Fixes multiple typos in the calculator's internal files.

PiperOrigin-RevId: 580907788
This commit is contained in:
MediaPipe Team 2023-11-09 07:59:46 -08:00 committed by Copybara-Service
parent 7c5c216652
commit a9a169372a
16 changed files with 18 additions and 18 deletions

View File

@ -80,7 +80,7 @@ message SpectrogramCalculatorOptions {
// If use_local_timestamp is true, the output packet's timestamp is based on // If use_local_timestamp is true, the output packet's timestamp is based on
// the last sample of the packet and it's inferred from the latest input // the last sample of the packet and it's inferred from the latest input
// packet's timestamp. If false, the output packet's timestamp is based on // packet's timestamp. If false, the output packet's timestamp is based on
// the cumulative timestamping, which is inferred from the intial input // the cumulative timestamping, which is inferred from the initial input
// timestamp and the cumulative number of samples. // timestamp and the cumulative number of samples.
optional bool use_local_timestamp = 8 [default = false]; optional bool use_local_timestamp = 8 [default = false];
} }

View File

@ -66,7 +66,7 @@ message TimeSeriesFramerCalculatorOptions {
// If use_local_timestamp is true, the output packet's timestamp is based on // If use_local_timestamp is true, the output packet's timestamp is based on
// the last sample of the packet and it's inferred from the latest input // the last sample of the packet and it's inferred from the latest input
// packet's timestamp. If false, the output packet's timestamp is based on // packet's timestamp. If false, the output packet's timestamp is based on
// the cumulative timestamping, which is inferred from the intial input // the cumulative timestamping, which is inferred from the initial input
// timestamp and the cumulative number of samples. // timestamp and the cumulative number of samples.
optional bool use_local_timestamp = 6 [default = false]; optional bool use_local_timestamp = 6 [default = false];
} }

View File

@ -71,7 +71,7 @@ TEST_F(PacketSequencerCalculatorTest, IsRegistered) {
CalculatorBaseRegistry::IsRegistered("PacketSequencerCalculator")); CalculatorBaseRegistry::IsRegistered("PacketSequencerCalculator"));
} }
// Shows how control packets recieve timestamps before and after frame packets // Shows how control packets receive timestamps before and after frame packets
// have arrived. // have arrived.
TEST_F(PacketSequencerCalculatorTest, ChannelEarly) { TEST_F(PacketSequencerCalculatorTest, ChannelEarly) {
CalculatorGraphConfig::Node node_config = BuildNodeConfig(); CalculatorGraphConfig::Node node_config = BuildNodeConfig();

View File

@ -174,7 +174,7 @@ TEST(ValueOrDefaultCalculatorTest, DefaultAndValues) {
ElementsAre(kDefaultValue, 1, 2, kDefaultValue, 3, kDefaultValue)); ElementsAre(kDefaultValue, 1, 2, kDefaultValue, 3, kDefaultValue));
} }
TEST(ValueOrDefaultCalculatorTest, TimestampsMissmatch) { TEST(ValueOrDefaultCalculatorTest, TimestampsMismatch) {
// Check that when we provide the inputs not on time - we don't get them. // Check that when we provide the inputs not on time - we don't get them.
ValueOrDefaultRunner runner; ValueOrDefaultRunner runner;
const std::vector<int64_t> ticks = {1, 2, 5, 8, 12, 33, 231}; const std::vector<int64_t> ticks = {1, 2, 5, 8, 12, 33, 231};

View File

@ -59,7 +59,7 @@ class OpenCvRunner
const ImageFrame& input, const std::array<float, 16>& matrix, const ImageFrame& input, const std::array<float, 16>& matrix,
const AffineTransformation::Size& size, const AffineTransformation::Size& size,
AffineTransformation::BorderMode border_mode) override { AffineTransformation::BorderMode border_mode) override {
// OpenCV warpAffine works in absolute coordinates, so the transfom (which // OpenCV warpAffine works in absolute coordinates, so the transform (which
// accepts and produces relative coordinates) should be adjusted to first // accepts and produces relative coordinates) should be adjusted to first
// normalize coordinates and then scale them. // normalize coordinates and then scale them.
// clang-format off // clang-format off

View File

@ -24,7 +24,7 @@ message ImageCroppingCalculatorOptions {
} }
// Output texture buffer dimensions. The values defined in the options will be // Output texture buffer dimensions. The values defined in the options will be
// overriden by the WIDTH and HEIGHT input streams if they exist. // overridden by the WIDTH and HEIGHT input streams if they exist.
optional int32 width = 1; optional int32 width = 1;
optional int32 height = 2; optional int32 height = 2;

View File

@ -77,7 +77,7 @@ absl::StatusOr<double> ComputeFocalLengthInPixels(int image_width,
return focal_length_pixels; return focal_length_pixels;
} }
absl::StatusOr<ImageFileProperties> GetImageFileProperites( absl::StatusOr<ImageFileProperties> GetImageFileProperties(
const std::string& image_bytes) { const std::string& image_bytes) {
easyexif::EXIFInfo result; easyexif::EXIFInfo result;
int code = result.parseFrom(image_bytes); int code = result.parseFrom(image_bytes);
@ -151,7 +151,7 @@ class ImageFilePropertiesCalculator : public CalculatorBase {
if (cc->InputSidePackets().NumEntries() == 1) { if (cc->InputSidePackets().NumEntries() == 1) {
const std::string& image_bytes = const std::string& image_bytes =
cc->InputSidePackets().Index(0).Get<std::string>(); cc->InputSidePackets().Index(0).Get<std::string>();
MP_ASSIGN_OR_RETURN(properties_, GetImageFileProperites(image_bytes)); MP_ASSIGN_OR_RETURN(properties_, GetImageFileProperties(image_bytes));
read_properties_ = true; read_properties_ = true;
} }
@ -169,7 +169,7 @@ class ImageFilePropertiesCalculator : public CalculatorBase {
return absl::OkStatus(); return absl::OkStatus();
} }
const std::string& image_bytes = cc->Inputs().Index(0).Get<std::string>(); const std::string& image_bytes = cc->Inputs().Index(0).Get<std::string>();
MP_ASSIGN_OR_RETURN(properties_, GetImageFileProperites(image_bytes)); MP_ASSIGN_OR_RETURN(properties_, GetImageFileProperties(image_bytes));
read_properties_ = true; read_properties_ = true;
} }
if (read_properties_) { if (read_properties_) {

View File

@ -284,7 +284,7 @@ std::array<float, 16> GetMatrix(cv::Mat input, mediapipe::NormalizedRect roi,
.IgnoreError(); .IgnoreError();
mediapipe::GetRotatedSubRectToRectTransformMatrix( mediapipe::GetRotatedSubRectToRectTransformMatrix(
roi_absolute, input.cols, input.rows, roi_absolute, input.cols, input.rows,
/*flip_horizontaly=*/false, &transform_mat); /*flip_horizontally=*/false, &transform_mat);
return transform_mat; return transform_mat;
} }

View File

@ -49,7 +49,7 @@ std::string FourCCToString(libyuv::FourCC fourcc) {
// The input `YUVImage` is expected to be in the NV12, NV21, YV12 or I420 (aka // The input `YUVImage` is expected to be in the NV12, NV21, YV12 or I420 (aka
// YV21) format (as per the `fourcc()` property). This covers the most commonly // YV21) format (as per the `fourcc()` property). This covers the most commonly
// used YUV image formats used on mobile devices. Other formats are not // used YUV image formats used on mobile devices. Other formats are not
// supported and wil result in an `InvalidArgumentError`. // supported and will result in an `InvalidArgumentError`.
class YUVToImageCalculator : public Node { class YUVToImageCalculator : public Node {
public: public:
static constexpr Input<YUVImage> kInput{"YUV_IMAGE"}; static constexpr Input<YUVImage> kInput{"YUV_IMAGE"};

View File

@ -1,2 +1,2 @@
The model files add.bin, add_quantized.bin The model files add.bin, add_quantized.bin
(and corresponding metatada json files) come from tensorflow/lite/testdata/ (and corresponding metadata json files) come from tensorflow/lite/testdata/

View File

@ -95,7 +95,7 @@ struct GPUData {
// into a TfLiteTensor (float 32) or a GpuBuffer to a tflite::gpu::GlBuffer // into a TfLiteTensor (float 32) or a GpuBuffer to a tflite::gpu::GlBuffer
// or MTLBuffer. // or MTLBuffer.
// //
// This calculator is designed to be used with the TfLiteInferenceCalcualtor, // This calculator is designed to be used with the TfLiteInferenceCalculator,
// as a pre-processing step for calculator inputs. // as a pre-processing step for calculator inputs.
// //
// IMAGE and IMAGE_GPU inputs are normalized to [-1,1] (default) or [0,1], // IMAGE and IMAGE_GPU inputs are normalized to [-1,1] (default) or [0,1],

View File

@ -31,7 +31,7 @@ message TfLiteConverterCalculatorOptions {
// Custom settings to override the internal scaling factors `div` and `sub`. // Custom settings to override the internal scaling factors `div` and `sub`.
// Both values must be set to non-negative values. Will only take effect on // Both values must be set to non-negative values. Will only take effect on
// CPU AND when |use_custom_normalization| is set to true. When these custom // CPU AND when |use_custom_normalization| is set to true. When these custom
// values take effect, the |zero_center| setting above will be overriden, and // values take effect, the |zero_center| setting above will be overridden, and
// the normalized_value will be calculated as: // the normalized_value will be calculated as:
// normalized_value = input / custom_div - custom_sub. // normalized_value = input / custom_div - custom_sub.
optional bool use_custom_normalization = 6 [default = false]; optional bool use_custom_normalization = 6 [default = false];

View File

@ -25,7 +25,7 @@ message TfLiteTensorsToClassificationCalculatorOptions {
optional TfLiteTensorsToClassificationCalculatorOptions ext = 266399463; optional TfLiteTensorsToClassificationCalculatorOptions ext = 266399463;
} }
// Score threshold for perserving the class. // Score threshold for preserving the class.
optional float min_score_threshold = 1; optional float min_score_threshold = 1;
// Number of highest scoring labels to output. If top_k is not positive then // Number of highest scoring labels to output. If top_k is not positive then
// all labels are used. // all labels are used.

View File

@ -116,7 +116,7 @@ void ConvertAnchorsToRawValues(const std::vector<Anchor>& anchors,
// tensors can have 2 or 3 tensors. First tensor is the predicted // tensors can have 2 or 3 tensors. First tensor is the predicted
// raw boxes/keypoints. The size of the values must be (num_boxes // raw boxes/keypoints. The size of the values must be (num_boxes
// * num_predicted_values). Second tensor is the score tensor. The // * num_predicted_values). Second tensor is the score tensor. The
// size of the valuse must be (num_boxes * num_classes). It's // size of the values must be (num_boxes * num_classes). It's
// optional to pass in a third tensor for anchors (e.g. for SSD // optional to pass in a third tensor for anchors (e.g. for SSD
// models) depend on the outputs of the detection model. The size // models) depend on the outputs of the detection model. The size
// of anchor tensor must be (num_boxes * 4). // of anchor tensor must be (num_boxes * 4).

View File

@ -69,6 +69,6 @@ message TfLiteTensorsToDetectionsCalculatorOptions {
// representation has a bottom-left origin (e.g., in OpenGL). // representation has a bottom-left origin (e.g., in OpenGL).
optional bool flip_vertically = 18 [default = false]; optional bool flip_vertically = 18 [default = false];
// Score threshold for perserving decoded detections. // Score threshold for preserving decoded detections.
optional float min_score_thresh = 19; optional float min_score_thresh = 19;
} }

View File

@ -158,7 +158,7 @@ absl::Status TfLiteTensorsToLandmarksCalculator::Open(CalculatorContext* cc) {
RET_CHECK(options_.has_input_image_height() && RET_CHECK(options_.has_input_image_height() &&
options_.has_input_image_width()) options_.has_input_image_width())
<< "Must provide input width/height for using flip_vertically option " << "Must provide input width/height for using flip_vertically option "
"when outputing landmarks in absolute coordinates."; "when outputting landmarks in absolute coordinates.";
} }
flip_horizontally_ = flip_horizontally_ =