSegmenter.segment( interactiveSegmenter.segment(
@ -153,29 +147,31 @@ describe('InteractiveSegmenter', () => {
interactiveSegmenter.segment({} as HTMLImageElement, ROI, () => {}); interactiveSegmenter.segment({} as HTMLImageElement, ROI, () => {});
}); });
it('supports category masks', (done) => { it('supports category mask', async () => {
const mask = new Uint8ClampedArray([1, 2, 3, 4]); const mask = new Uint8ClampedArray([1, 2, 3, 4]);
await interactiveSegmenter.setOptions(
{outputCategoryMask: true, outputConfidenceMasks: false});
// Pass the test data to our listener // Pass the test data to our listener
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => { interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
verifyListenersRegistered(interactiveSegmenter); expect(interactiveSegmenter.categoryMaskListener).toBeDefined();
interactiveSegmenter.imageVectorListener!( interactiveSegmenter.categoryMaskListener!
[ ({data: mask, width: 2, height: 2},
{data: mask, width: 2, height: 2},
],
/* timestamp= */ 1337); /* timestamp= */ 1337);
}); });
// Invoke the image segmenter // Invoke the image segmenter
interactiveSegmenter.segment( return new Promise<void>(resolve => {
{} as HTMLImageElement, ROI, (masks, width, height) => { interactiveSegmenter.segment({} as HTMLImageElement, ROI, result => {
expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle) expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle)
.toHaveBeenCalled(); .toHaveBeenCalled();
expect(masks).toHaveSize(1); expect(result.categoryMask).toEqual(mask);
expect(masks[0]).toEqual(mask); expect(result.confidenceMasks).not.toBeDefined();
expect(width).toEqual(2); expect(result.width).toEqual(2);
expect(height).toEqual(2); expect(result.height).toEqual(2);
done(); resolve();
});
}); });
}); });
@ -183,30 +179,67 @@ describe('InteractiveSegmenter', () => {
const mask1 = new Float32Array([0.1, 0.2, 0.3, 0.4]); const mask1 = new Float32Array([0.1, 0.2, 0.3, 0.4]);
const mask2 = new Float32Array([0.5, 0.6, 0.7, 0.8]); const mask2 = new Float32Array([0.5, 0.6, 0.7, 0.8]);
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'}); await interactiveSegmenter.setOptions(
{outputCategoryMask: false, outputConfidenceMasks: true});
// Pass the test data to our listener // Pass the test data to our listener
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => { interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
verifyListenersRegistered(interactiveSegmenter); expect(interactiveSegmenter.confidenceMasksListener).toBeDefined();
interactiveSegmenter.imageVectorListener!( interactiveSegmenter.confidenceMasksListener!(
[ [
{data: mask1, width: 2, height: 2}, {data: mask1, width: 2, height: 2},
{data: mask2, width: 2, height: 2}, {data: mask2, width: 2, height: 2},
], ],
1337); 1337);
}); });
return new Promise<void>(resolve => {
// Invoke the image segmenter
interactiveSegmenter.segment({} as HTMLImageElement, ROI, result => {
expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle)
.toHaveBeenCalled();
expect(result.categoryMask).not.toBeDefined();
expect(result.confidenceMasks).toEqual([mask1, mask2]);
expect(result.width).toEqual(2);
expect(result.height).toEqual(2);
resolve();
});
});
});
it('supports combined category and confidence masks', async () => {
const categoryMask = new Uint8ClampedArray([1, 0]);
const confidenceMask1 = new Float32Array([0.0, 1.0]);
const confidenceMask2 = new Float32Array([1.0, 0.0]);
await interactiveSegmenter.setOptions(
{outputCategoryMask: true, outputConfidenceMasks: true});
// Pass the test data to our listener
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
expect(interactiveSegmenter.categoryMaskListener).toBeDefined();
expect(interactiveSegmenter.confidenceMasksListener).toBeDefined();
interactiveSegmenter.categoryMaskListener!
({data: categoryMask, width: 1, height: 1}, 1337);
interactiveSegmenter.confidenceMasksListener!(
[
{data: confidenceMask1, width: 1, height: 1},
{data: confidenceMask2, width: 1, height: 1},
],
1337);
});
return new Promise<void>(resolve => { return new Promise<void>(resolve => {
// Invoke the image segmenter // Invoke the image segmenter
interactiveSegmenter.segment( interactiveSegmenter.segment(
{} as HTMLImageElement, ROI, (masks, width, height) => { {} as HTMLImageElement, ROI, result => {
expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle) expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle)
.toHaveBeenCalled(); .toHaveBeenCalled();
expect(masks).toHaveSize(2); expect(result.categoryMask).toEqual(categoryMask);
expect(masks[0]).toEqual(mask1); expect(result.confidenceMasks).toEqual([
expect(masks[1]).toEqual(mask2); confidenceMask1, confidenceMask2
expect(width).toEqual(2); ]);
expect(height).toEqual(2); expect(result.width).toEqual(1);
expect(result.height).toEqual(1);
resolve(); resolve();
}); });
}); });