Open Source Object Detector

PiperOrigin-RevId: 519201221
This commit is contained in:
MediaPipe Team 2023-03-24 11:51:01 -07:00 committed by Copybara-Service
parent 58a98bc7da
commit 97c271644a
32 changed files with 3013 additions and 0 deletions

View File

@ -17,6 +17,7 @@ from mediapipe.model_maker.python.core.utils import quantization
from mediapipe.model_maker.python.vision import image_classifier from mediapipe.model_maker.python.vision import image_classifier
from mediapipe.model_maker.python.vision import gesture_recognizer from mediapipe.model_maker.python.vision import gesture_recognizer
from mediapipe.model_maker.python.text import text_classifier from mediapipe.model_maker.python.text import text_classifier
from mediapipe.model_maker.python.vision import object_detector
# Remove duplicated and non-public API # Remove duplicated and non-public API
del python del python

View File

@ -0,0 +1,195 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Placeholder for internal Python strict library and test compatibility macro.
# Placeholder for internal Python strict test compatibility macro.
licenses(["notice"])
package(
default_visibility = ["//mediapipe:__subpackages__"],
)
py_library(
name = "object_detector_import",
srcs = ["__init__.py"],
visibility = ["//visibility:public"],
deps = [
":dataset",
":hyperparameters",
":model_options",
":model_spec",
":object_detector",
":object_detector_options",
],
)
py_binary(
name = "object_detector_demo",
srcs = ["object_detector_demo.py"],
data = [":testdata"],
python_version = "PY3",
tags = ["requires-net:external"],
deps = [":object_detector_import"],
)
filegroup(
name = "testdata",
srcs = glob([
"testdata/**",
]),
)
py_library(
name = "dataset",
srcs = ["dataset.py"],
deps = [
":dataset_util",
"//mediapipe/model_maker/python/core/data:classification_dataset",
],
)
py_test(
name = "dataset_test",
srcs = ["dataset_test.py"],
data = [":testdata"],
deps = [
":dataset",
"//mediapipe/model_maker/python/vision/core:image_utils",
"//mediapipe/model_maker/python/vision/core:test_utils",
"//mediapipe/tasks/python/test:test_utils",
],
)
py_library(
name = "dataset_util",
srcs = ["dataset_util.py"],
)
py_test(
name = "dataset_util_test",
srcs = ["dataset_util_test.py"],
data = [":testdata"],
deps = [
":dataset_util",
"//mediapipe/model_maker/python/vision/core:test_utils",
"//mediapipe/tasks/python/test:test_utils",
],
)
py_library(
name = "hyperparameters",
srcs = ["hyperparameters.py"],
deps = [
"//mediapipe/model_maker/python/core:hyperparameters",
],
)
py_library(
name = "preprocessor",
srcs = ["preprocessor.py"],
deps = [":model_spec"],
)
py_test(
name = "preprocessor_test",
srcs = ["preprocessor_test.py"],
deps = [
":model_spec",
":preprocessor",
"//mediapipe/model_maker/python/vision/core:test_utils",
],
)
py_library(
name = "model",
srcs = ["model.py"],
deps = [
":model_options",
":model_spec",
],
)
py_test(
name = "model_test",
size = "large",
srcs = ["model_test.py"],
data = [":testdata"],
shard_count = 4,
tags = ["requires-net:external"],
deps = [
":dataset",
":model",
":model_options",
":model_spec",
":preprocessor",
"//mediapipe/tasks/python/test:test_utils",
],
)
py_library(
name = "model_options",
srcs = ["model_options.py"],
)
py_library(
name = "model_spec",
srcs = ["model_spec.py"],
deps = ["//mediapipe/model_maker/python/core/utils:file_util"],
)
py_library(
name = "object_detector",
srcs = ["object_detector.py"],
deps = [
":dataset",
":hyperparameters",
":model",
":model_options",
":model_spec",
":object_detector_options",
":preprocessor",
"//mediapipe/model_maker/python/core/tasks:classifier",
"//mediapipe/model_maker/python/core/utils:model_util",
"//mediapipe/model_maker/python/core/utils:quantization",
"//mediapipe/tasks/python/metadata/metadata_writers:metadata_writer",
"//mediapipe/tasks/python/metadata/metadata_writers:object_detector",
],
)
py_test(
name = "object_detector_test",
size = "enormous",
srcs = ["object_detector_test.py"],
data = [":testdata"],
tags = ["requires-net:external"],
deps = [
":dataset",
":hyperparameters",
":model_spec",
":object_detector",
":object_detector_options",
"//mediapipe/tasks/python/test:test_utils",
],
)
py_library(
name = "object_detector_options",
srcs = ["object_detector_options.py"],
deps = [
":hyperparameters",
":model_options",
":model_spec",
],
)

View File

@ -0,0 +1,30 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe Model Maker Python Public API For Object Detector."""
from mediapipe.model_maker.python.vision.object_detector import dataset
from mediapipe.model_maker.python.vision.object_detector import hyperparameters
from mediapipe.model_maker.python.vision.object_detector import model_options
from mediapipe.model_maker.python.vision.object_detector import model_spec
from mediapipe.model_maker.python.vision.object_detector import object_detector
from mediapipe.model_maker.python.vision.object_detector import object_detector_options
ObjectDetector = object_detector.ObjectDetector
ModelOptions = model_options.ObjectDetectorModelOptions
ModelSpec = model_spec.ModelSpec
SupportedModels = model_spec.SupportedModels
HParams = hyperparameters.HParams
QATHParams = hyperparameters.QATHParams
Dataset = dataset.Dataset
ObjectDetectorOptions = object_detector_options.ObjectDetectorOptions

View File

@ -0,0 +1,179 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Object detector dataset library."""
from typing import Optional
import tensorflow as tf
import yaml
from mediapipe.model_maker.python.core.data import classification_dataset
from mediapipe.model_maker.python.vision.object_detector import dataset_util
from official.vision.dataloaders import tf_example_decoder
class Dataset(classification_dataset.ClassificationDataset):
"""Dataset library for object detector."""
@classmethod
def from_coco_folder(
cls,
data_dir: str,
max_num_images: Optional[int] = None,
cache_dir: Optional[str] = None,
) -> 'Dataset':
"""Loads images and labels from the given directory in COCO format.
- https://cocodataset.org/#home
Folder structure should be:
<data_dir>/
images/
<file0>.jpg
...
labels.json
The `labels.json` annotations file should should have the following format:
{
"categories": [{"id": 0, "name": "background"}, ...],
"images": [{"id": 0, "file_name": "<file0>.jpg"}, ...],
"annotations": [{
"id": 0,
"image_id": 0,
"category_id": 2,
"bbox": [x-top left, y-top left, width, height],
}, ...]
}
Note that category id 0 is reserved for the "background" class. It is
optional to include, but if included it must be set to "background".
Args:
data_dir: Name of the directory containing the data files.
max_num_images: Max number of images to process.
cache_dir: The cache directory to save TFRecord and metadata files. The
TFRecord files are a standardized format for training object detection
while the metadata file is used to store information like dataset size
and label mapping of id to label name. If the cache_dir is not set, a
temporary folder will be created and will not be removed automatically
after training which means it can be reused later.
Returns:
Dataset containing images and labels and other related info.
Raises:
ValueError: If the input data directory is empty.
ValueError: If the label_name for id 0 is set to something other than
the 'background' class.
"""
cache_files = dataset_util.get_cache_files_coco(data_dir, cache_dir)
if not dataset_util.is_cached(cache_files):
label_map = dataset_util.get_label_map_coco(data_dir)
cache_writer = dataset_util.COCOCacheFilesWriter(
label_map=label_map, max_num_images=max_num_images
)
cache_writer.write_files(cache_files, data_dir)
return cls.from_cache(cache_files.cache_prefix)
@classmethod
def from_pascal_voc_folder(
cls,
data_dir: str,
max_num_images: Optional[int] = None,
cache_dir: Optional[str] = None,
) -> 'Dataset':
"""Loads images and labels from the given directory in PASCAL VOC format.
- http://host.robots.ox.ac.uk/pascal/VOC.
Folder structure should be:
<data_dir>/
images/
<file0>.jpg
...
Annotations/
<file0>.xml
...
Each <file0>.xml annotation file should have the following format:
<annotation>
<filename>file0.jpg<filename>
<object>
<name>kangaroo</name>
<bndbox>
<xmin>233</xmin>
<ymin>89</ymin>
<xmax>386</xmax>
<ymax>262</ymax>
</object>
<object>...</object>
</annotation>
Args:
data_dir: Name of the directory containing the data files.
max_num_images: Max number of images to process.
cache_dir: The cache directory to save TFRecord and metadata files. The
TFRecord files are a standardized format for training object detection
while the metadata file is used to store information like dataset size
and label mapping of id to label name. If the cache_dir is not set, a
temporary folder will be created and will not be removed automatically
after training which means it can be reused later.
Returns:
Dataset containing images and labels and other related info.
Raises:
ValueError: if the input data directory is empty.
"""
cache_files = dataset_util.get_cache_files_pascal_voc(data_dir, cache_dir)
if not dataset_util.is_cached(cache_files):
label_map = dataset_util.get_label_map_pascal_voc(data_dir)
cache_writer = dataset_util.PascalVocCacheFilesWriter(
label_map=label_map, max_num_images=max_num_images
)
cache_writer.write_files(cache_files, data_dir)
return cls.from_cache(cache_files.cache_prefix)
@classmethod
def from_cache(cls, cache_prefix: str) -> 'Dataset':
"""Loads the TFRecord data from cache.
Args:
cache_prefix: The cache prefix including the cache directory and the cache
prefix filename, e.g: '/tmp/cache/train'.
Returns:
ObjectDetectorDataset object.
"""
# Get TFRecord Files
tfrecord_file_patten = cache_prefix + '*.tfrecord'
matched_files = tf.io.gfile.glob(tfrecord_file_patten)
if not matched_files:
raise ValueError('TFRecord files are empty.')
# Load meta_data.
meta_data_file = cache_prefix + dataset_util.META_DATA_FILE_SUFFIX
if not tf.io.gfile.exists(meta_data_file):
raise ValueError("Metadata file %s doesn't exist." % meta_data_file)
with tf.io.gfile.GFile(meta_data_file, 'r') as f:
meta_data = yaml.load(f, Loader=yaml.FullLoader)
dataset = tf.data.TFRecordDataset(matched_files)
decoder = tf_example_decoder.TfExampleDecoder(regenerate_source_id=False)
dataset = dataset.map(decoder.decode, num_parallel_calls=tf.data.AUTOTUNE)
label_map = meta_data['label_map']
label_names = [label_map[k] for k in sorted(label_map.keys())]
return Dataset(
dataset=dataset, size=meta_data['size'], label_names=label_names
)

View File

@ -0,0 +1,119 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import random
import tensorflow as tf
from mediapipe.model_maker.python.vision.core import image_utils
from mediapipe.model_maker.python.vision.core import test_utils
from mediapipe.model_maker.python.vision.object_detector import dataset
from mediapipe.tasks.python.test import test_utils as tasks_test_utils
IMAGE_SIZE = 224
class DatasetTest(tf.test.TestCase):
def _get_rand_bbox(self):
x1, x2 = random.uniform(0, IMAGE_SIZE), random.uniform(0, IMAGE_SIZE)
y1, y2 = random.uniform(0, IMAGE_SIZE), random.uniform(0, IMAGE_SIZE)
return [min(x1, x2), min(y1, y2), abs(x1 - x2), abs(y1 - y2)]
def setUp(self):
super().setUp()
self.coco_dataset_path = os.path.join(self.get_temp_dir(), 'coco_dataset')
if os.path.exists(self.coco_dataset_path):
return
os.mkdir(self.coco_dataset_path)
categories = [{'id': 1, 'name': 'daisy'}, {'id': 2, 'name': 'tulips'}]
images = [
{'id': 1, 'file_name': 'img1.jpeg'},
{'id': 2, 'file_name': 'img2.jpeg'},
]
annotations = [
{'image_id': 1, 'category_id': 1, 'bbox': self._get_rand_bbox()},
{'image_id': 2, 'category_id': 1, 'bbox': self._get_rand_bbox()},
{'image_id': 2, 'category_id': 2, 'bbox': self._get_rand_bbox()},
]
labels_dict = {
'categories': categories,
'images': images,
'annotations': annotations,
}
labels_json = json.dumps(labels_dict)
with open(os.path.join(self.coco_dataset_path, 'labels.json'), 'w') as f:
f.write(labels_json)
images_dir = os.path.join(self.coco_dataset_path, 'images')
os.mkdir(images_dir)
for item in images:
test_utils.write_filled_jpeg_file(
os.path.join(images_dir, item['file_name']),
[random.uniform(0, 255) for _ in range(3)],
IMAGE_SIZE,
)
def test_from_coco_folder(self):
data = dataset.Dataset.from_coco_folder(
self.coco_dataset_path, cache_dir=self.get_temp_dir()
)
self.assertLen(data, 2)
self.assertEqual(data.num_classes, 3)
self.assertEqual(data.label_names, ['background', 'daisy', 'tulips'])
for example in data.gen_tf_dataset():
boxes = example['groundtruth_boxes']
classes = example['groundtruth_classes']
self.assertNotEmpty(boxes)
self.assertAllLessEqual(boxes, 1)
self.assertAllGreaterEqual(boxes, 0)
self.assertNotEmpty(classes)
self.assertTrue(
(classes.numpy() == [1]).all() or (classes.numpy() == [1, 2]).all()
)
if (classes.numpy() == [1, 1]).all():
raw_image_tensor = image_utils.load_image(
os.path.join(self.coco_dataset_path, 'images', 'img1.jpeg')
)
else:
raw_image_tensor = image_utils.load_image(
os.path.join(self.coco_dataset_path, 'images', 'img2.jpeg')
)
self.assertTrue(
(example['image'].numpy() == raw_image_tensor.numpy()).all()
)
def test_from_pascal_voc_folder(self):
pascal_voc_folder = tasks_test_utils.get_test_data_path('pascal_voc_data')
data = dataset.Dataset.from_pascal_voc_folder(
pascal_voc_folder, cache_dir=self.get_temp_dir()
)
self.assertLen(data, 4)
self.assertEqual(data.num_classes, 3)
self.assertEqual(data.label_names, ['background', 'android', 'pig_android'])
for example in data.gen_tf_dataset():
boxes = example['groundtruth_boxes']
classes = example['groundtruth_classes']
self.assertNotEmpty(boxes)
self.assertAllLessEqual(boxes, 1)
self.assertAllGreaterEqual(boxes, 0)
self.assertNotEmpty(classes)
image = example['image']
self.assertNotEmpty(image)
self.assertAllGreaterEqual(image, 0)
self.assertAllLessEqual(image, 255)
if __name__ == '__main__':
tf.test.main()

View File

@ -0,0 +1,484 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for Object Detector Dataset Library."""
import abc
import collections
import dataclasses
import hashlib
import json
import math
import os
import tempfile
from typing import Any, Dict, List, Mapping, Optional, Sequence
import xml.etree.ElementTree as ET
import tensorflow as tf
import yaml
from official.vision.data import tfrecord_lib
# Suffix of the meta data file name.
META_DATA_FILE_SUFFIX = '_meta_data.yaml'
def _xml_get(node: ET.Element, name: str) -> ET.Element:
"""Gets a named child from an XML Element node.
This method is used to retrieve an XML element that is expected to exist as a
subelement of the `node` passed into this argument. If the subelement is not
found, then an error is thrown.
Raises:
ValueError: If the subelement is not found.
Args:
node: XML Element Tree node.
name: Name of the child node to get
Returns:
A child node of the parameter node with the matching name.
"""
result = node.find(name)
if result is None:
raise ValueError(f'Unexpected xml format: {name} not found in {node}')
return result
def _get_cache_dir_or_create(cache_dir: Optional[str]) -> str:
"""Gets the cache directory or creates it if not exists."""
if cache_dir is None:
cache_dir = tempfile.mkdtemp()
if not tf.io.gfile.exists(cache_dir):
tf.io.gfile.makedirs(cache_dir)
return cache_dir
def _get_dir_basename(data_dir: str) -> str:
"""Gets the base name of the directory."""
return os.path.basename(os.path.abspath(data_dir))
@dataclasses.dataclass(frozen=True)
class CacheFiles:
"""Cache files for object detection."""
cache_prefix: str
tfrecord_files: Sequence[str]
meta_data_file: str
def _get_cache_files(
cache_dir: Optional[str], cache_prefix_filename: str, num_shards: int = 10
) -> CacheFiles:
"""Creates an object of CacheFiles class.
Args:
cache_dir: The cache directory to save TFRecord and metadata file. When
cache_dir is None, a temporary folder will be created and will not be
removed automatically after training which makes it can be used later.
cache_prefix_filename: The cache prefix filename.
num_shards: Number of shards for output file.
Returns:
An object of CacheFiles class.
"""
cache_dir = _get_cache_dir_or_create(cache_dir)
# The cache prefix including the cache directory and the cache prefix
# filename, e.g: '/tmp/cache/train'.
cache_prefix = os.path.join(cache_dir, cache_prefix_filename)
tf.compat.v1.logging.info(
'Cache will be stored in %s with prefix filename %s. Cache_prefix is %s'
% (cache_dir, cache_prefix_filename, cache_prefix)
)
# Cached files including the TFRecord files and the meta data file.
tfrecord_files = [
cache_prefix + '-%05d-of-%05d.tfrecord' % (i, num_shards)
for i in range(num_shards)
]
meta_data_file = cache_prefix + META_DATA_FILE_SUFFIX
return CacheFiles(
cache_prefix=cache_prefix,
tfrecord_files=tuple(tfrecord_files),
meta_data_file=meta_data_file,
)
def get_cache_files_coco(data_dir: str, cache_dir: str) -> CacheFiles:
"""Creates an object of CacheFiles class using a COCO formatted dataset.
Args:
data_dir: Folder path of the coco dataset
cache_dir: Folder path of the cache location. When cache_dir is None, a
temporary folder will be created and will not be removed automatically
after training which makes it can be used later.
Returns:
An object of CacheFiles class.
"""
hasher = hashlib.md5()
# Update with dataset folder name
hasher.update(_get_dir_basename(data_dir).encode('utf-8'))
# Update with image filenames
for image_file in sorted(os.listdir(os.path.join(data_dir, 'images'))):
hasher.update(os.path.basename(image_file).encode('utf-8'))
# Update with labels.json file content
label_file = os.path.join(data_dir, 'labels.json')
with open(label_file, 'r') as f:
label_json = json.load(f)
hasher.update(str(label_json).encode('utf-8'))
num_examples = len(label_json['images'])
# Num_shards automatically set to 100 images per shard, up to 10 shards total.
# See https://www.tensorflow.org/tutorials/load_data/tfrecord for more info
# on sharding.
num_shards = min(math.ceil(num_examples / 100), 10)
# Update with num shards
hasher.update(str(num_shards).encode('utf-8'))
cache_prefix_filename = hasher.hexdigest()
return _get_cache_files(cache_dir, cache_prefix_filename, num_shards)
def get_cache_files_pascal_voc(data_dir: str, cache_dir: str) -> CacheFiles:
"""Gets an object of CacheFiles using a PASCAL VOC formatted dataset.
Args:
data_dir: Folder path of the pascal voc dataset.
cache_dir: Folder path of the cache location. When cache_dir is None, a
temporary folder will be created and will not be removed automatically
after training which makes it can be used later.
Returns:
An object of CacheFiles class.
"""
hasher = hashlib.md5()
hasher.update(_get_dir_basename(data_dir).encode('utf-8'))
annotation_files = tf.io.gfile.glob(
os.path.join(data_dir, 'Annotations') + r'/*.xml'
)
annotation_filenames = [
os.path.basename(ann_file) for ann_file in annotation_files
]
hasher.update(' '.join(annotation_filenames).encode('utf-8'))
num_examples = len(annotation_filenames)
num_shards = min(math.ceil(num_examples / 100), 10)
hasher.update(str(num_shards).encode('utf-8'))
cache_prefix_filename = hasher.hexdigest()
return _get_cache_files(cache_dir, cache_prefix_filename, num_shards)
def is_cached(cache_files: CacheFiles) -> bool:
"""Checks whether cache files are already cached."""
all_cached_files = list(cache_files.tfrecord_files) + [
cache_files.meta_data_file
]
return all(tf.io.gfile.exists(path) for path in all_cached_files)
class CacheFilesWriter(abc.ABC):
"""CacheFilesWriter class to write the cached files."""
def __init__(
self, label_map: Dict[int, str], max_num_images: Optional[int] = None
) -> None:
"""Initializes CacheFilesWriter for object detector.
Args:
label_map: Dict, map label integer ids to string label names such as {1:
'person', 2: 'notperson'}. 0 is the reserved key for `background` and
doesn't need to be included in `label_map`. Label names can't be
duplicated.
max_num_images: Max number of images to process. If None, process all the
images.
"""
self.label_map = label_map
self.max_num_images = max_num_images
def write_files(self, cache_files: CacheFiles, *args, **kwargs) -> None:
"""Writes TFRecord and meta_data files.
Args:
cache_files: CacheFiles object including a list of TFRecord files and the
meta data yaml file to save the meta_data including data size and
label_map.
*args: Non-keyword of parameters used in the `_get_example` method.
**kwargs: Keyword parameters used in the `_get_example` method.
"""
writers = [
tf.io.TFRecordWriter(path) for path in cache_files.tfrecord_files
]
# Writes tf.Example into TFRecord files.
size = 0
for idx, tf_example in enumerate(self._get_example(*args, **kwargs)):
if self.max_num_images and idx >= self.max_num_images:
break
if idx % 100 == 0:
tf.compat.v1.logging.info('On image %d' % idx)
writers[idx % len(writers)].write(tf_example.SerializeToString())
size = idx + 1
for writer in writers:
writer.close()
# Writes meta_data into meta_data_file.
meta_data = {'size': size, 'label_map': self.label_map}
with tf.io.gfile.GFile(cache_files.meta_data_file, 'w') as f:
yaml.dump(meta_data, f)
@abc.abstractmethod
def _get_example(self, *args, **kwargs):
raise NotImplementedError
def get_label_map_coco(data_dir: str):
"""Gets the label map from a COCO formatted dataset directory.
Note that id 0 is reserved for the background class. If id=0 is set, it needs
to be set to "background". It is optional to include id=0 if it is unused, and
it will be automatically added by this method.
Args:
data_dir: Path of the dataset directory
Returns:
label_map dictionary of the format {<id>:<label_name>}
Raises:
ValueError: If the label_name for id 0 is set to something other than
the "background" class.
"""
data_dir = os.path.abspath(data_dir)
# Process labels.json file
label_file = os.path.join(data_dir, 'labels.json')
with open(label_file, 'r') as f:
data = json.load(f)
# Categories
label_map = {}
for category in data['categories']:
label_map[int(category['id'])] = category['name']
if 0 in label_map and label_map[0] != 'background':
raise ValueError(
(
'Label index 0 is reserved for the background class, but '
f'it was found to be {label_map[0]}'
),
)
if 0 not in label_map:
label_map[0] = 'background'
return label_map
def get_label_map_pascal_voc(data_dir: str):
"""Gets the label map from a PASCAL VOC formatted dataset directory.
The id to label_name mapping is determined by sorting all label_names and
numbering them starting from 1. Id=0 is set as the 'background' class.
Args:
data_dir: Path of the dataset directory
Returns:
label_map dictionary of the format {<id>:<label_name>}
"""
data_dir = os.path.abspath(data_dir)
all_label_names = set()
annotations_dir = os.path.join(data_dir, 'Annotations')
all_annotation_files = tf.io.gfile.glob(annotations_dir + r'/*.xml')
for ann_file in all_annotation_files:
tree = ET.parse(ann_file)
root = tree.getroot()
for child in root.iter('object'):
label_name = _xml_get(child, 'name').text
all_label_names.add(label_name)
label_map = {0: 'background'}
for ind, label_name in enumerate(sorted(all_label_names)):
label_map[ind + 1] = label_name
return label_map
def _bbox_data_to_feature_dict(data):
"""Converts a dictionary of bbox annotations to a feature dictionary.
Args:
data: Dict with keys 'xmin', 'xmax', 'ymin', 'ymax', 'category_id'
Returns:
Feature dictionary
"""
bbox_feature_dict = {
'image/object/bbox/xmin': tfrecord_lib.convert_to_feature(data['xmin']),
'image/object/bbox/xmax': tfrecord_lib.convert_to_feature(data['xmax']),
'image/object/bbox/ymin': tfrecord_lib.convert_to_feature(data['ymin']),
'image/object/bbox/ymax': tfrecord_lib.convert_to_feature(data['ymax']),
'image/object/class/label': tfrecord_lib.convert_to_feature(
data['category_id']
),
}
return bbox_feature_dict
def _coco_annotations_to_lists(
bbox_annotations: List[Mapping[str, Any]],
image_height: int,
image_width: int,
):
"""Converts COCO annotations to feature lists.
Args:
bbox_annotations: List of dicts with keys ['bbox', 'category_id']
image_height: Height of image
image_width: Width of iamge
Returns:
(data, num_annotations_skipped) tuple where data contains the keys:
['xmin', 'xmax', 'ymin', 'ymax', 'is_crowd', 'category_id', 'area'] and
num_annotations_skipped is the number of skipped annotations because of the
bbox having 0 area.
"""
data = collections.defaultdict(list)
num_annotations_skipped = 0
for object_annotations in bbox_annotations:
(x, y, width, height) = tuple(object_annotations['bbox'])
if width <= 0 or height <= 0:
num_annotations_skipped += 1
continue
if x + width > image_width or y + height > image_height:
num_annotations_skipped += 1
continue
data['xmin'].append(float(x) / image_width)
data['xmax'].append(float(x + width) / image_width)
data['ymin'].append(float(y) / image_height)
data['ymax'].append(float(y + height) / image_height)
category_id = int(object_annotations['category_id'])
data['category_id'].append(category_id)
return data, num_annotations_skipped
class COCOCacheFilesWriter(CacheFilesWriter):
"""CacheFilesWriter class to write the cached files for COCO data."""
def _get_example(self, data_dir: str) -> tf.train.Example:
"""Iterates over all examples in the COCO formatted dataset directory.
Args:
data_dir: Path of the dataset directory
Yields:
tf.train.Example
"""
data_dir = os.path.abspath(data_dir)
# Process labels.json file
label_file = os.path.join(data_dir, 'labels.json')
with open(label_file, 'r') as f:
data = json.load(f)
# Load all Annotations
img_to_annotations = collections.defaultdict(list)
for annotation in data['annotations']:
image_id = annotation['image_id']
img_to_annotations[image_id].append(annotation)
# For each Image:
for image in data['images']:
img_id = image['id']
file_name = image['file_name']
full_path = os.path.join(data_dir, 'images', file_name)
with tf.io.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
image = tf.io.decode_jpeg(encoded_jpg, channels=3)
height, width, _ = image.shape
feature_dict = tfrecord_lib.image_info_to_feature_dict(
height, width, file_name, img_id, encoded_jpg, 'jpg'
)
data, _ = _coco_annotations_to_lists(
img_to_annotations[img_id], height, width
)
if not data['xmin']:
# Skip examples which have no annotations
continue
bbox_feature_dict = _bbox_data_to_feature_dict(data)
feature_dict.update(bbox_feature_dict)
example = tf.train.Example(
features=tf.train.Features(feature=feature_dict)
)
yield example
class PascalVocCacheFilesWriter(CacheFilesWriter):
"""CacheFilesWriter class to write the cached files for PASCAL VOC data."""
def _get_example(self, data_dir: str) -> tf.train.Example:
"""Iterates over all examples in the PASCAL VOC formatted dataset directory.
Args:
data_dir: Path of the dataset directory
Yields:
tf.train.Example
"""
label_name_to_id = {name: i for (i, name) in self.label_map.items()}
annotations_dir = os.path.join(data_dir, 'Annotations')
images_dir = os.path.join(data_dir, 'images')
all_annotation_paths = tf.io.gfile.glob(annotations_dir + r'/*.xml')
data = collections.defaultdict(list)
for ind, ann_file in enumerate(all_annotation_paths):
tree = ET.parse(ann_file)
root = tree.getroot()
img_filename = _xml_get(root, 'filename').text
img_file = os.path.join(images_dir, img_filename)
with tf.io.gfile.GFile(img_file, 'rb') as fid:
encoded_jpg = fid.read()
image = tf.io.decode_jpeg(encoded_jpg, channels=3)
height, width, _ = image.shape
for child in root.iter('object'):
category_name = _xml_get(child, 'name').text
category_id = label_name_to_id[category_name]
bndbox = _xml_get(child, 'bndbox')
xmin = float(_xml_get(bndbox, 'xmin').text)
xmax = float(_xml_get(bndbox, 'xmax').text)
ymin = float(_xml_get(bndbox, 'ymin').text)
ymax = float(_xml_get(bndbox, 'ymax').text)
if xmax <= xmin or ymax <= ymin or xmax > width or ymax > height:
# Skip annotations that have no area or are larger than the image
continue
data['xmin'].append(xmin / width)
data['ymin'].append(ymin / height)
data['xmax'].append(xmax / width)
data['ymax'].append(ymax / height)
data['category_id'].append(category_id)
if not data['xmin']:
# Skip examples which have no valid annotations
continue
feature_dict = tfrecord_lib.image_info_to_feature_dict(
height, width, img_filename, ind, encoded_jpg, 'jpg'
)
bbox_feature_dict = _bbox_data_to_feature_dict(data)
feature_dict.update(bbox_feature_dict)
example = tf.train.Example(
features=tf.train.Features(feature=feature_dict)
)
yield example

View File

@ -0,0 +1,236 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import json
import os
import shutil
from unittest import mock as unittest_mock
import tensorflow as tf
import yaml
from mediapipe.model_maker.python.vision.core import test_utils
from mediapipe.model_maker.python.vision.object_detector import dataset_util
from mediapipe.tasks.python.test import test_utils as tasks_test_utils
class DatasetUtilTest(tf.test.TestCase):
def _assert_cache_files_equal(self, cf1, cf2):
self.assertEqual(cf1.cache_prefix, cf2.cache_prefix)
self.assertCountEqual(cf1.tfrecord_files, cf2.tfrecord_files)
self.assertEqual(cf1.meta_data_file, cf2.meta_data_file)
def _assert_cache_files_not_equal(self, cf1, cf2):
self.assertNotEqual(cf1.cache_prefix, cf2.cache_prefix)
self.assertNotEqual(cf1.tfrecord_files, cf2.tfrecord_files)
self.assertNotEqual(cf1.meta_data_file, cf2.meta_data_file)
def _get_cache_files_and_assert_neq_fn(self, cache_files_fn):
def get_cache_files_and_assert_neq(cf, data_dir, cache_dir):
new_cf = cache_files_fn(data_dir, cache_dir)
self._assert_cache_files_not_equal(cf, new_cf)
return new_cf
return get_cache_files_and_assert_neq
@unittest_mock.patch.object(hashlib, 'md5', autospec=True)
def test_get_cache_files_coco(self, mock_md5):
mock_md5.return_value.hexdigest.return_value = 'train'
cache_files = dataset_util.get_cache_files_coco(
tasks_test_utils.get_test_data_path('coco_data'), cache_dir='/tmp/'
)
self.assertEqual(cache_files.cache_prefix, '/tmp/train')
self.assertLen(cache_files.tfrecord_files, 1)
self.assertEqual(
cache_files.tfrecord_files[0], '/tmp/train-00000-of-00001.tfrecord'
)
self.assertEqual(cache_files.meta_data_file, '/tmp/train_meta_data.yaml')
def test_matching_get_cache_files_coco(self):
cache_dir = self.create_tempdir()
coco_folder = tasks_test_utils.get_test_data_path('coco_data')
coco_folder_tmp = os.path.join(self.create_tempdir(), 'coco_data')
shutil.copytree(coco_folder, coco_folder_tmp)
cache_files1 = dataset_util.get_cache_files_coco(coco_folder, cache_dir)
cache_files2 = dataset_util.get_cache_files_coco(coco_folder, cache_dir)
self._assert_cache_files_equal(cache_files1, cache_files2)
cache_files3 = dataset_util.get_cache_files_coco(coco_folder_tmp, cache_dir)
self._assert_cache_files_equal(cache_files1, cache_files3)
def test_not_matching_get_cache_files_coco(self):
cache_dir = self.create_tempdir()
temp_dir = self.create_tempdir()
coco_folder = os.path.join(temp_dir, 'coco_data')
shutil.copytree(
tasks_test_utils.get_test_data_path('coco_data'), coco_folder
)
prev_cache_file = dataset_util.get_cache_files_coco(coco_folder, cache_dir)
os.chmod(coco_folder, 0o700)
os.chmod(os.path.join(coco_folder, 'images'), 0o700)
os.chmod(os.path.join(coco_folder, 'labels.json'), 0o700)
get_cache_files_and_assert_neq = self._get_cache_files_and_assert_neq_fn(
dataset_util.get_cache_files_coco
)
# Test adding image
test_utils.write_filled_jpeg_file(
os.path.join(coco_folder, 'images', 'test.jpg'), [0, 0, 0], 50
)
prev_cache_file = get_cache_files_and_assert_neq(
prev_cache_file, coco_folder, cache_dir
)
# Test modifying labels.json
with open(os.path.join(coco_folder, 'labels.json'), 'w') as f:
json.dump({'images': [{'id': 1, 'file_name': '000000000078.jpg'}]}, f)
prev_cache_file = get_cache_files_and_assert_neq(
prev_cache_file, coco_folder, cache_dir
)
# Test rename folder
new_coco_folder = os.path.join(temp_dir, 'coco_data_renamed')
shutil.move(coco_folder, new_coco_folder)
coco_folder = new_coco_folder
prev_cache_file = get_cache_files_and_assert_neq(
prev_cache_file, new_coco_folder, cache_dir
)
@unittest_mock.patch.object(hashlib, 'md5', autospec=True)
def test_get_cache_files_pascal_voc(self, mock_md5):
mock_md5.return_value.hexdigest.return_value = 'train'
cache_files = dataset_util.get_cache_files_pascal_voc(
tasks_test_utils.get_test_data_path('pascal_voc_data'),
cache_dir='/tmp/',
)
self.assertEqual(cache_files.cache_prefix, '/tmp/train')
self.assertLen(cache_files.tfrecord_files, 1)
self.assertEqual(
cache_files.tfrecord_files[0], '/tmp/train-00000-of-00001.tfrecord'
)
self.assertEqual(cache_files.meta_data_file, '/tmp/train_meta_data.yaml')
def test_matching_get_cache_files_pascal_voc(self):
cache_dir = self.create_tempdir()
pascal_folder = tasks_test_utils.get_test_data_path('pascal_voc_data')
pascal_folder_temp = os.path.join(self.create_tempdir(), 'pascal_voc_data')
shutil.copytree(pascal_folder, pascal_folder_temp)
cache_files1 = dataset_util.get_cache_files_pascal_voc(
pascal_folder, cache_dir
)
cache_files2 = dataset_util.get_cache_files_pascal_voc(
pascal_folder, cache_dir
)
self._assert_cache_files_equal(cache_files1, cache_files2)
cache_files3 = dataset_util.get_cache_files_pascal_voc(
pascal_folder_temp, cache_dir
)
self._assert_cache_files_equal(cache_files1, cache_files3)
def test_not_matching_get_cache_files_pascal_voc(self):
cache_dir = self.create_tempdir()
temp_dir = self.create_tempdir()
pascal_folder = os.path.join(temp_dir, 'pascal_voc_data')
shutil.copytree(
tasks_test_utils.get_test_data_path('pascal_voc_data'), pascal_folder
)
prev_cache_files = dataset_util.get_cache_files_pascal_voc(
pascal_folder, cache_dir
)
os.chmod(pascal_folder, 0o700)
os.chmod(os.path.join(pascal_folder, 'images'), 0o700)
os.chmod(os.path.join(pascal_folder, 'Annotations'), 0o700)
get_cache_files_and_assert_neq = self._get_cache_files_and_assert_neq_fn(
dataset_util.get_cache_files_pascal_voc
)
# Test adding xml file
with open(os.path.join(pascal_folder, 'Annotations', 'test.xml'), 'w') as f:
f.write('test')
prev_cache_files = get_cache_files_and_assert_neq(
prev_cache_files, pascal_folder, cache_dir
)
# Test rename folder
new_pascal_folder = os.path.join(temp_dir, 'pascal_voc_data_renamed')
shutil.move(pascal_folder, new_pascal_folder)
pascal_folder = new_pascal_folder
prev_cache_files = get_cache_files_and_assert_neq(
prev_cache_files, new_pascal_folder, cache_dir
)
def test_is_cached(self):
tempdir = self.create_tempdir()
cache_files = dataset_util.get_cache_files_coco(
tasks_test_utils.get_test_data_path('coco_data'), cache_dir=tempdir
)
self.assertFalse(dataset_util.is_cached(cache_files))
with open(cache_files.tfrecord_files[0], 'w') as f:
f.write('test')
self.assertFalse(dataset_util.is_cached(cache_files))
with open(cache_files.meta_data_file, 'w') as f:
f.write('test')
self.assertTrue(dataset_util.is_cached(cache_files))
def test_get_label_map_coco(self):
coco_dir = tasks_test_utils.get_test_data_path('coco_data')
label_map = dataset_util.get_label_map_coco(coco_dir)
all_keys = sorted(label_map.keys())
self.assertEqual(all_keys[0], 0)
self.assertEqual(all_keys[-1], 11)
self.assertLen(all_keys, 12)
def test_get_label_map_pascal_voc(self):
pascal_dir = tasks_test_utils.get_test_data_path('pascal_voc_data')
label_map = dataset_util.get_label_map_pascal_voc(pascal_dir)
all_keys = sorted(label_map.keys())
self.assertEqual(label_map[0], 'background')
self.assertEqual(all_keys[0], 0)
self.assertEqual(all_keys[-1], 2)
self.assertLen(all_keys, 3)
def _validate_cache_files(self, cache_files, expected_size):
# Checks the TFRecord file
self.assertTrue(os.path.isfile(cache_files.tfrecord_files[0]))
self.assertGreater(os.path.getsize(cache_files.tfrecord_files[0]), 0)
# Checks the meta_data file
self.assertTrue(os.path.isfile(cache_files.meta_data_file))
self.assertGreater(os.path.getsize(cache_files.meta_data_file), 0)
with tf.io.gfile.GFile(cache_files.meta_data_file, 'r') as f:
meta_data_dict = yaml.load(f, Loader=yaml.FullLoader)
# Size is 3 because some examples are skipped for having poor bboxes
self.assertEqual(meta_data_dict['size'], expected_size)
def test_coco_cache_files_writer(self):
tempdir = self.create_tempdir()
coco_dir = tasks_test_utils.get_test_data_path('coco_data')
label_map = dataset_util.get_label_map_coco(coco_dir)
cache_writer = dataset_util.COCOCacheFilesWriter(label_map)
cache_files = dataset_util.get_cache_files_coco(coco_dir, cache_dir=tempdir)
cache_writer.write_files(cache_files, coco_dir)
self._validate_cache_files(cache_files, 3)
def test_pascal_voc_cache_files_writer(self):
tempdir = self.create_tempdir()
pascal_dir = tasks_test_utils.get_test_data_path('pascal_voc_data')
label_map = dataset_util.get_label_map_pascal_voc(pascal_dir)
cache_writer = dataset_util.PascalVocCacheFilesWriter(label_map)
cache_files = dataset_util.get_cache_files_pascal_voc(
pascal_dir, cache_dir=tempdir
)
cache_writer.write_files(cache_files, pascal_dir)
self._validate_cache_files(cache_files, 4)
if __name__ == '__main__':
tf.test.main()

View File

@ -0,0 +1,101 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hyperparameters for training object detection models."""
import dataclasses
from typing import List
from mediapipe.model_maker.python.core import hyperparameters as hp
@dataclasses.dataclass
class HParams(hp.BaseHParams):
"""The hyperparameters for training object detectors.
Attributes:
learning_rate: Learning rate to use for gradient descent training.
batch_size: Batch size for training.
epochs: Number of training iterations over the dataset.
do_fine_tuning: If true, the base module is trained together with the
classification layer on top.
learning_rate_boundaries: List of epoch boundaries where
learning_rate_boundaries[i] is the epoch where the learning rate will
decay to learning_rate * learning_rate_decay_multipliers[i].
learning_rate_decay_multipliers: List of learning rate multipliers which
calculates the learning rate at the ith boundary as learning_rate *
learning_rate_decay_multipliers[i].
"""
# Parameters from BaseHParams class.
learning_rate: float = 0.003
batch_size: int = 32
epochs: int = 10
# Parameters for learning rate decay
learning_rate_boundaries: List[int] = dataclasses.field(
default_factory=lambda: [5, 8]
)
learning_rate_decay_multipliers: List[float] = dataclasses.field(
default_factory=lambda: [0.1, 0.01]
)
def __post_init__(self):
# Validate stepwise learning rate parameters
lr_boundary_len = len(self.learning_rate_boundaries)
lr_decay_multipliers_len = len(self.learning_rate_decay_multipliers)
if lr_boundary_len != lr_decay_multipliers_len:
raise ValueError(
"Length of learning_rate_boundaries and ",
"learning_rate_decay_multipliers do not match: ",
f"{lr_boundary_len}!={lr_decay_multipliers_len}",
)
# Validate learning_rate_boundaries
if sorted(self.learning_rate_boundaries) != self.learning_rate_boundaries:
raise ValueError(
"learning_rate_boundaries is not in ascending order: ",
self.learning_rate_boundaries,
)
if (
self.learning_rate_boundaries
and self.learning_rate_boundaries[-1] > self.epochs
):
raise ValueError(
"Values in learning_rate_boundaries cannot be greater ", "than epochs"
)
@dataclasses.dataclass
class QATHParams:
"""The hyperparameters for running quantization aware training (QAT) on object detectors.
For more information on QAT, see:
https://www.tensorflow.org/model_optimization/guide/quantization/training
Attributes:
learning_rate: Learning rate to use for gradient descent QAT.
batch_size: Batch size for QAT.
epochs: Number of training iterations over the dataset.
decay_steps: Learning rate decay steps for Exponential Decay. See
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
for more information.
decay_rate: Learning rate decay rate for Exponential Decay. See
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
for more information.
"""
learning_rate: float = 0.03
batch_size: int = 32
epochs: int = 10
decay_steps: int = 231
decay_rate: float = 0.96

View File

@ -0,0 +1,355 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Custom Model for Object Detection."""
import os
from typing import Mapping, Optional, Sequence, Union
import tensorflow as tf
from mediapipe.model_maker.python.vision.object_detector import model_options as model_opt
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from official.core import config_definitions as cfg
from official.projects.qat.vision.configs import common as qat_common
from official.projects.qat.vision.modeling import factory as qat_factory
from official.vision import configs
from official.vision.losses import focal_loss
from official.vision.losses import loss_utils
from official.vision.modeling import factory
from official.vision.modeling import retinanet_model
from official.vision.modeling.layers import detection_generator
from official.vision.serving import detection
class ObjectDetectorModel(tf.keras.Model):
"""An object detector model which can be trained using Model Maker's training API.
Attributes:
loss_trackers: List of tf.keras.metrics.Mean objects used to track the loss
during training.
"""
def __init__(
self,
model_spec: ms.ModelSpec,
model_options: model_opt.ObjectDetectorModelOptions,
num_classes: int,
) -> None:
"""Initializes an ObjectDetectorModel.
Args:
model_spec: Specification for the model.
model_options: Model options for creating the model.
num_classes: Number of classes for object detection.
"""
super().__init__()
self._model_spec = model_spec
self._model_options = model_options
self._num_classes = num_classes
self._model = self._build_model()
checkpoint_folder = self._model_spec.downloaded_files.get_path()
checkpoint_file = os.path.join(checkpoint_folder, 'ckpt-277200')
self.load_checkpoint(checkpoint_file)
self._model.summary()
self.loss_trackers = [
tf.keras.metrics.Mean(name=n)
for n in ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
]
def _get_model_config(
self,
generator_config: configs.retinanet.DetectionGenerator = configs.retinanet.DetectionGenerator(),
) -> configs.retinanet.RetinaNet:
model_config = configs.retinanet.RetinaNet(
min_level=3,
max_level=7,
num_classes=self._num_classes,
input_size=self._model_spec.input_image_shape,
anchor=configs.retinanet.Anchor(
num_scales=3, aspect_ratios=[0.5, 1.0, 2.0], anchor_size=3
),
backbone=configs.backbones.Backbone(
type='mobilenet', mobilenet=configs.backbones.MobileNet()
),
decoder=configs.decoders.Decoder(
type='fpn',
fpn=configs.decoders.FPN(
num_filters=128, use_separable_conv=True, use_keras_layer=True
),
),
head=configs.retinanet.RetinaNetHead(
num_filters=128, use_separable_conv=True
),
detection_generator=generator_config,
norm_activation=configs.common.NormActivation(activation='relu6'),
)
return model_config
def _build_model(self) -> tf.keras.Model:
"""Builds a RetinaNet object detector model."""
input_specs = tf.keras.layers.InputSpec(
shape=[None] + self._model_spec.input_image_shape
)
l2_regularizer = tf.keras.regularizers.l2(
self._model_options.l2_weight_decay / 2.0
)
model_config = self._get_model_config()
return factory.build_retinanet(input_specs, model_config, l2_regularizer)
def save_checkpoint(self, checkpoint_path: str) -> None:
"""Saves a model checkpoint to checkpoint_path.
Args:
checkpoint_path: The path to save checkpoint.
"""
ckpt_items = {
'backbone': self._model.backbone,
'decoder': self._model.decoder,
'head': self._model.head,
}
tf.train.Checkpoint(**ckpt_items).write(checkpoint_path)
def load_checkpoint(
self, checkpoint_path: str, include_last_layer: bool = False
) -> None:
"""Loads a model checkpoint from checkpoint_path.
Args:
checkpoint_path: The path to load a checkpoint from.
include_last_layer: Whether or not to load the last classification layer.
The size of the last classification layer will differ depending on the
number of classes. When loading from the pre-trained checkpoint, this
parameter should be False to avoid shape mismatch on the last layer.
Defaults to False.
"""
dummy_input = tf.zeros([1] + self._model_spec.input_image_shape)
self._model(dummy_input, training=True)
if include_last_layer:
head = self._model.head
else:
head_classifier = tf.train.Checkpoint(
depthwise_kernel=self._model.head._classifier.depthwise_kernel # pylint:disable=protected-access
)
head_items = {
'_classifier': head_classifier,
'_box_norms': self._model.head._box_norms, # pylint:disable=protected-access
'_box_regressor': self._model.head._box_regressor, # pylint:disable=protected-access
'_cls_convs': self._model.head._cls_convs, # pylint:disable=protected-access
'_cls_norms': self._model.head._cls_norms, # pylint:disable=protected-access
'_box_convs': self._model.head._box_convs, # pylint:disable=protected-access
}
head = tf.train.Checkpoint(**head_items)
ckpt_items = {
'backbone': self._model.backbone,
'decoder': self._model.decoder,
'head': head,
}
ckpt = tf.train.Checkpoint(**ckpt_items)
status = ckpt.read(checkpoint_path)
status.expect_partial().assert_existing_objects_matched()
def convert_to_qat(self) -> None:
"""Converts the model to a QAT RetinaNet model."""
model = self._build_model()
dummy_input = tf.zeros([1] + self._model_spec.input_image_shape)
model(dummy_input, training=True)
model.set_weights(self._model.get_weights())
quantization_config = qat_common.Quantization(
quantize_detection_decoder=True, quantize_detection_head=True
)
model_config = self._get_model_config()
qat_model = qat_factory.build_qat_retinanet(
model, quantization_config, model_config
)
self._model = qat_model
def export_saved_model(self, save_path: str):
"""Exports a saved_model for tflite conversion.
The export process modifies the model in the following two ways:
1. Replaces the nms operation in the detection generator with a custom
TFLite compatible nms operation.
2. Wraps the model with a DetectionModule which handles pre-processing
and post-processing when running inference.
Args:
save_path: Path to export the saved model.
"""
generator_config = configs.retinanet.DetectionGenerator(
nms_version='tflite',
tflite_post_processing=configs.common.TFLitePostProcessingConfig(
nms_score_threshold=0,
max_detections=10,
max_classes_per_detection=1,
normalize_anchor_coordinates=True,
),
)
tflite_post_processing_config = (
generator_config.tflite_post_processing.as_dict()
)
tflite_post_processing_config['input_image_size'] = (
self._model_spec.input_image_shape[0],
self._model_spec.input_image_shape[1],
)
detection_generator_obj = detection_generator.MultilevelDetectionGenerator(
apply_nms=generator_config.apply_nms,
pre_nms_top_k=generator_config.pre_nms_top_k,
pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
nms_iou_threshold=generator_config.nms_iou_threshold,
max_num_detections=generator_config.max_num_detections,
nms_version=generator_config.nms_version,
use_cpu_nms=generator_config.use_cpu_nms,
soft_nms_sigma=generator_config.soft_nms_sigma,
tflite_post_processing_config=tflite_post_processing_config,
return_decoded=generator_config.return_decoded,
use_class_agnostic_nms=generator_config.use_class_agnostic_nms,
)
model_config = self._get_model_config(generator_config)
model = retinanet_model.RetinaNetModel(
self._model.backbone,
self._model.decoder,
self._model.head,
detection_generator_obj,
min_level=model_config.min_level,
max_level=model_config.max_level,
num_scales=model_config.anchor.num_scales,
aspect_ratios=model_config.anchor.aspect_ratios,
anchor_size=model_config.anchor.anchor_size,
)
task_config = configs.retinanet.RetinaNetTask(model=model_config)
params = cfg.ExperimentConfig(
task=task_config,
)
export_module = detection.DetectionModule(
params=params,
batch_size=1,
input_image_size=self._model_spec.input_image_shape[:2],
input_type='tflite',
num_channels=self._model_spec.input_image_shape[2],
model=model,
)
function_keys = {'tflite': tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY}
signatures = export_module.get_inference_signatures(function_keys)
tf.saved_model.save(export_module, save_path, signatures=signatures)
# The remaining method overrides are used to train this object detector model
# using model.fit().
def call(
self,
images: Union[tf.Tensor, Sequence[tf.Tensor]],
image_shape: Optional[tf.Tensor] = None,
anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
output_intermediate_features: bool = False,
training: bool = None,
) -> Mapping[str, tf.Tensor]:
"""Overrides call from tf.keras.Model."""
return self._model(
images,
image_shape,
anchor_boxes,
output_intermediate_features,
training,
)
def compute_loss(self, x=None, y=None, y_pred=None, sample_weight=None):
"""Overrides compute_loss from tf.keras.Model."""
cls_loss_fn = focal_loss.FocalLoss(
alpha=0.25, gamma=1.5, reduction=tf.keras.losses.Reduction.SUM
)
box_loss_fn = tf.keras.losses.Huber(
0.1, reduction=tf.keras.losses.Reduction.SUM
)
labels = y
outputs = y_pred
# Sums all positives in a batch for normalization and avoids zero
# num_positives_sum, which would lead to inf loss during training
cls_sample_weight = labels['cls_weights']
box_sample_weight = labels['box_weights']
num_positives = tf.reduce_sum(box_sample_weight) + 1.0
cls_sample_weight = cls_sample_weight / num_positives
box_sample_weight = box_sample_weight / num_positives
y_true_cls = loss_utils.multi_level_flatten(
labels['cls_targets'], last_dim=None
)
y_true_cls = tf.one_hot(y_true_cls, self._num_classes)
y_pred_cls = loss_utils.multi_level_flatten(
outputs['cls_outputs'], last_dim=self._num_classes
)
y_true_box = loss_utils.multi_level_flatten(
labels['box_targets'], last_dim=4
)
y_pred_box = loss_utils.multi_level_flatten(
outputs['box_outputs'], last_dim=4
)
cls_loss = cls_loss_fn(
y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight
)
box_loss = box_loss_fn(
y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight
)
model_loss = cls_loss + 50 * box_loss
total_loss = model_loss
regularization_losses = self._model.losses
if regularization_losses:
reg_loss = tf.reduce_sum(regularization_losses)
total_loss = model_loss + reg_loss
all_losses = {
'total_loss': total_loss,
'cls_loss': cls_loss,
'box_loss': box_loss,
'model_loss': model_loss,
}
for m in self.metrics:
m.update_state(all_losses[m.name])
return total_loss
@property
def metrics(self):
"""Overrides metrics from tf.keras.Model."""
return self.loss_trackers
def compute_metrics(self, x, y, y_pred, sample_weight=None):
"""Overrides compute_metrics from tf.keras.Model."""
return self.get_metrics_result()
def train_step(self, data):
"""Overrides train_step from tf.keras.Model."""
tf.keras.backend.set_learning_phase(1)
x, y = data
# Run forward pass.
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
loss = self.compute_loss(x, y, y_pred)
self._validate_target_and_loss(y, loss)
# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
return self.compute_metrics(x, y, y_pred)
def test_step(self, data):
"""Overrides test_step from tf.keras.Model."""
tf.keras.backend.set_learning_phase(0)
x, y = data
y_pred = self(
x,
anchor_boxes=y['anchor_boxes'],
image_shape=y['image_info'][:, 1, :],
training=False,
)
# Updates stateful loss metrics.
self.compute_loss(x, y, y_pred)
return self.compute_metrics(x, y, y_pred)

View File

@ -0,0 +1,28 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Configurable model options for object detector models."""
import dataclasses
@dataclasses.dataclass
class ObjectDetectorModelOptions:
"""Configurable options for object detector model.
Attributes:
l2_weight_decay: L2 regularization penalty used in
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/L2.
"""
l2_weight_decay: float = 3.0e-05

View File

@ -0,0 +1,62 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Object detector model specification."""
import dataclasses
import enum
import functools
from typing import List
from mediapipe.model_maker.python.core.utils import file_util
MOBILENET_V2_FILES = file_util.DownloadedFiles(
'object_detector/mobilenetv2',
'https://storage.googleapis.com/tf_model_garden/vision/qat/mobilenetv2_ssd_coco/mobilenetv2_ssd_i256_ckpt.tar.gz',
is_folder=True,
)
@dataclasses.dataclass
class ModelSpec(object):
"""Specification of object detector model."""
# Mean and Stddev image preprocessing normalization values.
mean_norm = (0.5,)
stddev_norm = (0.5,)
mean_rgb = (127.5,)
stddev_rgb = (127.5,)
downloaded_files: file_util.DownloadedFiles
input_image_shape: List[int]
mobilenet_v2_spec = functools.partial(
ModelSpec,
downloaded_files=MOBILENET_V2_FILES,
input_image_shape=[256, 256, 3],
)
@enum.unique
class SupportedModels(enum.Enum):
"""Predefined object detector model specs supported by Model Maker."""
MOBILENET_V2 = mobilenet_v2_spec
@classmethod
def get(cls, spec: 'SupportedModels') -> 'ModelSpec':
"""Get model spec from the input enum and initializes it."""
if spec not in cls:
raise TypeError(f'Unsupported object detector spec: {spec}')
return spec.value()

View File

@ -0,0 +1,147 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
from unittest import mock as unittest_mock
import numpy as np
import tensorflow as tf
from mediapipe.model_maker.python.vision.object_detector import dataset as ds
from mediapipe.model_maker.python.vision.object_detector import model as model_lib
from mediapipe.model_maker.python.vision.object_detector import model_options as model_opt
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from mediapipe.model_maker.python.vision.object_detector import preprocessor
from mediapipe.tasks.python.test import test_utils as task_test_utils
def _dicts_match(dict_1, dict_2):
for key in dict_1:
if key not in dict_2 or np.any(dict_1[key] != dict_2[key]):
return False
return True
def _outputs_match(output1, output2):
return _dicts_match(
output1['cls_outputs'], output2['cls_outputs']
) and _dicts_match(output1['box_outputs'], output2['box_outputs'])
class ObjectDetectorModelTest(tf.test.TestCase):
def setUp(self):
super().setUp()
dataset_folder = task_test_utils.get_test_data_path('coco_data')
cache_dir = self.create_tempdir()
self.data = ds.Dataset.from_coco_folder(dataset_folder, cache_dir=cache_dir)
self.model_spec = ms.SupportedModels.MOBILENET_V2.value()
self.preprocessor = preprocessor.Preprocessor(self.model_spec)
self.fake_inputs = np.random.uniform(
low=0, high=1, size=(1, 256, 256, 3)
).astype(np.float32)
# Mock tempfile.gettempdir() to be unique for each test to avoid race
# condition when downloading model since these tests may run in parallel.
mock_gettempdir = unittest_mock.patch.object(
tempfile,
'gettempdir',
return_value=self.create_tempdir(),
autospec=True,
)
self.mock_gettempdir = mock_gettempdir.start()
self.addCleanup(mock_gettempdir.stop)
def _create_model(self):
model_options = model_opt.ObjectDetectorModelOptions()
model = model_lib.ObjectDetectorModel(
self.model_spec, model_options, self.data.num_classes
)
return model
def _train_model(self, model):
"""Helper to run a simple training run on the model."""
dataset = self.data.gen_tf_dataset(
batch_size=2,
is_training=True,
shuffle=False,
preprocess=self.preprocessor,
)
optimizer = tf.keras.optimizers.experimental.SGD(
learning_rate=0.03, momentum=0.9
)
model.compile(optimizer=optimizer)
model.fit(
x=dataset, epochs=2, steps_per_epoch=None, validation_data=dataset
)
def test_model(self):
model = self._create_model()
outputs_before = model(self.fake_inputs, training=True)
self._train_model(model)
outputs_after = model(self.fake_inputs, training=True)
self.assertFalse(_outputs_match(outputs_before, outputs_after))
def test_model_convert_to_qat(self):
model_options = model_opt.ObjectDetectorModelOptions()
model = model_lib.ObjectDetectorModel(
self.model_spec, model_options, self.data.num_classes
)
outputs_before = model(self.fake_inputs, training=True)
model.convert_to_qat()
outputs_after = model(self.fake_inputs, training=True)
self.assertFalse(_outputs_match(outputs_before, outputs_after))
outputs_before = outputs_after
self._train_model(model)
outputs_after = model(self.fake_inputs, training=True)
self.assertFalse(_outputs_match(outputs_before, outputs_after))
def test_model_save_and_load_checkpoint(self):
model = self._create_model()
checkpoint_path = os.path.join(self.create_tempdir(), 'ckpt')
model.save_checkpoint(checkpoint_path)
data_checkpoint_file = checkpoint_path + '.data-00000-of-00001'
index_checkpoint_file = checkpoint_path + '.index'
self.assertTrue(os.path.exists(data_checkpoint_file))
self.assertTrue(os.path.exists(index_checkpoint_file))
self.assertGreater(os.path.getsize(data_checkpoint_file), 0)
self.assertGreater(os.path.getsize(index_checkpoint_file), 0)
outputs_before = model(self.fake_inputs, training=True)
# Check model output is different after training
self._train_model(model)
outputs_after = model(self.fake_inputs, training=True)
self.assertFalse(_outputs_match(outputs_before, outputs_after))
# Check model output is the same after loading previous checkpoint
model.load_checkpoint(checkpoint_path, include_last_layer=True)
outputs_after = model(self.fake_inputs, training=True)
self.assertTrue(_outputs_match(outputs_before, outputs_after))
def test_export_saved_model(self):
export_dir = self.create_tempdir()
export_path = os.path.join(export_dir, 'saved_model')
model = self._create_model()
model.export_saved_model(export_path)
self.assertTrue(os.path.exists(export_path))
self.assertGreater(os.path.getsize(export_path), 0)
model.convert_to_qat()
export_path = os.path.join(export_dir, 'saved_model_qat')
model.export_saved_model(export_path)
self.assertTrue(os.path.exists(export_path))
self.assertGreater(os.path.getsize(export_path), 0)
if __name__ == '__main__':
tf.test.main()

View File

@ -0,0 +1,353 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""APIs to train object detector model."""
import os
import tempfile
from typing import Dict, List, Optional, Tuple
import tensorflow as tf
from mediapipe.model_maker.python.core.tasks import classifier
from mediapipe.model_maker.python.core.utils import model_util
from mediapipe.model_maker.python.core.utils import quantization
from mediapipe.model_maker.python.vision.object_detector import dataset as ds
from mediapipe.model_maker.python.vision.object_detector import hyperparameters as hp
from mediapipe.model_maker.python.vision.object_detector import model as model_lib
from mediapipe.model_maker.python.vision.object_detector import model_options as model_opt
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from mediapipe.model_maker.python.vision.object_detector import object_detector_options
from mediapipe.model_maker.python.vision.object_detector import preprocessor
from mediapipe.tasks.python.metadata.metadata_writers import metadata_writer
from mediapipe.tasks.python.metadata.metadata_writers import object_detector as object_detector_writer
from official.vision.evaluation import coco_evaluator
class ObjectDetector(classifier.Classifier):
"""ObjectDetector for building object detection model."""
def __init__(
self,
model_spec: ms.ModelSpec,
label_names: List[str],
hparams: hp.HParams,
model_options: model_opt.ObjectDetectorModelOptions,
) -> None:
"""Initializes ObjectDetector class.
Args:
model_spec: Specifications for the model.
label_names: A list of label names for the classes.
hparams: The hyperparameters for training object detector.
model_options: Options for creating the object detector model.
"""
super().__init__(
model_spec=model_spec, label_names=label_names, shuffle=hparams.shuffle
)
self._preprocessor = preprocessor.Preprocessor(model_spec)
self._hparams = hparams
self._model_options = model_options
self._optimizer = self._create_optimizer()
self._is_qat = False
@classmethod
def create(
cls,
train_data: ds.Dataset,
validation_data: ds.Dataset,
options: object_detector_options.ObjectDetectorOptions,
) -> 'ObjectDetector':
"""Creates and trains an ObjectDetector.
Loads data and trains the model based on data for object detection.
Args:
train_data: Training data.
validation_data: Validation data.
options: Configurations for creating and training object detector.
Returns:
An instance of ObjectDetector.
"""
if options.hparams is None:
options.hparams = hp.HParams()
if options.model_options is None:
options.model_options = model_opt.ObjectDetectorModelOptions()
spec = ms.SupportedModels.get(options.supported_model)
object_detector = cls(
model_spec=spec,
label_names=train_data.label_names,
hparams=options.hparams,
model_options=options.model_options,
)
object_detector._create_and_train_model(train_data, validation_data)
return object_detector
def _create_and_train_model(
self, train_data: ds.Dataset, validation_data: ds.Dataset
):
"""Creates and trains the model.
Args:
train_data: Training data.
validation_data: Validation data.
"""
self._create_model()
self._train_model(
train_data, validation_data, preprocessor=self._preprocessor
)
self._save_float_ckpt()
def _create_model(self) -> None:
"""Creates the object detector model."""
self._model = model_lib.ObjectDetectorModel(
model_spec=self._model_spec,
model_options=self._model_options,
num_classes=self._num_classes,
)
def _save_float_ckpt(self) -> None:
"""Saves a checkpoint of the trained float model.
The default save path is {hparams.export_dir}/float_ckpt. Note that
`float_cpt` represents a file prefix, not directory. The resulting files
saved to {hparams.export_dir} will be:
- float_ckpt.data-00000-of-00001
- float_ckpt.index
"""
save_path = os.path.join(self._hparams.export_dir, 'float_ckpt')
if not os.path.exists(self._hparams.export_dir):
os.makedirs(self._hparams.export_dir)
self._model.save_checkpoint(save_path)
def restore_float_ckpt(self) -> None:
"""Loads a float checkpoint of the model from {hparams.export_dir}/float_ckpt.
The float checkpoint at {hparams.export_dir}/float_ckpt is automatically
saved after training an ObjectDetector using the `create` method. This
method is used to restore the trained float checkpoint state of the model in
order to run `quantization_aware_training` multiple times. Example usage:
# Train a model
model = object_detector.create(...)
# Run QAT
model.quantization_aware_training(...)
model.evaluate(...)
# Restore the float checkpoint to run QAT again
model.restore_float_ckpt()
# Run QAT with different parameters
model.quantization_aware_training(...)
model.evaluate(...)
"""
self._create_model()
self._model.load_checkpoint(
os.path.join(self._hparams.export_dir, 'float_ckpt'),
include_last_layer=True,
)
self._model.compile()
self._is_qat = False
# TODO: Refactor this method to utilize shared training function
def quantization_aware_training(
self,
train_data: ds.Dataset,
validation_data: ds.Dataset,
qat_hparams: hp.QATHParams,
) -> None:
"""Runs quantization aware training(QAT) on the model.
The QAT step happens after training a regular float model from the `create`
method. This additional step will fine-tune the model with a lower precision
in order mimic the behavior of a quantized model. The resulting quantized
model generally has better performance than a model which is quantized
without running QAT. See the following link for more information:
- https://www.tensorflow.org/model_optimization/guide/quantization/training
Just like training the float model using the `create` method, the QAT step
also requires some manual tuning of hyperparameters. In order to run QAT
more than once for purposes such as hyperparameter tuning, use the
`restore_float_ckpt` method to restore the model state to the trained float
checkpoint without having to rerun the `create` method.
Args:
train_data: Training dataset.
validation_data: Validaiton dataset.
qat_hparams: Configuration for QAT.
"""
self._model.convert_to_qat()
learning_rate_fn = tf.keras.optimizers.schedules.ExponentialDecay(
qat_hparams.learning_rate * qat_hparams.batch_size / 256,
decay_steps=qat_hparams.decay_steps,
decay_rate=qat_hparams.decay_rate,
staircase=True,
)
optimizer = tf.keras.optimizers.experimental.SGD(
learning_rate=learning_rate_fn, momentum=0.9
)
if len(train_data) < qat_hparams.batch_size:
raise ValueError(
f"The size of the train_data {len(train_data)} can't be smaller than"
f' batch_size {qat_hparams.batch_size}. To solve this problem, set'
' the batch_size smaller or increase the size of the train_data.'
)
train_dataset = train_data.gen_tf_dataset(
batch_size=qat_hparams.batch_size,
is_training=True,
shuffle=self._shuffle,
preprocess=self._preprocessor,
)
steps_per_epoch = model_util.get_steps_per_epoch(
steps_per_epoch=None,
batch_size=qat_hparams.batch_size,
train_data=train_data,
)
train_dataset = train_dataset.take(count=steps_per_epoch)
validation_dataset = validation_data.gen_tf_dataset(
batch_size=qat_hparams.batch_size,
is_training=False,
preprocess=self._preprocessor,
)
self._model.compile(optimizer=optimizer)
self._model.fit(
x=train_dataset,
epochs=qat_hparams.epochs,
steps_per_epoch=None,
validation_data=validation_dataset,
)
self._is_qat = True
def evaluate(
self, dataset: ds.Dataset, batch_size: int = 1
) -> Tuple[List[float], Dict[str, float]]:
"""Overrides Classifier.evaluate to calculate COCO metrics."""
dataset = dataset.gen_tf_dataset(
batch_size, is_training=False, preprocess=self._preprocessor
)
losses = self._model.evaluate(dataset)
coco_eval = coco_evaluator.COCOEvaluator(
annotation_file=None,
include_mask=False,
per_category_metrics=True,
max_num_eval_detections=100,
)
for batch in dataset:
x, y = batch
y_pred = self._model(
x,
anchor_boxes=y['anchor_boxes'],
image_shape=y['image_info'][:, 1, :],
training=False,
)
groundtruths = y['groundtruths']
y_pred['image_info'] = groundtruths['image_info']
y_pred['source_id'] = groundtruths['source_id']
coco_eval.update_state(groundtruths, y_pred)
coco_metrics = coco_eval.result()
return losses, coco_metrics
def export_model(
self,
model_name: str = 'model.tflite',
quantization_config: Optional[quantization.QuantizationConfig] = None,
):
"""Converts and saves the model to a TFLite file with metadata included.
The model export format is automatically set based on whether or not
`quantization_aware_training`(QAT) was run. The model exports to float32 by
default and will export to an int8 quantized model if QAT was run. To export
a float32 model after running QAT, run `restore_float_ckpt` before this
method. For custom post-training quantization without QAT, use the
quantization_config parameter.
Note that only the TFLite file is needed for deployment. This function also
saves a metadata.json file to the same directory as the TFLite file which
can be used to interpret the metadata content in the TFLite file.
Args:
model_name: File name to save TFLite model with metadata. The full export
path is {self._hparams.export_dir}/{model_name}.
quantization_config: The configuration for model quantization. Note that
int8 quantization aware training is automatically applied when possible.
This parameter is used to specify other post-training quantization
options such as fp16 and int8 without QAT.
Raises:
ValueError: If a custom quantization_config is specified when the model
has quantization aware training enabled.
"""
if quantization_config:
if self._is_qat:
raise ValueError(
'Exporting a qat model with a custom quantization_config is not '
'supported.'
)
else:
print(
'Exporting with custom post-training-quantization: ',
quantization_config,
)
else:
if self._is_qat:
print('Exporting a qat int8 model')
quantization_config = quantization.QuantizationConfig(
inference_input_type=tf.uint8, inference_output_type=tf.uint8
)
else:
print('Exporting a floating point model')
tflite_file = os.path.join(self._hparams.export_dir, model_name)
metadata_file = os.path.join(self._hparams.export_dir, 'metadata.json')
with tempfile.TemporaryDirectory() as temp_dir:
save_path = os.path.join(temp_dir, 'saved_model')
self._model.export_saved_model(save_path)
converter = tf.lite.TFLiteConverter.from_saved_model(save_path)
if quantization_config:
converter = quantization_config.set_converter_with_quantization(
converter, preprocess=self._preprocessor
)
converter.target_spec.supported_ops = (tf.lite.OpsSet.TFLITE_BUILTINS,)
tflite_model = converter.convert()
writer = object_detector_writer.MetadataWriter.create(
tflite_model,
self._model_spec.mean_rgb,
self._model_spec.stddev_rgb,
labels=metadata_writer.Labels().add(list(self._label_names)),
)
tflite_model_with_metadata, metadata_json = writer.populate()
model_util.save_tflite(tflite_model_with_metadata, tflite_file)
with open(metadata_file, 'w') as f:
f.write(metadata_json)
def _create_optimizer(self) -> tf.keras.optimizers.Optimizer:
"""Creates an optimizer with learning rate schedule for regular training.
Uses Keras PiecewiseConstantDecay schedule by default.
Returns:
A tf.keras.optimizer.Optimizer for model training.
"""
init_lr = self._hparams.learning_rate * self._hparams.batch_size / 256
lr_values = [init_lr] + [
init_lr * m for m in self._hparams.learning_rate_decay_multipliers
]
learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
self._hparams.learning_rate_boundaries, lr_values
)
return tf.keras.optimizers.experimental.SGD(
learning_rate=learning_rate_fn, momentum=0.9
)

View File

@ -0,0 +1,84 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Demo for making an object detector model by MediaPipe Model Maker."""
import os
# Dependency imports
from absl import app
from absl import flags
from absl import logging
from mediapipe.model_maker.python.vision import object_detector
FLAGS = flags.FLAGS
TEST_DATA_DIR = 'mediapipe/model_maker/python/vision/object_detector/testdata/coco_data'
def define_flags() -> None:
"""Define flags for the object detection model maker demo."""
flags.DEFINE_string(
'export_dir', None, 'The directory to save exported files.'
)
flags.DEFINE_string(
'input_data_dir',
None,
"""The directory with input training data. If the training data is not
specified, the pipeline will use the test dataset.""",
)
flags.DEFINE_bool('qat', True, 'Whether or not to do QAT.')
flags.mark_flag_as_required('export_dir')
def run(data_dir: str, export_dir: str, qat: bool):
"""Runs demo."""
data = object_detector.Dataset.from_coco_folder(data_dir)
train_data, rest_data = data.split(0.6)
validation_data, test_data = rest_data.split(0.5)
hparams = object_detector.HParams(batch_size=1, export_dir=export_dir)
options = object_detector.ObjectDetectorOptions(
supported_model=object_detector.SupportedModels.MOBILENET_V2,
hparams=hparams,
)
model = object_detector.ObjectDetector.create(
train_data=train_data, validation_data=validation_data, options=options
)
loss, coco_metrics = model.evaluate(test_data, batch_size=1)
print(f'Evaluation loss:{loss}, coco_metrics:{coco_metrics}')
if qat:
qat_hparams = object_detector.QATHParams(batch_size=1)
model.quantization_aware_training(train_data, validation_data, qat_hparams)
qat_loss, qat_coco_metrics = model.evaluate(test_data, batch_size=1)
print(f'QAT Evaluation loss:{qat_loss}, coco_metrics:{qat_coco_metrics}')
model.export_model()
def main(_) -> None:
logging.set_verbosity(logging.INFO)
if FLAGS.input_data_dir is None:
data_dir = os.path.join(FLAGS.test_srcdir, TEST_DATA_DIR)
else:
data_dir = FLAGS.input_data_dir
export_dir = os.path.expanduser(FLAGS.export_dir)
run(data_dir=data_dir, export_dir=export_dir, qat=FLAGS.qat)
if __name__ == '__main__':
define_flags()
app.run(main)

View File

@ -0,0 +1,36 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Options for building object detector."""
import dataclasses
from typing import Optional
from mediapipe.model_maker.python.vision.object_detector import hyperparameters
from mediapipe.model_maker.python.vision.object_detector import model_options as model_opt
from mediapipe.model_maker.python.vision.object_detector import model_spec
@dataclasses.dataclass
class ObjectDetectorOptions:
"""Configurable options for building object detector.
Attributes:
supported_model: A model from the SupportedModels enum.
model_options: A set of options for configuring the selected model.
hparams: A set of hyperparameters used to train the object detector.
"""
supported_model: model_spec.SupportedModels
model_options: Optional[model_opt.ObjectDetectorModelOptions] = None
hparams: Optional[hyperparameters.HParams] = None

View File

@ -0,0 +1,121 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
from unittest import mock as unittest_mock
from absl.testing import parameterized
import tensorflow as tf
from mediapipe.model_maker.python.vision.object_detector import dataset
from mediapipe.model_maker.python.vision.object_detector import hyperparameters
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from mediapipe.model_maker.python.vision.object_detector import object_detector
from mediapipe.model_maker.python.vision.object_detector import object_detector_options
from mediapipe.tasks.python.test import test_utils as task_test_utils
class ObjectDetectorTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super().setUp()
dataset_folder = task_test_utils.get_test_data_path('coco_data')
cache_dir = self.create_tempdir()
self.data = dataset.Dataset.from_coco_folder(
dataset_folder, cache_dir=cache_dir
)
# Mock tempfile.gettempdir() to be unique for each test to avoid race
# condition when downloading model since these tests may run in parallel.
mock_gettempdir = unittest_mock.patch.object(
tempfile,
'gettempdir',
return_value=self.create_tempdir(),
autospec=True,
)
self.mock_gettempdir = mock_gettempdir.start()
self.addCleanup(mock_gettempdir.stop)
def test_object_detector(self):
hparams = hyperparameters.HParams(
epochs=10,
batch_size=2,
learning_rate=0.9,
shuffle=False,
export_dir=self.create_tempdir(),
)
options = object_detector_options.ObjectDetectorOptions(
supported_model=ms.SupportedModels.MOBILENET_V2, hparams=hparams
)
# Test `create``
model = object_detector.ObjectDetector.create(
train_data=self.data, validation_data=self.data, options=options
)
losses, coco_metrics = model.evaluate(self.data)
self._assert_ap_greater(coco_metrics)
self.assertFalse(model._is_qat)
# Test float export_model
model.export_model()
output_metadata_file = os.path.join(
options.hparams.export_dir, 'metadata.json'
)
output_tflite_file = os.path.join(
options.hparams.export_dir, 'model.tflite'
)
print('ASDF float', os.path.getsize(output_tflite_file))
self.assertTrue(os.path.exists(output_tflite_file))
self.assertGreater(os.path.getsize(output_tflite_file), 0)
self.assertTrue(os.path.exists(output_metadata_file))
self.assertGreater(os.path.getsize(output_metadata_file), 0)
# Test `quantization_aware_training`
qat_hparams = hyperparameters.QATHParams(
learning_rate=0.9,
batch_size=2,
epochs=5,
decay_steps=6,
decay_rate=0.96,
)
model.quantization_aware_training(self.data, self.data, qat_hparams)
qat_losses, qat_coco_metrics = model.evaluate(self.data)
self._assert_ap_greater(qat_coco_metrics)
self.assertNotAllEqual(losses, qat_losses)
self.assertTrue(model._is_qat)
model.export_model('model_qat.tflite')
output_metadata_file = os.path.join(
options.hparams.export_dir, 'metadata.json'
)
output_tflite_file = os.path.join(
options.hparams.export_dir, 'model_qat.tflite'
)
print('ASDF qat', os.path.getsize(output_tflite_file))
self.assertTrue(os.path.exists(output_tflite_file))
self.assertGreater(os.path.getsize(output_tflite_file), 0)
self.assertLess(os.path.getsize(output_tflite_file), 3500000)
self.assertTrue(os.path.exists(output_metadata_file))
self.assertGreater(os.path.getsize(output_metadata_file), 0)
# Load float ckpt test
model.restore_float_ckpt()
losses_2, _ = model.evaluate(self.data)
self.assertAllEqual(losses, losses_2)
self.assertNotAllEqual(qat_losses, losses_2)
self.assertFalse(model._is_qat)
def _assert_ap_greater(self, coco_metrics, threshold=0.0):
self.assertGreaterEqual(coco_metrics['AP'], threshold)
if __name__ == '__main__':
tf.test.main()

View File

@ -0,0 +1,163 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessor for object detector."""
from typing import Any, Mapping, Tuple
import tensorflow as tf
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from official.vision.dataloaders import utils
from official.vision.ops import anchor
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
# TODO Combine preprocessing logic with image_preprocessor.
class Preprocessor(object):
"""Preprocessor for object detector."""
def __init__(self, model_spec: ms.ModelSpec):
"""Initialize a Preprocessor."""
self._mean_norm = model_spec.mean_norm
self._stddev_norm = model_spec.stddev_norm
self._output_size = model_spec.input_image_shape[:2]
self._min_level = 3
self._max_level = 7
self._num_scales = 3
self._aspect_ratios = [0.5, 1, 2]
self._anchor_size = 3
self._dtype = tf.float32
self._match_threshold = 0.5
self._unmatched_threshold = 0.5
self._aug_scale_min = 0.5
self._aug_scale_max = 2.0
self._max_num_instances = 100
def __call__(
self, data: Mapping[str, Any], is_training: bool = True
) -> Tuple[tf.Tensor, Mapping[str, Any]]:
"""Run the preprocessor on an example.
The data dict should contain the following keys always:
- image
- groundtruth_classes
- groundtruth_boxes
- groundtruth_is_crowd
Additional keys needed when is_training is set to True:
- groundtruth_area
- source_id
- height
- width
Args:
data: A dict of object detector inputs.
is_training: Whether or not the data is used for training.
Returns:
A tuple of (image, labels) where image is a Tensor and labels is a dict.
"""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# Get original image.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalize image with mean and std pixel values.
image = preprocess_ops.normalize_image(
image, self._mean_norm, self._stddev_norm
)
# Flip image randomly during training.
if is_training:
image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)
# Convert boxes from normalized coordinates to pixel coordinates.
boxes = box_ops.denormalize_boxes(boxes, image_shape)
# Resize and crop image.
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._output_size,
padded_size=preprocess_ops.compute_padded_size(
self._output_size, 2**self._max_level
),
aug_scale_min=(self._aug_scale_min if is_training else 1.0),
aug_scale_max=(self._aug_scale_max if is_training else 1.0),
)
image_height, image_width, _ = image.get_shape().as_list()
# Resize and crop boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = preprocess_ops.resize_and_crop_boxes(
boxes, image_scale, image_info[1, :], offset
)
# Filter out ground-truth boxes that are all zeros.
indices = box_ops.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assign anchors.
input_anchor = anchor.build_anchor_generator(
min_level=self._min_level,
max_level=self._max_level,
num_scales=self._num_scales,
aspect_ratios=self._aspect_ratios,
anchor_size=self._anchor_size,
)
anchor_boxes = input_anchor(image_size=(image_height, image_width))
anchor_labeler = anchor.AnchorLabeler(
self._match_threshold, self._unmatched_threshold
)
(cls_targets, box_targets, _, cls_weights, box_weights) = (
anchor_labeler.label_anchors(
anchor_boxes, boxes, tf.expand_dims(classes, axis=1)
)
)
# Cast input image to desired data type.
image = tf.cast(image, dtype=self._dtype)
# Pack labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': anchor_boxes,
'cls_weights': cls_weights,
'box_weights': box_weights,
'image_info': image_info,
}
if not is_training:
groundtruths = {
'source_id': data['source_id'],
'height': data['height'],
'width': data['width'],
'num_detections': tf.shape(data['groundtruth_classes']),
'image_info': image_info,
'boxes': box_ops.denormalize_boxes(
data['groundtruth_boxes'], image_shape
),
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = utils.process_source_id(
groundtruths['source_id']
)
groundtruths = utils.pad_groundtruths_to_fixed_size(
groundtruths, self._max_num_instances
)
labels.update({'groundtruths': groundtruths})
return image, labels

View File

@ -0,0 +1,158 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from absl.testing import parameterized
import tensorflow as tf
from mediapipe.model_maker.python.vision.core import test_utils
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
from mediapipe.model_maker.python.vision.object_detector import preprocessor as preprocessor_lib
class DatasetTest(tf.test.TestCase, parameterized.TestCase):
MAX_IMAGE_SIZE = 360
OUTPUT_SIZE = 256
NUM_CLASSES = 10
NUM_EXAMPLES = 3
MIN_LEVEL = 3
MAX_LEVEL = 7
NUM_SCALES = 3
ASPECT_RATIOS = [0.5, 1, 2]
MAX_NUM_INSTANCES = 100
def _get_rand_example(self):
num_annotations = random.randint(1, 3)
bboxes, classes, is_crowds = [], [], []
image_size = random.randint(10, self.MAX_IMAGE_SIZE + 1)
rgb = [random.uniform(0, 255) for _ in range(3)]
image = test_utils.fill_image(rgb, image_size)
for _ in range(num_annotations):
x1, x2 = random.uniform(0, image_size), random.uniform(0, image_size)
y1, y2 = random.uniform(0, image_size), random.uniform(0, image_size)
bbox = [min(x1, x2), min(y1, y2), abs(x1 - x2), abs(y1 - y2)]
bboxes.append(bbox)
classes.append(random.randint(0, self.NUM_CLASSES - 1))
is_crowds.append(0)
return {
'image': tf.cast(image, dtype=tf.float32),
'groundtruth_boxes': tf.cast(bboxes, dtype=tf.float32),
'groundtruth_classes': tf.cast(classes, dtype=tf.int64),
'groundtruth_is_crowd': tf.cast(is_crowds, dtype=tf.bool),
'groundtruth_area': tf.cast(is_crowds, dtype=tf.float32),
'source_id': tf.cast(1, dtype=tf.int64),
'height': tf.cast(image_size, dtype=tf.int64),
'width': tf.cast(image_size, dtype=tf.int64),
}
def setUp(self):
super().setUp()
dataset = [self._get_rand_example() for _ in range(self.NUM_EXAMPLES)]
def my_generator(data):
for item in data:
yield item
self.dataset = tf.data.Dataset.from_generator(
lambda: my_generator(dataset),
output_types={
'image': tf.float32,
'groundtruth_classes': tf.int64,
'groundtruth_boxes': tf.float32,
'groundtruth_is_crowd': tf.bool,
'groundtruth_area': tf.float32,
'source_id': tf.int64,
'height': tf.int64,
'width': tf.int64,
},
)
@parameterized.named_parameters(
dict(
testcase_name='training',
is_training=True,
),
dict(
testcase_name='evaluation',
is_training=False,
),
)
def test_preprocessor(self, is_training):
model_spec = ms.SupportedModels.MOBILENET_V2.value()
labels_keys = [
'cls_targets',
'box_targets',
'anchor_boxes',
'cls_weights',
'box_weights',
'image_info',
]
if not is_training:
labels_keys.append('groundtruths')
preprocessor = preprocessor_lib.Preprocessor(model_spec)
for example in self.dataset:
result = preprocessor(example, is_training=is_training)
image, labels = result
self.assertAllEqual(image.shape, (256, 256, 3))
self.assertCountEqual(labels_keys, labels.keys())
np_labels = tf.nest.map_structure(lambda x: x.numpy(), labels)
# Checks shapes of `image_info` and `anchor_boxes`.
self.assertEqual(np_labels['image_info'].shape, (4, 2))
n_anchors = 0
for level in range(self.MIN_LEVEL, self.MAX_LEVEL + 1):
stride = 2**level
output_size_l = [self.OUTPUT_SIZE / stride, self.OUTPUT_SIZE / stride]
anchors_per_location = self.NUM_SCALES * len(self.ASPECT_RATIOS)
self.assertEqual(
list(np_labels['anchor_boxes'][str(level)].shape),
[output_size_l[0], output_size_l[1], 4 * anchors_per_location],
)
n_anchors += output_size_l[0] * output_size_l[1] * anchors_per_location
# Checks shapes of training objectives.
self.assertEqual(np_labels['cls_weights'].shape, (int(n_anchors),))
for level in range(self.MIN_LEVEL, self.MAX_LEVEL + 1):
stride = 2**level
output_size_l = [self.OUTPUT_SIZE / stride, self.OUTPUT_SIZE / stride]
anchors_per_location = self.NUM_SCALES * len(self.ASPECT_RATIOS)
self.assertEqual(
list(np_labels['cls_targets'][str(level)].shape),
[output_size_l[0], output_size_l[1], anchors_per_location],
)
self.assertEqual(
list(np_labels['box_targets'][str(level)].shape),
[output_size_l[0], output_size_l[1], 4 * anchors_per_location],
)
# Checks shape of groundtruths for eval.
if not is_training:
self.assertEqual(np_labels['groundtruths']['source_id'].shape, ())
self.assertEqual(
np_labels['groundtruths']['classes'].shape,
(self.MAX_NUM_INSTANCES,),
)
self.assertEqual(
np_labels['groundtruths']['boxes'].shape,
(self.MAX_NUM_INSTANCES, 4),
)
self.assertEqual(
np_labels['groundtruths']['areas'].shape, (self.MAX_NUM_INSTANCES,)
)
self.assertEqual(
np_labels['groundtruths']['is_crowds'].shape,
(self.MAX_NUM_INSTANCES,),
)
if __name__ == '__main__':
tf.test.main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,34 @@
<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>images</folder>
<filename>37ca2a3d-IMG_0520.jpg</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
<annotator>1</annotator>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>600</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>pig_android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>242</xmin>
<ymin>17</ymin>
<xmax>556</xmax>
<ymax>476</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,34 @@
<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>images</folder>
<filename>3d3382d3-IMG_0514.jpg</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
<annotator>1</annotator>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>600</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>306</xmin>
<ymin>130</ymin>
<xmax>550</xmax>
<ymax>471</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,46 @@
<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>images</folder>
<filename>d1c65813-IMG_0546.jpg</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
<annotator>1</annotator>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>600</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>93</xmin>
<ymin>101</ymin>
<xmax>358</xmax>
<ymax>378</ymax>
</bndbox>
</object>
<object>
<name>pig_android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>438</xmin>
<ymin>28</ymin>
<xmax>654</xmax>
<ymax>296</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,46 @@
<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>images</folder>
<filename>d86b20e0-IMG_0509.jpg</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
<annotator>1</annotator>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>600</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>7</xmin>
<ymin>122</ymin>
<xmax>296</xmax>
<ymax>402</ymax>
</bndbox>
</object>
<object>
<name>pig_android</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>523</xmin>
<ymin>69</ymin>
<xmax>723</xmax>
<ymax>329</ymax>
</bndbox>
</object>
</annotation>

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB