Project import generated by Copybara.
GitOrigin-RevId: 5aca6b3f07b67e09988a901f50f595ca5f566e67
2
.bazelrc
|
@ -3,7 +3,7 @@
|
|||
# Basic build settings
|
||||
build --jobs 128
|
||||
build --define='absl=1'
|
||||
build --cxxopt='-std=c++11'
|
||||
build --cxxopt='-std=c++14'
|
||||
build --copt='-Wno-sign-compare'
|
||||
build --copt='-Wno-unused-function'
|
||||
build --copt='-Wno-uninitialized'
|
||||
|
|
|
@ -41,7 +41,10 @@ A web-based visualizer is hosted on [viz.mediapipe.dev](https://viz.mediapipe.de
|
|||
* [MediaPipe: A Framework for Building Perception Pipelines](https://arxiv.org/abs/1906.08172)
|
||||
|
||||
## Events
|
||||
* [ML Conference, Berlin 9-11 Dec 2019](https://mlconference.ai/machine-learning-advanced-development/mediapipe-building-real-time-cross-platform-mobile-web-edge-desktop-video-audio-ml-pipelines/)
|
||||
* [MediaPipe Madrid Meetup, 16 Dec 2019](https://www.meetup.com/Madrid-AI-Developers-Group/events/266329088/)
|
||||
* [MediaPipe London Meetup, Google 123 Building, 12 Dec 2019](https://www.meetup.com/London-AI-Tech-Talk/events/266329038)
|
||||
* [ML Conference, Berlin, 11 Dec 2019](https://mlconference.ai/machine-learning-advanced-development/mediapipe-building-real-time-cross-platform-mobile-web-edge-desktop-video-audio-ml-pipelines/)
|
||||
* [MediaPipe Berlin Meetup, Google Berlin, 11 Dec 2019](https://www.meetup.com/Berlin-AI-Tech-Talk/events/266328794/)
|
||||
* [The 3rd Workshop on YouTube-8M Large Scale Video Understanding Workshop](https://research.google.com/youtube8m/workshop2019/index.html) Seoul, Korea ICCV 2019
|
||||
* [AI DevWorld 2019](https://aidevworld.com) on Oct 10 in San Jose, California
|
||||
* [Google Industry Workshop at ICIP 2019](http://2019.ieeeicip.org/?action=page4&id=14#Google) [Presentation](https://docs.google.com/presentation/d/e/2PACX-1vRIBBbO_LO9v2YmvbHHEt1cwyqH6EjDxiILjuT0foXy1E7g6uyh4CesB2DkkEwlRDO9_lWfuKMZx98T/pub?start=false&loop=false&delayms=3000&slide=id.g556cc1a659_0_5) on Sept 24 in Taipei, Taiwan
|
||||
|
|
31
WORKSPACE
|
@ -10,8 +10,7 @@ http_archive(
|
|||
sha256 = "2ef429f5d7ce7111263289644d233707dba35e39696377ebab8b0bc701f7818e",
|
||||
)
|
||||
load("@bazel_skylib//lib:versions.bzl", "versions")
|
||||
versions.check(minimum_bazel_version = "0.24.1",
|
||||
maximum_bazel_version = "0.29.1")
|
||||
versions.check(minimum_bazel_version = "0.24.1")
|
||||
|
||||
# ABSL cpp library.
|
||||
http_archive(
|
||||
|
@ -104,9 +103,9 @@ http_archive(
|
|||
],
|
||||
)
|
||||
|
||||
# 2019-08-15
|
||||
_TENSORFLOW_GIT_COMMIT = "67def62936e28f97c16182dfcc467d8d1cae02b4"
|
||||
_TENSORFLOW_SHA256= "ddd4e3c056e7c0ff2ef29133b30fa62781dfbf8a903e99efb91a02d292fa9562"
|
||||
# 2019-11-12
|
||||
_TENSORFLOW_GIT_COMMIT = "a5f9bcd64453ff3d1f64cb4da4786db3d2da7f82"
|
||||
_TENSORFLOW_SHA256= "f2b6f2ab2ffe63e86eccd3ce4bea6b7197383d726638dfeeebcdc1e7de73f075"
|
||||
http_archive(
|
||||
name = "org_tensorflow",
|
||||
urls = [
|
||||
|
@ -115,13 +114,6 @@ http_archive(
|
|||
],
|
||||
strip_prefix = "tensorflow-%s" % _TENSORFLOW_GIT_COMMIT,
|
||||
sha256 = _TENSORFLOW_SHA256,
|
||||
patches = [
|
||||
"@//third_party:tensorflow_065c20bf79253257c87bd4614bb9a7fdef015cbb.diff",
|
||||
"@//third_party:tensorflow_f67fcbefce906cd419e4657f0d41e21019b71abd.diff",
|
||||
],
|
||||
patch_args = [
|
||||
"-p1",
|
||||
],
|
||||
)
|
||||
|
||||
load("@org_tensorflow//tensorflow:workspace.bzl", "tf_workspace")
|
||||
|
@ -255,18 +247,11 @@ android_sdk_repository(
|
|||
|
||||
# iOS basic build deps.
|
||||
|
||||
load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")
|
||||
|
||||
git_repository(
|
||||
http_archive(
|
||||
name = "build_bazel_rules_apple",
|
||||
remote = "https://github.com/bazelbuild/rules_apple.git",
|
||||
tag = "0.18.0",
|
||||
patches = [
|
||||
"@//third_party:rules_apple_c0863d0596ae6b769a29fa3fb72ff036444fd249.diff",
|
||||
],
|
||||
patch_args = [
|
||||
"-p1",
|
||||
],
|
||||
sha256 = "bdc8e66e70b8a75da23b79f1f8c6207356df07d041d96d2189add7ee0780cf4e",
|
||||
strip_prefix = "rules_apple-b869b0d3868d78a1d4ffd866ccb304fb68aa12c3",
|
||||
url = "https://github.com/bazelbuild/rules_apple/archive/b869b0d3868d78a1d4ffd866ccb304fb68aa12c3.tar.gz",
|
||||
)
|
||||
|
||||
load(
|
||||
|
|
|
@ -13,12 +13,12 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "concatenate_vector_calculator_proto",
|
||||
srcs = ["concatenate_vector_calculator.proto"],
|
||||
|
@ -79,6 +79,13 @@ proto_library(
|
|||
],
|
||||
)
|
||||
|
||||
proto_library(
|
||||
name = "clip_vector_size_calculator_proto",
|
||||
srcs = ["clip_vector_size_calculator.proto"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = ["//mediapipe/framework:calculator_proto"],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "packet_cloner_calculator_cc_proto",
|
||||
srcs = ["packet_cloner_calculator.proto"],
|
||||
|
@ -111,6 +118,14 @@ mediapipe_cc_proto_library(
|
|||
deps = [":concatenate_vector_calculator_proto"],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "clip_vector_size_calculator_cc_proto",
|
||||
srcs = ["clip_vector_size_calculator.proto"],
|
||||
cc_deps = ["//mediapipe/framework:calculator_cc_proto"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":clip_vector_size_calculator_proto"],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "dequantize_byte_array_calculator_cc_proto",
|
||||
srcs = ["dequantize_byte_array_calculator.proto"],
|
||||
|
@ -169,6 +184,66 @@ cc_test(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "begin_loop_calculator",
|
||||
srcs = ["begin_loop_calculator.cc"],
|
||||
hdrs = ["begin_loop_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_contract",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:collection_item_id",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:integral_types",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/memory",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "end_loop_calculator",
|
||||
srcs = ["end_loop_calculator.cc"],
|
||||
hdrs = ["end_loop_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_contract",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:collection_item_id",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:integral_types",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"//mediapipe/util:render_data_cc_proto",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "begin_end_loop_calculator_graph_test",
|
||||
srcs = ["begin_end_loop_calculator_graph_test.cc"],
|
||||
deps = [
|
||||
":begin_loop_calculator",
|
||||
":end_loop_calculator",
|
||||
"//mediapipe/calculators/core:packet_cloner_calculator",
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_contract",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"//mediapipe/framework/port:integral_types",
|
||||
"//mediapipe/framework/port:parse_text_proto",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/memory",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "concatenate_vector_calculator",
|
||||
srcs = ["concatenate_vector_calculator.cc"],
|
||||
|
@ -219,6 +294,50 @@ cc_test(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "clip_vector_size_calculator",
|
||||
srcs = ["clip_vector_size_calculator.cc"],
|
||||
hdrs = ["clip_vector_size_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":clip_vector_size_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@org_tensorflow//tensorflow/lite:framework",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "clip_detection_vector_size_calculator",
|
||||
srcs = ["clip_detection_vector_size_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":clip_vector_size_calculator",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "clip_vector_size_calculator_test",
|
||||
srcs = ["clip_vector_size_calculator_test.cc"],
|
||||
deps = [
|
||||
":clip_vector_size_calculator",
|
||||
"//mediapipe/calculators/core:packet_resampler_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework:timestamp",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"//mediapipe/framework/port:parse_text_proto",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "counting_source_calculator",
|
||||
srcs = ["counting_source_calculator.cc"],
|
||||
|
@ -300,7 +419,7 @@ cc_library(
|
|||
"//visibility:public",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/calculators/core:packet_cloner_calculator_cc_proto",
|
||||
":packet_cloner_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
|
|
|
@ -0,0 +1,335 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
#include "mediapipe/calculators/core/begin_loop_calculator.h"
|
||||
#include "mediapipe/calculators/core/end_loop_calculator.h"
|
||||
#include "mediapipe/framework/calculator_contract.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/port/gtest.h"
|
||||
#include "mediapipe/framework/port/integral_types.h"
|
||||
#include "mediapipe/framework/port/parse_text_proto.h"
|
||||
#include "mediapipe/framework/port/status_matchers.h" // NOLINT
|
||||
|
||||
namespace mediapipe {
|
||||
namespace {
|
||||
|
||||
typedef BeginLoopCalculator<std::vector<int>> BeginLoopIntegerCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopIntegerCalculator);
|
||||
|
||||
class IncrementCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
cc->Inputs().Index(0).Set<int>();
|
||||
cc->Outputs().Index(0).Set<int>();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
const int& input_int = cc->Inputs().Index(0).Get<int>();
|
||||
auto output_int = absl::make_unique<int>(input_int + 1);
|
||||
cc->Outputs().Index(0).Add(output_int.release(), cc->InputTimestamp());
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_CALCULATOR(IncrementCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<int>> EndLoopIntegersCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopIntegersCalculator);
|
||||
|
||||
class BeginEndLoopCalculatorGraphTest : public ::testing::Test {
|
||||
protected:
|
||||
BeginEndLoopCalculatorGraphTest() {
|
||||
graph_config_ = ParseTextProtoOrDie<CalculatorGraphConfig>(
|
||||
R"(
|
||||
num_threads: 4
|
||||
input_stream: "ints"
|
||||
node {
|
||||
calculator: "BeginLoopIntegerCalculator"
|
||||
input_stream: "ITERABLE:ints"
|
||||
output_stream: "ITEM:int"
|
||||
output_stream: "BATCH_END:timestamp"
|
||||
}
|
||||
node {
|
||||
calculator: "IncrementCalculator"
|
||||
input_stream: "int"
|
||||
output_stream: "int_plus_one"
|
||||
}
|
||||
node {
|
||||
calculator: "EndLoopIntegersCalculator"
|
||||
input_stream: "ITEM:int_plus_one"
|
||||
input_stream: "BATCH_END:timestamp"
|
||||
output_stream: "ITERABLE:ints_plus_one"
|
||||
}
|
||||
)");
|
||||
tool::AddVectorSink("ints_plus_one", &graph_config_, &output_packets_);
|
||||
}
|
||||
|
||||
CalculatorGraphConfig graph_config_;
|
||||
std::vector<Packet> output_packets_;
|
||||
};
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphTest, SingleEmptyVector) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
auto input_vector = absl::make_unique<std::vector<int>>();
|
||||
Timestamp input_timestamp = Timestamp(0);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector.release()).At(input_timestamp)));
|
||||
MP_ASSERT_OK(graph.WaitUntilIdle());
|
||||
|
||||
// EndLoopCalc will forward the timestamp bound because there are no elements
|
||||
// in collection to output.
|
||||
ASSERT_EQ(0, output_packets_.size());
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
}
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphTest, SingleNonEmptyVector) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
auto input_vector = absl::make_unique<std::vector<int>>();
|
||||
input_vector->emplace_back(0);
|
||||
input_vector->emplace_back(1);
|
||||
input_vector->emplace_back(2);
|
||||
Timestamp input_timestamp = Timestamp(0);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector.release()).At(input_timestamp)));
|
||||
MP_ASSERT_OK(graph.WaitUntilIdle());
|
||||
|
||||
ASSERT_EQ(1, output_packets_.size());
|
||||
EXPECT_EQ(input_timestamp, output_packets_[0].Timestamp());
|
||||
std::vector<int> expected_output_vector = {1, 2, 3};
|
||||
EXPECT_EQ(expected_output_vector, output_packets_[0].Get<std::vector<int>>());
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
}
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphTest, MultipleVectors) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
|
||||
auto input_vector0 = absl::make_unique<std::vector<int>>();
|
||||
input_vector0->emplace_back(0);
|
||||
input_vector0->emplace_back(1);
|
||||
Timestamp input_timestamp0 = Timestamp(0);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector0.release()).At(input_timestamp0)));
|
||||
|
||||
auto input_vector1 = absl::make_unique<std::vector<int>>();
|
||||
Timestamp input_timestamp1 = Timestamp(1);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector1.release()).At(input_timestamp1)));
|
||||
|
||||
auto input_vector2 = absl::make_unique<std::vector<int>>();
|
||||
input_vector2->emplace_back(2);
|
||||
input_vector2->emplace_back(3);
|
||||
Timestamp input_timestamp2 = Timestamp(2);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector2.release()).At(input_timestamp2)));
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
|
||||
ASSERT_EQ(2, output_packets_.size());
|
||||
|
||||
EXPECT_EQ(input_timestamp0, output_packets_[0].Timestamp());
|
||||
std::vector<int> expected_output_vector0 = {1, 2};
|
||||
EXPECT_EQ(expected_output_vector0,
|
||||
output_packets_[0].Get<std::vector<int>>());
|
||||
|
||||
// At input_timestamp1, EndLoopCalc will forward timestamp bound as there are
|
||||
// no elements in vector to process.
|
||||
|
||||
EXPECT_EQ(input_timestamp2, output_packets_[1].Timestamp());
|
||||
std::vector<int> expected_output_vector2 = {3, 4};
|
||||
EXPECT_EQ(expected_output_vector2,
|
||||
output_packets_[1].Get<std::vector<int>>());
|
||||
}
|
||||
|
||||
class MultiplierCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
cc->Inputs().Index(0).Set<int>();
|
||||
cc->Inputs().Index(1).Set<int>();
|
||||
cc->Outputs().Index(0).Set<int>();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
const int& input_int = cc->Inputs().Index(0).Get<int>();
|
||||
const int& multiplier_int = cc->Inputs().Index(1).Get<int>();
|
||||
auto output_int = absl::make_unique<int>(input_int * multiplier_int);
|
||||
cc->Outputs().Index(0).Add(output_int.release(), cc->InputTimestamp());
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_CALCULATOR(MultiplierCalculator);
|
||||
|
||||
class BeginEndLoopCalculatorGraphWithClonedInputsTest : public ::testing::Test {
|
||||
protected:
|
||||
BeginEndLoopCalculatorGraphWithClonedInputsTest() {
|
||||
graph_config_ = ParseTextProtoOrDie<CalculatorGraphConfig>(
|
||||
R"(
|
||||
num_threads: 4
|
||||
input_stream: "ints"
|
||||
input_stream: "multiplier"
|
||||
node {
|
||||
calculator: "BeginLoopIntegerCalculator"
|
||||
input_stream: "ITERABLE:ints"
|
||||
input_stream: "CLONE:multiplier"
|
||||
output_stream: "ITEM:int_at_loop"
|
||||
output_stream: "CLONE:multiplier_cloned_at_loop"
|
||||
output_stream: "BATCH_END:timestamp"
|
||||
}
|
||||
node {
|
||||
calculator: "MultiplierCalculator"
|
||||
input_stream: "int_at_loop"
|
||||
input_stream: "multiplier_cloned_at_loop"
|
||||
output_stream: "multiplied_int_at_loop"
|
||||
}
|
||||
node {
|
||||
calculator: "EndLoopIntegersCalculator"
|
||||
input_stream: "ITEM:multiplied_int_at_loop"
|
||||
input_stream: "BATCH_END:timestamp"
|
||||
output_stream: "ITERABLE:multiplied_ints"
|
||||
}
|
||||
)");
|
||||
tool::AddVectorSink("multiplied_ints", &graph_config_, &output_packets_);
|
||||
}
|
||||
|
||||
CalculatorGraphConfig graph_config_;
|
||||
std::vector<Packet> output_packets_;
|
||||
};
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphWithClonedInputsTest, SingleEmptyVector) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
auto input_vector = absl::make_unique<std::vector<int>>();
|
||||
Timestamp input_timestamp = Timestamp(42);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector.release()).At(input_timestamp)));
|
||||
auto multiplier = absl::make_unique<int>(2);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"multiplier", Adopt(multiplier.release()).At(input_timestamp)));
|
||||
MP_ASSERT_OK(graph.WaitUntilIdle());
|
||||
|
||||
// EndLoopCalc will forward the timestamp bound because there are no elements
|
||||
// in collection to output.
|
||||
ASSERT_EQ(0, output_packets_.size());
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
}
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphWithClonedInputsTest, SingleNonEmptyVector) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
auto input_vector = absl::make_unique<std::vector<int>>();
|
||||
input_vector->emplace_back(0);
|
||||
input_vector->emplace_back(1);
|
||||
input_vector->emplace_back(2);
|
||||
Timestamp input_timestamp = Timestamp(42);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector.release()).At(input_timestamp)));
|
||||
auto multiplier = absl::make_unique<int>(2);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"multiplier", Adopt(multiplier.release()).At(input_timestamp)));
|
||||
MP_ASSERT_OK(graph.WaitUntilIdle());
|
||||
|
||||
ASSERT_EQ(1, output_packets_.size());
|
||||
EXPECT_EQ(input_timestamp, output_packets_[0].Timestamp());
|
||||
std::vector<int> expected_output_vector = {0, 2, 4};
|
||||
EXPECT_EQ(expected_output_vector, output_packets_[0].Get<std::vector<int>>());
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
}
|
||||
|
||||
TEST_F(BeginEndLoopCalculatorGraphWithClonedInputsTest, MultipleVectors) {
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config_));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
|
||||
auto input_vector0 = absl::make_unique<std::vector<int>>();
|
||||
input_vector0->emplace_back(0);
|
||||
input_vector0->emplace_back(1);
|
||||
Timestamp input_timestamp0 = Timestamp(42);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector0.release()).At(input_timestamp0)));
|
||||
auto multiplier0 = absl::make_unique<int>(2);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"multiplier", Adopt(multiplier0.release()).At(input_timestamp0)));
|
||||
|
||||
auto input_vector1 = absl::make_unique<std::vector<int>>();
|
||||
Timestamp input_timestamp1 = Timestamp(43);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector1.release()).At(input_timestamp1)));
|
||||
auto multiplier1 = absl::make_unique<int>(2);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"multiplier", Adopt(multiplier1.release()).At(input_timestamp1)));
|
||||
|
||||
auto input_vector2 = absl::make_unique<std::vector<int>>();
|
||||
input_vector2->emplace_back(2);
|
||||
input_vector2->emplace_back(3);
|
||||
Timestamp input_timestamp2 = Timestamp(44);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"ints", Adopt(input_vector2.release()).At(input_timestamp2)));
|
||||
auto multiplier2 = absl::make_unique<int>(3);
|
||||
MP_ASSERT_OK(graph.AddPacketToInputStream(
|
||||
"multiplier", Adopt(multiplier2.release()).At(input_timestamp2)));
|
||||
|
||||
MP_ASSERT_OK(graph.CloseAllPacketSources());
|
||||
MP_ASSERT_OK(graph.WaitUntilDone());
|
||||
|
||||
ASSERT_EQ(2, output_packets_.size());
|
||||
|
||||
EXPECT_EQ(input_timestamp0, output_packets_[0].Timestamp());
|
||||
std::vector<int> expected_output_vector0 = {0, 2};
|
||||
EXPECT_EQ(expected_output_vector0,
|
||||
output_packets_[0].Get<std::vector<int>>());
|
||||
|
||||
// At input_timestamp1, EndLoopCalc will forward timestamp bound as there are
|
||||
// no elements in vector to process.
|
||||
|
||||
EXPECT_EQ(input_timestamp2, output_packets_[1].Timestamp());
|
||||
std::vector<int> expected_output_vector2 = {6, 9};
|
||||
EXPECT_EQ(expected_output_vector2,
|
||||
output_packets_[1].Get<std::vector<int>>());
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace mediapipe
|
40
mediapipe/calculators/core/begin_loop_calculator.cc
Normal file
|
@ -0,0 +1,40 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/core/begin_loop_calculator.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// A calculator to process std::vector<NormalizedLandmark>.
|
||||
typedef BeginLoopCalculator<std::vector<::mediapipe::NormalizedLandmark>>
|
||||
BeginLoopNormalizedLandmarkCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopNormalizedLandmarkCalculator);
|
||||
|
||||
// A calculator to process std::vector<std::vector<NormalizedLandmark>>.
|
||||
typedef BeginLoopCalculator<
|
||||
std::vector<std::vector<::mediapipe::NormalizedLandmark>>>
|
||||
BeginLoopNormalizedLandmarksVectorCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopNormalizedLandmarksVectorCalculator);
|
||||
|
||||
// A calculator to process std::vector<NormalizedRect>.
|
||||
typedef BeginLoopCalculator<std::vector<::mediapipe::NormalizedRect>>
|
||||
BeginLoopNormalizedRectCalculator;
|
||||
REGISTER_CALCULATOR(BeginLoopNormalizedRectCalculator);
|
||||
|
||||
} // namespace mediapipe
|
157
mediapipe/calculators/core/begin_loop_calculator.h
Normal file
|
@ -0,0 +1,157 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_CORE_BEGIN_LOOP_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_CORE_BEGIN_LOOP_CALCULATOR_H_
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
#include "mediapipe/framework/calculator_context.h"
|
||||
#include "mediapipe/framework/calculator_contract.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/collection_item_id.h"
|
||||
#include "mediapipe/framework/packet.h"
|
||||
#include "mediapipe/framework/port/integral_types.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Calculator for implementing loops on iterable collections inside a MediaPipe
|
||||
// graph.
|
||||
//
|
||||
// It is designed to be used like:
|
||||
//
|
||||
// node {
|
||||
// calculator: "BeginLoopWithIterableCalculator"
|
||||
// input_stream: "ITERABLE:input_iterable" # IterableT @ext_ts
|
||||
// output_stream: "ITEM:input_element" # ItemT @loop_internal_ts
|
||||
// output_stream: "BATCH_END:ext_ts" # Timestamp @loop_internal_ts
|
||||
// }
|
||||
//
|
||||
// node {
|
||||
// calculator: "ElementToBlaConverterSubgraph"
|
||||
// input_stream: "ITEM:input_to_loop_body" # ItemT @loop_internal_ts
|
||||
// output_stream: "BLA:output_of_loop_body" # ItemU @loop_internal_ts
|
||||
// }
|
||||
//
|
||||
// node {
|
||||
// calculator: "EndLoopWithOutputCalculator"
|
||||
// input_stream: "ITEM:output_of_loop_body" # ItemU @loop_internal_ts
|
||||
// input_stream: "BATCH_END:ext_ts" # Timestamp @loop_internal_ts
|
||||
// output_stream: "OUTPUT:aggregated_result" # IterableU @ext_ts
|
||||
// }
|
||||
//
|
||||
// BeginLoopCalculator accepts an optional input stream tagged with "TICK"
|
||||
// which if non-empty, wakes up the calculator and calls
|
||||
// BeginLoopCalculator::Process(). Input streams tagged with "CLONE" are cloned
|
||||
// to the corresponding output streams at loop timestamps. This ensures that a
|
||||
// MediaPipe graph or sub-graph can run multiple times, once per element in the
|
||||
// "ITERABLE" for each pakcet clone of the packets in the "CLONE" input streams.
|
||||
template <typename IterableT>
|
||||
class BeginLoopCalculator : public CalculatorBase {
|
||||
using ItemT = typename IterableT::value_type;
|
||||
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
// A non-empty packet in the optional "TICK" input stream wakes up the
|
||||
// calculator.
|
||||
if (cc->Inputs().HasTag("TICK")) {
|
||||
cc->Inputs().Tag("TICK").SetAny();
|
||||
}
|
||||
|
||||
// An iterable collection in the input stream.
|
||||
RET_CHECK(cc->Inputs().HasTag("ITERABLE"));
|
||||
cc->Inputs().Tag("ITERABLE").Set<IterableT>();
|
||||
|
||||
// An element from the collection.
|
||||
RET_CHECK(cc->Outputs().HasTag("ITEM"));
|
||||
cc->Outputs().Tag("ITEM").Set<ItemT>();
|
||||
|
||||
RET_CHECK(cc->Outputs().HasTag("BATCH_END"));
|
||||
cc->Outputs()
|
||||
.Tag("BATCH_END")
|
||||
.Set<Timestamp>(
|
||||
// A flush signal to the corresponding EndLoopCalculator for it to
|
||||
// emit the aggregated result with the timestamp contained in this
|
||||
// flush signal packet.
|
||||
);
|
||||
|
||||
// Input streams tagged with "CLONE" are cloned to the corresponding
|
||||
// "CLONE" output streams at loop timestamps.
|
||||
RET_CHECK(cc->Inputs().NumEntries("CLONE") ==
|
||||
cc->Outputs().NumEntries("CLONE"));
|
||||
if (cc->Inputs().NumEntries("CLONE") > 0) {
|
||||
for (int i = 0; i < cc->Inputs().NumEntries("CLONE"); ++i) {
|
||||
cc->Inputs().Get("CLONE", i).SetAny();
|
||||
cc->Outputs().Get("CLONE", i).SetSameAs(&cc->Inputs().Get("CLONE", i));
|
||||
}
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) final {
|
||||
Timestamp last_timestamp = loop_internal_timestamp_;
|
||||
if (!cc->Inputs().Tag("ITERABLE").IsEmpty()) {
|
||||
const IterableT& collection =
|
||||
cc->Inputs().Tag("ITERABLE").template Get<IterableT>();
|
||||
for (const auto& item : collection) {
|
||||
cc->Outputs().Tag("ITEM").AddPacket(
|
||||
MakePacket<ItemT>(item).At(loop_internal_timestamp_));
|
||||
ForwardClonePackets(cc, loop_internal_timestamp_);
|
||||
++loop_internal_timestamp_;
|
||||
}
|
||||
}
|
||||
|
||||
// The collection was empty and nothing was processed.
|
||||
if (last_timestamp == loop_internal_timestamp_) {
|
||||
// Increment loop_internal_timestamp_ because it is used up now.
|
||||
++loop_internal_timestamp_;
|
||||
for (auto it = cc->Outputs().begin(); it < cc->Outputs().end(); ++it) {
|
||||
it->SetNextTimestampBound(loop_internal_timestamp_);
|
||||
}
|
||||
}
|
||||
|
||||
// The for loop processing the input collection already incremented
|
||||
// loop_internal_timestamp_. To emit BATCH_END packet along the last
|
||||
// non-BATCH_END packet, decrement by one.
|
||||
cc->Outputs()
|
||||
.Tag("BATCH_END")
|
||||
.AddPacket(MakePacket<Timestamp>(cc->InputTimestamp())
|
||||
.At(Timestamp(loop_internal_timestamp_ - 1)));
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
private:
|
||||
void ForwardClonePackets(CalculatorContext* cc, Timestamp output_timestamp) {
|
||||
if (cc->Inputs().NumEntries("CLONE") > 0) {
|
||||
for (int i = 0; i < cc->Inputs().NumEntries("CLONE"); ++i) {
|
||||
if (!cc->Inputs().Get("CLONE", i).IsEmpty()) {
|
||||
auto input_packet = cc->Inputs().Get("CLONE", i).Value();
|
||||
cc->Outputs()
|
||||
.Get("CLONE", i)
|
||||
.AddPacket(std::move(input_packet).At(output_timestamp));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fake timestamps generated per element in collection.
|
||||
Timestamp loop_internal_timestamp_ = Timestamp(0);
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_CORE_BEGIN_LOOP_CALCULATOR_H_
|
|
@ -0,0 +1,26 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/calculators/core/clip_vector_size_calculator.h"
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef ClipVectorSizeCalculator<::mediapipe::Detection>
|
||||
ClipDetectionVectorSizeCalculator;
|
||||
REGISTER_CALCULATOR(ClipDetectionVectorSizeCalculator);
|
||||
|
||||
} // namespace mediapipe
|
28
mediapipe/calculators/core/clip_vector_size_calculator.cc
Normal file
|
@ -0,0 +1,28 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/core/clip_vector_size_calculator.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef ClipVectorSizeCalculator<::mediapipe::NormalizedRect>
|
||||
ClipNormalizedRectVectorSizeCalculator;
|
||||
REGISTER_CALCULATOR(ClipNormalizedRectVectorSizeCalculator);
|
||||
|
||||
} // namespace mediapipe
|
137
mediapipe/calculators/core/clip_vector_size_calculator.h
Normal file
|
@ -0,0 +1,137 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_CORE_CLIP_VECTOR_SIZE_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_CORE_CLIP_VECTOR_SIZE_CALCULATOR_H_
|
||||
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/calculators/core/clip_vector_size_calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/port/canonical_errors.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Clips the size of the input vector of type T to a specified max_vec_size.
|
||||
// In a graph it will be used as:
|
||||
// node {
|
||||
// calculator: "ClipIntVectorSizeCalculator"
|
||||
// input_stream: "input_vector"
|
||||
// output_stream: "output_vector"
|
||||
// options {
|
||||
// [mediapipe.ClipIntVectorSizeCalculatorOptions.ext] {
|
||||
// max_vec_size: 5
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
template <typename T>
|
||||
class ClipVectorSizeCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().NumEntries() == 1);
|
||||
RET_CHECK(cc->Outputs().NumEntries() == 1);
|
||||
|
||||
if (cc->Options<::mediapipe::ClipVectorSizeCalculatorOptions>()
|
||||
.max_vec_size() < 1) {
|
||||
return ::mediapipe::InternalError(
|
||||
"max_vec_size should be greater than or equal to 1.");
|
||||
}
|
||||
|
||||
cc->Inputs().Index(0).Set<std::vector<T>>();
|
||||
cc->Outputs().Index(0).Set<std::vector<T>>();
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
max_vec_size_ = cc->Options<::mediapipe::ClipVectorSizeCalculatorOptions>()
|
||||
.max_vec_size();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
if (max_vec_size_ < 1) {
|
||||
return ::mediapipe::InternalError(
|
||||
"max_vec_size should be greater than or equal to 1.");
|
||||
}
|
||||
if (cc->Inputs().Index(0).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
return ClipVectorSize<T>(std::is_copy_constructible<T>(), cc);
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
::mediapipe::Status ClipVectorSize(std::true_type, CalculatorContext* cc) {
|
||||
auto output = absl::make_unique<std::vector<U>>();
|
||||
const std::vector<U>& input_vector =
|
||||
cc->Inputs().Index(0).Get<std::vector<U>>();
|
||||
if (max_vec_size_ >= input_vector.size()) {
|
||||
output->insert(output->end(), input_vector.begin(), input_vector.end());
|
||||
} else {
|
||||
for (int i = 0; i < max_vec_size_; ++i) {
|
||||
output->push_back(input_vector[i]);
|
||||
}
|
||||
}
|
||||
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
::mediapipe::Status ClipVectorSize(std::false_type, CalculatorContext* cc) {
|
||||
return ConsumeAndClipVectorSize<T>(std::is_move_constructible<U>(), cc);
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
::mediapipe::Status ConsumeAndClipVectorSize(std::true_type,
|
||||
CalculatorContext* cc) {
|
||||
auto output = absl::make_unique<std::vector<U>>();
|
||||
::mediapipe::StatusOr<std::unique_ptr<std::vector<U>>> input_status =
|
||||
cc->Inputs().Index(0).Value().Consume<std::vector<U>>();
|
||||
|
||||
if (input_status.ok()) {
|
||||
std::unique_ptr<std::vector<U>> input_vector =
|
||||
std::move(input_status).ValueOrDie();
|
||||
auto begin_it = input_vector->begin();
|
||||
auto end_it = input_vector->end();
|
||||
if (max_vec_size_ < input_vector->size()) {
|
||||
end_it = input_vector->begin() + max_vec_size_;
|
||||
}
|
||||
output->insert(output->end(), std::make_move_iterator(begin_it),
|
||||
std::make_move_iterator(end_it));
|
||||
} else {
|
||||
return input_status.status();
|
||||
}
|
||||
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
::mediapipe::Status ConsumeAndClipVectorSize(std::false_type,
|
||||
CalculatorContext* cc) {
|
||||
return ::mediapipe::InternalError(
|
||||
"Cannot copy or move input vectors and clip their size.");
|
||||
}
|
||||
|
||||
private:
|
||||
int max_vec_size_ = 0;
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_CORE_CLIP_VECTOR_SIZE_CALCULATOR_H_
|
28
mediapipe/calculators/core/clip_vector_size_calculator.proto
Normal file
|
@ -0,0 +1,28 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
syntax = "proto2";
|
||||
|
||||
package mediapipe;
|
||||
|
||||
import "mediapipe/framework/calculator.proto";
|
||||
|
||||
message ClipVectorSizeCalculatorOptions {
|
||||
extend CalculatorOptions {
|
||||
optional ClipVectorSizeCalculatorOptions ext = 274674998;
|
||||
}
|
||||
|
||||
// Maximum size of output vector.
|
||||
optional int32 max_vec_size = 1 [default = 1];
|
||||
}
|
179
mediapipe/calculators/core/clip_vector_size_calculator_test.cc
Normal file
|
@ -0,0 +1,179 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/core/clip_vector_size_calculator.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/calculator_runner.h"
|
||||
#include "mediapipe/framework/port/gmock.h"
|
||||
#include "mediapipe/framework/port/gtest.h"
|
||||
#include "mediapipe/framework/port/parse_text_proto.h"
|
||||
#include "mediapipe/framework/port/status_matchers.h" // NOLINT
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef ClipVectorSizeCalculator<int> TestClipIntVectorSizeCalculator;
|
||||
REGISTER_CALCULATOR(TestClipIntVectorSizeCalculator);
|
||||
|
||||
void AddInputVector(const std::vector<int>& input, int64 timestamp,
|
||||
CalculatorRunner* runner) {
|
||||
runner->MutableInputs()->Index(0).packets.push_back(
|
||||
MakePacket<std::vector<int>>(input).At(Timestamp(timestamp)));
|
||||
}
|
||||
|
||||
TEST(TestClipIntVectorSizeCalculatorTest, EmptyVectorInput) {
|
||||
CalculatorGraphConfig::Node node_config =
|
||||
ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "TestClipIntVectorSizeCalculator"
|
||||
input_stream: "input_vector"
|
||||
output_stream: "output_vector"
|
||||
options {
|
||||
[mediapipe.ClipVectorSizeCalculatorOptions.ext] { max_vec_size: 1 }
|
||||
}
|
||||
)");
|
||||
CalculatorRunner runner(node_config);
|
||||
|
||||
std::vector<int> input = {};
|
||||
AddInputVector(input, /*timestamp=*/1, &runner);
|
||||
MP_ASSERT_OK(runner.Run());
|
||||
|
||||
const std::vector<Packet>& outputs = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, outputs.size());
|
||||
EXPECT_EQ(Timestamp(1), outputs[0].Timestamp());
|
||||
EXPECT_TRUE(outputs[0].Get<std::vector<int>>().empty());
|
||||
}
|
||||
|
||||
TEST(TestClipIntVectorSizeCalculatorTest, OneTimestamp) {
|
||||
CalculatorGraphConfig::Node node_config =
|
||||
ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "TestClipIntVectorSizeCalculator"
|
||||
input_stream: "input_vector"
|
||||
output_stream: "output_vector"
|
||||
options {
|
||||
[mediapipe.ClipVectorSizeCalculatorOptions.ext] { max_vec_size: 2 }
|
||||
}
|
||||
)");
|
||||
CalculatorRunner runner(node_config);
|
||||
|
||||
std::vector<int> input = {0, 1, 2, 3};
|
||||
AddInputVector(input, /*timestamp=*/1, &runner);
|
||||
MP_ASSERT_OK(runner.Run());
|
||||
|
||||
const std::vector<Packet>& outputs = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, outputs.size());
|
||||
EXPECT_EQ(Timestamp(1), outputs[0].Timestamp());
|
||||
const std::vector<int>& output = outputs[0].Get<std::vector<int>>();
|
||||
EXPECT_EQ(2, output.size());
|
||||
std::vector<int> expected_vector = {0, 1};
|
||||
EXPECT_EQ(expected_vector, output);
|
||||
}
|
||||
|
||||
TEST(TestClipIntVectorSizeCalculatorTest, TwoInputsAtTwoTimestamps) {
|
||||
CalculatorGraphConfig::Node node_config =
|
||||
ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "TestClipIntVectorSizeCalculator"
|
||||
input_stream: "input_vector"
|
||||
output_stream: "output_vector"
|
||||
options {
|
||||
[mediapipe.ClipVectorSizeCalculatorOptions.ext] { max_vec_size: 3 }
|
||||
}
|
||||
)");
|
||||
CalculatorRunner runner(node_config);
|
||||
|
||||
{
|
||||
std::vector<int> input = {0, 1, 2, 3};
|
||||
AddInputVector(input, /*timestamp=*/1, &runner);
|
||||
}
|
||||
{
|
||||
std::vector<int> input = {2, 3, 4, 5};
|
||||
AddInputVector(input, /*timestamp=*/2, &runner);
|
||||
}
|
||||
MP_ASSERT_OK(runner.Run());
|
||||
|
||||
const std::vector<Packet>& outputs = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(2, outputs.size());
|
||||
{
|
||||
EXPECT_EQ(Timestamp(1), outputs[0].Timestamp());
|
||||
const std::vector<int>& output = outputs[0].Get<std::vector<int>>();
|
||||
EXPECT_EQ(3, output.size());
|
||||
std::vector<int> expected_vector = {0, 1, 2};
|
||||
EXPECT_EQ(expected_vector, output);
|
||||
}
|
||||
{
|
||||
EXPECT_EQ(Timestamp(2), outputs[1].Timestamp());
|
||||
const std::vector<int>& output = outputs[1].Get<std::vector<int>>();
|
||||
EXPECT_EQ(3, output.size());
|
||||
std::vector<int> expected_vector = {2, 3, 4};
|
||||
EXPECT_EQ(expected_vector, output);
|
||||
}
|
||||
}
|
||||
|
||||
typedef ClipVectorSizeCalculator<std::unique_ptr<int>>
|
||||
TestClipUniqueIntPtrVectorSizeCalculator;
|
||||
REGISTER_CALCULATOR(TestClipUniqueIntPtrVectorSizeCalculator);
|
||||
|
||||
TEST(TestClipUniqueIntPtrVectorSizeCalculatorTest, ConsumeOneTimestamp) {
|
||||
/* Note: We don't use CalculatorRunner for this test because it keeps copies
|
||||
* of input packets, so packets sent to the graph don't have sole ownership.
|
||||
* The test needs to send packets that own the data.
|
||||
*/
|
||||
CalculatorGraphConfig graph_config =
|
||||
ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
input_stream: "input_vector"
|
||||
node {
|
||||
calculator: "TestClipUniqueIntPtrVectorSizeCalculator"
|
||||
input_stream: "input_vector"
|
||||
output_stream: "output_vector"
|
||||
options {
|
||||
[mediapipe.ClipVectorSizeCalculatorOptions.ext] { max_vec_size: 3 }
|
||||
}
|
||||
}
|
||||
)");
|
||||
|
||||
std::vector<Packet> outputs;
|
||||
tool::AddVectorSink("output_vector", &graph_config, &outputs);
|
||||
|
||||
CalculatorGraph graph;
|
||||
MP_EXPECT_OK(graph.Initialize(graph_config));
|
||||
MP_EXPECT_OK(graph.StartRun({}));
|
||||
|
||||
// input1 : {0, 1, 2, 3, 4, 5}
|
||||
auto input_vector = absl::make_unique<std::vector<std::unique_ptr<int>>>(6);
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
input_vector->at(i) = absl::make_unique<int>(i);
|
||||
}
|
||||
|
||||
MP_EXPECT_OK(graph.AddPacketToInputStream(
|
||||
"input_vector", Adopt(input_vector.release()).At(Timestamp(1))));
|
||||
|
||||
MP_EXPECT_OK(graph.WaitUntilIdle());
|
||||
MP_EXPECT_OK(graph.CloseAllPacketSources());
|
||||
MP_EXPECT_OK(graph.WaitUntilDone());
|
||||
|
||||
EXPECT_EQ(1, outputs.size());
|
||||
EXPECT_EQ(Timestamp(1), outputs[0].Timestamp());
|
||||
const std::vector<std::unique_ptr<int>>& result =
|
||||
outputs[0].Get<std::vector<std::unique_ptr<int>>>();
|
||||
EXPECT_EQ(3, result.size());
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
const std::unique_ptr<int>& v = result[i];
|
||||
EXPECT_EQ(i, *v);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mediapipe
|
45
mediapipe/calculators/core/end_loop_calculator.cc
Normal file
|
@ -0,0 +1,45 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/core/end_loop_calculator.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
#include "mediapipe/util/render_data.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef EndLoopCalculator<std::vector<::mediapipe::NormalizedRect>>
|
||||
EndLoopNormalizedRectCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopNormalizedRectCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<::mediapipe::NormalizedLandmark>>
|
||||
EndLoopNormalizedLandmarkCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopNormalizedLandmarkCalculator);
|
||||
|
||||
typedef EndLoopCalculator<
|
||||
std::vector<std::vector<::mediapipe::NormalizedLandmark>>>
|
||||
EndLoopNormalizedLandmarksVectorCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopNormalizedLandmarksVectorCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<bool>> EndLoopBooleanCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopBooleanCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<::mediapipe::RenderData>>
|
||||
EndLoopRenderDataCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopRenderDataCalculator);
|
||||
|
||||
} // namespace mediapipe
|
106
mediapipe/calculators/core/end_loop_calculator.h
Normal file
|
@ -0,0 +1,106 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_CORE_END_LOOP_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_CORE_END_LOOP_CALCULATOR_H_
|
||||
|
||||
#include "mediapipe/framework/calculator_context.h"
|
||||
#include "mediapipe/framework/calculator_contract.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/collection_item_id.h"
|
||||
#include "mediapipe/framework/port/integral_types.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Calculator for completing the processing of loops on iterable collections
|
||||
// inside a MediaPipe graph. The EndLoopCalculator collects all input packets
|
||||
// from ITEM input_stream into a collection and upon receiving the flush signal
|
||||
// from the "BATCH_END" tagged input stream, it emits the aggregated results
|
||||
// at the original timestamp contained in the "BATCH_END" input stream.
|
||||
//
|
||||
// It is designed to be used like:
|
||||
//
|
||||
// node {
|
||||
// calculator: "BeginLoopWithIterableCalculator"
|
||||
// input_stream: "ITERABLE:input_iterable" # IterableT @ext_ts
|
||||
// output_stream: "ITEM:input_element" # ItemT @loop_internal_ts
|
||||
// output_stream: "BATCH_END:ext_ts" # Timestamp @loop_internal_ts
|
||||
// }
|
||||
//
|
||||
// node {
|
||||
// calculator: "ElementToBlaConverterSubgraph"
|
||||
// input_stream: "ITEM:input_to_loop_body" # ItemT @loop_internal_ts
|
||||
// output_stream: "BLA:output_of_loop_body" # ItemU @loop_internal_ts
|
||||
// }
|
||||
//
|
||||
// node {
|
||||
// calculator: "EndLoopWithOutputCalculator"
|
||||
// input_stream: "ITEM:output_of_loop_body" # ItemU @loop_internal_ts
|
||||
// input_stream: "BATCH_END:ext_ts" # Timestamp @loop_internal_ts
|
||||
// output_stream: "OUTPUT:aggregated_result" # IterableU @ext_ts
|
||||
// }
|
||||
template <typename IterableT>
|
||||
class EndLoopCalculator : public CalculatorBase {
|
||||
using ItemT = typename IterableT::value_type;
|
||||
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("BATCH_END"))
|
||||
<< "Missing BATCH_END tagged input_stream.";
|
||||
cc->Inputs().Tag("BATCH_END").Set<Timestamp>();
|
||||
|
||||
RET_CHECK(cc->Inputs().HasTag("ITEM"));
|
||||
cc->Inputs().Tag("ITEM").Set<ItemT>();
|
||||
|
||||
RET_CHECK(cc->Outputs().HasTag("ITERABLE"));
|
||||
cc->Outputs().Tag("ITERABLE").Set<IterableT>();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
if (!cc->Inputs().Tag("ITEM").IsEmpty()) {
|
||||
if (!input_stream_collection_) {
|
||||
input_stream_collection_.reset(new IterableT);
|
||||
}
|
||||
input_stream_collection_->push_back(
|
||||
cc->Inputs().Tag("ITEM").template Get<ItemT>());
|
||||
}
|
||||
|
||||
if (!cc->Inputs().Tag("BATCH_END").Value().IsEmpty()) { // flush signal
|
||||
Timestamp loop_control_ts =
|
||||
cc->Inputs().Tag("BATCH_END").template Get<Timestamp>();
|
||||
if (input_stream_collection_) {
|
||||
cc->Outputs()
|
||||
.Tag("ITERABLE")
|
||||
.Add(input_stream_collection_.release(), loop_control_ts);
|
||||
} else {
|
||||
// Since there is no collection, inform downstream calculators to not
|
||||
// expect any packet by updating the timestamp bounds.
|
||||
cc->Outputs()
|
||||
.Tag("ITERABLE")
|
||||
.SetNextTimestampBound(Timestamp(loop_control_ts.Value() + 1));
|
||||
}
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
private:
|
||||
std::unique_ptr<IterableT> input_stream_collection_;
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_CORE_END_LOOP_CALCULATOR_H_
|
|
@ -74,6 +74,12 @@ class PacketResamplerCalculator : public CalculatorBase {
|
|||
::mediapipe::Status Process(CalculatorContext* cc) override;
|
||||
|
||||
private:
|
||||
// Calculates the first sampled timestamp that incorporates a jittering
|
||||
// offset.
|
||||
void InitializeNextOutputTimestampWithJitter();
|
||||
// Calculates the next sampled timestamp that incorporates a jittering offset.
|
||||
void UpdateNextOutputTimestampWithJitter();
|
||||
|
||||
// Logic for Process() when jitter_ != 0.0.
|
||||
::mediapipe::Status ProcessWithJitter(CalculatorContext* cc);
|
||||
|
||||
|
@ -233,6 +239,7 @@ TimestampDiff TimestampDiffFromSeconds(double seconds) {
|
|||
<< Timestamp::kTimestampUnitsPerSecond;
|
||||
|
||||
frame_time_usec_ = static_cast<int64>(1000000.0 / frame_rate_);
|
||||
|
||||
video_header_.frame_rate = frame_rate_;
|
||||
|
||||
if (resampler_options.output_header() !=
|
||||
|
@ -295,6 +302,17 @@ TimestampDiff TimestampDiffFromSeconds(double seconds) {
|
|||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
void PacketResamplerCalculator::InitializeNextOutputTimestampWithJitter() {
|
||||
next_output_timestamp_ =
|
||||
first_timestamp_ + frame_time_usec_ * random_->RandFloat();
|
||||
}
|
||||
|
||||
void PacketResamplerCalculator::UpdateNextOutputTimestampWithJitter() {
|
||||
next_output_timestamp_ +=
|
||||
frame_time_usec_ *
|
||||
((1.0 - jitter_) + 2.0 * jitter_ * random_->RandFloat());
|
||||
}
|
||||
|
||||
::mediapipe::Status PacketResamplerCalculator::ProcessWithJitter(
|
||||
CalculatorContext* cc) {
|
||||
RET_CHECK_GT(cc->InputTimestamp(), Timestamp::PreStream());
|
||||
|
@ -302,8 +320,13 @@ TimestampDiff TimestampDiffFromSeconds(double seconds) {
|
|||
|
||||
if (first_timestamp_ == Timestamp::Unset()) {
|
||||
first_timestamp_ = cc->InputTimestamp();
|
||||
next_output_timestamp_ =
|
||||
first_timestamp_ + frame_time_usec_ * random_->RandFloat();
|
||||
InitializeNextOutputTimestampWithJitter();
|
||||
if (first_timestamp_ == next_output_timestamp_) {
|
||||
OutputWithinLimits(
|
||||
cc,
|
||||
cc->Inputs().Get(input_data_id_).Value().At(next_output_timestamp_));
|
||||
UpdateNextOutputTimestampWithJitter();
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
|
@ -322,9 +345,7 @@ TimestampDiff TimestampDiffFromSeconds(double seconds) {
|
|||
? last_packet_
|
||||
: cc->Inputs().Get(input_data_id_).Value())
|
||||
.At(next_output_timestamp_));
|
||||
next_output_timestamp_ +=
|
||||
frame_time_usec_ *
|
||||
((1.0 - jitter_) + 2.0 * jitter_ * random_->RandFloat());
|
||||
UpdateNextOutputTimestampWithJitter();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
|
|
|
@ -12,14 +12,14 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "opencv_image_encoder_calculator_proto",
|
||||
srcs = ["opencv_image_encoder_calculator.proto"],
|
||||
|
|
|
@ -13,12 +13,12 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "graph_tensors_packet_generator_proto",
|
||||
srcs = ["graph_tensors_packet_generator.proto"],
|
||||
|
@ -138,7 +138,7 @@ mediapipe_cc_proto_library(
|
|||
srcs = ["image_frame_to_tensor_calculator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":image_frame_to_tensor_calculator_proto"],
|
||||
|
@ -173,7 +173,7 @@ mediapipe_cc_proto_library(
|
|||
srcs = ["pack_media_sequence_calculator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":pack_media_sequence_calculator_proto"],
|
||||
|
@ -192,7 +192,7 @@ mediapipe_cc_proto_library(
|
|||
srcs = ["tensorflow_session_from_frozen_graph_generator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:packet_generator_cc_proto",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":tensorflow_session_from_frozen_graph_generator_proto"],
|
||||
|
@ -203,7 +203,7 @@ mediapipe_cc_proto_library(
|
|||
srcs = ["tensorflow_session_from_frozen_graph_calculator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":tensorflow_session_from_frozen_graph_calculator_proto"],
|
||||
|
@ -277,7 +277,7 @@ mediapipe_cc_proto_library(
|
|||
srcs = ["vector_int_to_tensor_calculator_options.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":vector_int_to_tensor_calculator_options_proto"],
|
||||
|
@ -296,7 +296,7 @@ cc_library(
|
|||
srcs = ["graph_tensors_packet_generator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:graph_tensors_packet_generator_cc_proto",
|
||||
":graph_tensors_packet_generator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -311,7 +311,7 @@ cc_library(
|
|||
srcs = ["image_frame_to_tensor_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:image_frame_to_tensor_calculator_cc_proto",
|
||||
":image_frame_to_tensor_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
|
@ -333,7 +333,7 @@ cc_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework/formats:time_series_header_cc_proto",
|
||||
"//mediapipe/calculators/tensorflow:matrix_to_tensor_calculator_options_cc_proto",
|
||||
":matrix_to_tensor_calculator_options_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -354,7 +354,7 @@ cc_library(
|
|||
srcs = ["lapped_tensor_buffer_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:lapped_tensor_buffer_calculator_cc_proto",
|
||||
":lapped_tensor_buffer_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -408,7 +408,7 @@ cc_library(
|
|||
"//mediapipe/util/sequence:media_sequence",
|
||||
"//mediapipe/util/sequence:media_sequence_util",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
@ -423,7 +423,7 @@ cc_library(
|
|||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
@ -436,7 +436,7 @@ cc_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":tensorflow_session",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_inference_calculator_cc_proto",
|
||||
":tensorflow_inference_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/tool:status_util",
|
||||
"@com_google_absl//absl/strings",
|
||||
|
@ -514,7 +514,7 @@ cc_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":tensorflow_session",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
":tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/tool:status_util",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -573,7 +573,7 @@ cc_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":tensorflow_session",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_session_from_saved_model_generator_cc_proto",
|
||||
":tensorflow_session_from_saved_model_generator_cc_proto",
|
||||
"//mediapipe/framework:packet_generator",
|
||||
"//mediapipe/framework:packet_type",
|
||||
"//mediapipe/framework/tool:status_util",
|
||||
|
@ -597,7 +597,7 @@ cc_library(
|
|||
srcs = ["tensor_squeeze_dimensions_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:tensor_squeeze_dimensions_calculator_cc_proto",
|
||||
":tensor_squeeze_dimensions_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -611,7 +611,7 @@ cc_library(
|
|||
srcs = ["tensor_to_image_frame_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_image_frame_calculator_cc_proto",
|
||||
":tensor_to_image_frame_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
|
@ -627,7 +627,7 @@ cc_library(
|
|||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework/formats:time_series_header_cc_proto",
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_matrix_calculator_cc_proto",
|
||||
":tensor_to_matrix_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -654,7 +654,7 @@ cc_library(
|
|||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@org_tensorflow//tensorflow/core:lib",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
@ -667,7 +667,7 @@ cc_library(
|
|||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:status",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_vector_float_calculator_options_cc_proto",
|
||||
":tensor_to_vector_float_calculator_options_cc_proto",
|
||||
] + select({
|
||||
"//conditions:default": [
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
|
@ -695,7 +695,7 @@ cc_library(
|
|||
"//mediapipe/util:audio_decoder_cc_proto",
|
||||
"//mediapipe/util/sequence:media_sequence",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
@ -719,7 +719,7 @@ cc_library(
|
|||
srcs = ["vector_float_to_tensor_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:vector_float_to_tensor_calculator_options_cc_proto",
|
||||
":vector_float_to_tensor_calculator_options_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
|
@ -733,11 +733,11 @@ cc_library(
|
|||
srcs = ["unpack_yt8m_sequence_example_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/tensorflow:lapped_tensor_buffer_calculator_cc_proto",
|
||||
":lapped_tensor_buffer_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
@ -747,7 +747,7 @@ cc_test(
|
|||
srcs = ["graph_tensors_packet_generator_test.cc"],
|
||||
deps = [
|
||||
":graph_tensors_packet_generator",
|
||||
"//mediapipe/calculators/tensorflow:graph_tensors_packet_generator_cc_proto",
|
||||
":graph_tensors_packet_generator_cc_proto",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework:packet_generator_cc_proto",
|
||||
"//mediapipe/framework:packet_set",
|
||||
|
@ -779,7 +779,7 @@ cc_test(
|
|||
srcs = ["matrix_to_tensor_calculator_test.cc"],
|
||||
deps = [
|
||||
":matrix_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensorflow:matrix_to_tensor_calculator_options_cc_proto",
|
||||
":matrix_to_tensor_calculator_options_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
|
@ -795,13 +795,13 @@ cc_test(
|
|||
srcs = ["lapped_tensor_buffer_calculator_test.cc"],
|
||||
deps = [
|
||||
":lapped_tensor_buffer_calculator",
|
||||
"//mediapipe/calculators/tensorflow:lapped_tensor_buffer_calculator_cc_proto",
|
||||
":lapped_tensor_buffer_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -840,7 +840,7 @@ cc_test(
|
|||
"//mediapipe/util/sequence:media_sequence",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -867,7 +867,7 @@ cc_test(
|
|||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
"@org_tensorflow//tensorflow/core:testlib",
|
||||
"@org_tensorflow//tensorflow/core/kernels:conv_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:math",
|
||||
|
@ -883,7 +883,7 @@ cc_test(
|
|||
":tensorflow_inference_calculator",
|
||||
":tensorflow_session",
|
||||
":tensorflow_session_from_frozen_graph_generator",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
":tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework:packet_generator_cc_proto",
|
||||
|
@ -897,7 +897,7 @@ cc_test(
|
|||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
"@org_tensorflow//tensorflow/core:testlib",
|
||||
"@org_tensorflow//tensorflow/core/kernels:conv_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:math",
|
||||
|
@ -913,7 +913,7 @@ cc_test(
|
|||
":tensorflow_inference_calculator",
|
||||
":tensorflow_session",
|
||||
":tensorflow_session_from_saved_model_generator",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_session_from_saved_model_generator_cc_proto",
|
||||
":tensorflow_session_from_saved_model_generator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework:packet_generator_cc_proto",
|
||||
|
@ -923,14 +923,8 @@ cc_test(
|
|||
"//mediapipe/framework/tool:tag_map_helper",
|
||||
"//mediapipe/framework/tool:validate_type",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:all_kernels",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
"@org_tensorflow//tensorflow/core/kernels:array",
|
||||
"@org_tensorflow//tensorflow/core/kernels:bitcast_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:conv_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:io",
|
||||
"@org_tensorflow//tensorflow/core/kernels:state",
|
||||
"@org_tensorflow//tensorflow/core/kernels:string",
|
||||
"@org_tensorflow//tensorflow/core/kernels/data:tensor_dataset_op",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -954,14 +948,8 @@ cc_test(
|
|||
"//mediapipe/framework/tool:tag_map_helper",
|
||||
"//mediapipe/framework/tool:validate_type",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:all_kernels",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
"@org_tensorflow//tensorflow/core/kernels:array",
|
||||
"@org_tensorflow//tensorflow/core/kernels:bitcast_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:conv_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:io",
|
||||
"@org_tensorflow//tensorflow/core/kernels:state",
|
||||
"@org_tensorflow//tensorflow/core/kernels:string",
|
||||
"@org_tensorflow//tensorflow/core/kernels/data:tensor_dataset_op",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -970,12 +958,12 @@ cc_test(
|
|||
srcs = ["tensor_squeeze_dimensions_calculator_test.cc"],
|
||||
deps = [
|
||||
":tensor_squeeze_dimensions_calculator",
|
||||
"//mediapipe/calculators/tensorflow:tensor_squeeze_dimensions_calculator_cc_proto",
|
||||
":tensor_squeeze_dimensions_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -985,13 +973,13 @@ cc_test(
|
|||
srcs = ["tensor_to_image_frame_calculator_test.cc"],
|
||||
deps = [
|
||||
":tensor_to_image_frame_calculator",
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_image_frame_calculator_cc_proto",
|
||||
":tensor_to_image_frame_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1001,14 +989,14 @@ cc_test(
|
|||
srcs = ["tensor_to_matrix_calculator_test.cc"],
|
||||
deps = [
|
||||
":tensor_to_matrix_calculator",
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_matrix_calculator_cc_proto",
|
||||
":tensor_to_matrix_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
"//mediapipe/framework/formats:time_series_header_cc_proto",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1017,12 +1005,12 @@ cc_test(
|
|||
srcs = ["tensor_to_vector_float_calculator_test.cc"],
|
||||
deps = [
|
||||
":tensor_to_vector_float_calculator",
|
||||
"//mediapipe/calculators/tensorflow:tensor_to_vector_float_calculator_options_cc_proto",
|
||||
":tensor_to_vector_float_calculator_options_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1042,7 +1030,7 @@ cc_test(
|
|||
"//mediapipe/util/sequence:media_sequence",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1056,7 +1044,7 @@ cc_test(
|
|||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1065,12 +1053,12 @@ cc_test(
|
|||
srcs = ["vector_float_to_tensor_calculator_test.cc"],
|
||||
deps = [
|
||||
":vector_float_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensorflow:vector_float_to_tensor_calculator_options_cc_proto",
|
||||
":vector_float_to_tensor_calculator_options_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"@org_tensorflow//tensorflow/core:framework",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1094,7 +1082,7 @@ cc_test(
|
|||
":tensorflow_session",
|
||||
":tensorflow_inference_calculator",
|
||||
":tensorflow_session_from_frozen_graph_generator",
|
||||
"//mediapipe/calculators/tensorflow:tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
":tensorflow_session_from_frozen_graph_generator_cc_proto",
|
||||
"//mediapipe/framework/deps:file_path",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
|
|
|
@ -238,6 +238,7 @@ cc_library(
|
|||
"@org_tensorflow//tensorflow/lite/delegates/gpu/common:shape",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu/metal:buffer_convert",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu:metal_delegate",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu:metal_delegate_internal",
|
||||
],
|
||||
"//conditions:default": [
|
||||
"//mediapipe/gpu:gl_calculator_helper",
|
||||
|
|
|
@ -27,8 +27,7 @@
|
|||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__) && \
|
||||
!defined(__APPLE__)
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
#include "mediapipe/gpu/gl_calculator_helper.h"
|
||||
#include "mediapipe/gpu/gpu_buffer.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/shape.h"
|
||||
|
@ -49,6 +48,7 @@
|
|||
#include "tensorflow/lite/delegates/gpu/common/shape.h"
|
||||
#include "tensorflow/lite/delegates/gpu/metal/buffer_convert.h"
|
||||
#include "tensorflow/lite/delegates/gpu/metal_delegate.h"
|
||||
#include "tensorflow/lite/delegates/gpu/metal_delegate_internal.h"
|
||||
#endif // iOS
|
||||
|
||||
namespace {
|
||||
|
@ -553,9 +553,9 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
|
||||
#if defined(__APPLE__) && !TARGET_OS_OSX // iOS
|
||||
// Configure and create the delegate.
|
||||
GpuDelegateOptions options;
|
||||
TFLGpuDelegateOptions options;
|
||||
options.allow_precision_loss = false; // Must match converter, F=float/T=half
|
||||
options.wait_type = GpuDelegateOptions::WaitType::kPassive;
|
||||
options.wait_type = TFLGpuDelegateWaitType::TFLGpuDelegateWaitTypePassive;
|
||||
if (!delegate_) delegate_ = TFLGpuDelegateCreate(&options);
|
||||
id<MTLDevice> device = gpu_helper_.mtlDevice;
|
||||
|
||||
|
|
|
@ -172,13 +172,11 @@ class TfLiteTensorsToDetectionsCalculator : public CalculatorBase {
|
|||
const int* detection_classes, std::vector<Detection>* output_detections);
|
||||
Detection ConvertToDetection(float box_ymin, float box_xmin, float box_ymax,
|
||||
float box_xmax, float score, int class_id,
|
||||
int detection_id, bool flip_vertically);
|
||||
bool flip_vertically);
|
||||
|
||||
int num_classes_ = 0;
|
||||
int num_boxes_ = 0;
|
||||
int num_coords_ = 0;
|
||||
// Unique detection ID per new detection.
|
||||
static int next_detection_id_;
|
||||
std::set<int> ignore_classes_;
|
||||
|
||||
::mediapipe::TfLiteTensorsToDetectionsCalculatorOptions options_;
|
||||
|
@ -199,10 +197,6 @@ class TfLiteTensorsToDetectionsCalculator : public CalculatorBase {
|
|||
};
|
||||
REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
||||
|
||||
// Initialization of non-const static member should happen outside class
|
||||
// definition.
|
||||
int TfLiteTensorsToDetectionsCalculator::next_detection_id_ = 0;
|
||||
|
||||
::mediapipe::Status TfLiteTensorsToDetectionsCalculator::GetContract(
|
||||
CalculatorContract* cc) {
|
||||
RET_CHECK(!cc->Inputs().GetTags().empty());
|
||||
|
@ -686,10 +680,7 @@ int TfLiteTensorsToDetectionsCalculator::next_detection_id_ = 0;
|
|||
Detection detection = ConvertToDetection(
|
||||
detection_boxes[box_offset + 0], detection_boxes[box_offset + 1],
|
||||
detection_boxes[box_offset + 2], detection_boxes[box_offset + 3],
|
||||
detection_scores[i], detection_classes[i], next_detection_id_,
|
||||
options_.flip_vertically());
|
||||
// Increment to get next unique detection ID.
|
||||
++next_detection_id_;
|
||||
detection_scores[i], detection_classes[i], options_.flip_vertically());
|
||||
// Add keypoints.
|
||||
if (options_.num_keypoints() > 0) {
|
||||
auto* location_data = detection.mutable_location_data();
|
||||
|
@ -712,11 +703,10 @@ int TfLiteTensorsToDetectionsCalculator::next_detection_id_ = 0;
|
|||
|
||||
Detection TfLiteTensorsToDetectionsCalculator::ConvertToDetection(
|
||||
float box_ymin, float box_xmin, float box_ymax, float box_xmax, float score,
|
||||
int class_id, int detection_id, bool flip_vertically) {
|
||||
int class_id, bool flip_vertically) {
|
||||
Detection detection;
|
||||
detection.add_score(score);
|
||||
detection.add_label_id(class_id);
|
||||
detection.set_detection_id(detection_id);
|
||||
|
||||
LocationData* location_data = detection.mutable_location_data();
|
||||
location_data->set_format(LocationData::RELATIVE_BOUNDING_BOX);
|
||||
|
|
|
@ -12,14 +12,14 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "annotation_overlay_calculator_proto",
|
||||
srcs = ["annotation_overlay_calculator.proto"],
|
||||
|
@ -72,6 +72,24 @@ proto_library(
|
|||
],
|
||||
)
|
||||
|
||||
proto_library(
|
||||
name = "collection_has_min_size_calculator_proto",
|
||||
srcs = ["collection_has_min_size_calculator.proto"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_proto",
|
||||
],
|
||||
)
|
||||
|
||||
proto_library(
|
||||
name = "association_calculator_proto",
|
||||
srcs = ["association_calculator.proto"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_proto",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "annotation_overlay_calculator_cc_proto",
|
||||
srcs = ["annotation_overlay_calculator.proto"],
|
||||
|
@ -141,6 +159,26 @@ mediapipe_cc_proto_library(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "collection_has_min_size_calculator_cc_proto",
|
||||
srcs = ["collection_has_min_size_calculator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
deps = [":collection_has_min_size_calculator_proto"],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "association_calculator_cc_proto",
|
||||
srcs = ["association_calculator.proto"],
|
||||
cc_deps = [
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
deps = [":association_calculator_proto"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "packet_frequency_calculator",
|
||||
srcs = ["packet_frequency_calculator.cc"],
|
||||
|
@ -847,3 +885,101 @@ cc_library(
|
|||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "filter_collection_calculator",
|
||||
srcs = ["filter_collection_calculator.cc"],
|
||||
hdrs = ["filter_collection_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "collection_has_min_size_calculator",
|
||||
srcs = ["collection_has_min_size_calculator.cc"],
|
||||
hdrs = ["collection_has_min_size_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":collection_has_min_size_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "association_calculator",
|
||||
hdrs = ["association_calculator.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":association_calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:collection_item_id",
|
||||
"//mediapipe/framework/port:rectangle",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/memory",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "association_norm_rect_calculator",
|
||||
srcs = ["association_norm_rect_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":association_calculator",
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:rectangle",
|
||||
"//mediapipe/framework/port:status",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "association_detection_calculator",
|
||||
srcs = ["association_detection_calculator.cc"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":association_calculator",
|
||||
"//mediapipe/framework:calculator_context",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
"//mediapipe/framework/formats:location",
|
||||
"//mediapipe/framework/port:rectangle",
|
||||
"//mediapipe/framework/port:status",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "association_calculator_test",
|
||||
srcs = ["association_calculator_test.cc"],
|
||||
deps = [
|
||||
":association_detection_calculator",
|
||||
":association_norm_rect_calculator",
|
||||
"//mediapipe/framework:calculator_cc_proto",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
"//mediapipe/framework:collection_item_id",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/deps:message_matchers",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
"//mediapipe/framework/formats:location_data_cc_proto",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:gtest_main",
|
||||
"//mediapipe/framework/port:parse_text_proto",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -148,9 +148,6 @@ class AnnotationOverlayCalculator : public CalculatorBase {
|
|||
// Underlying helper renderer library.
|
||||
std::unique_ptr<AnnotationRenderer> renderer_;
|
||||
|
||||
// Number of input streams with render data.
|
||||
int num_render_streams_;
|
||||
|
||||
// Indicates if image frame is available as input.
|
||||
bool image_frame_available_ = false;
|
||||
|
||||
|
@ -181,20 +178,15 @@ REGISTER_CALCULATOR(AnnotationOverlayCalculator);
|
|||
return ::mediapipe::InternalError("GPU output must have GPU input.");
|
||||
}
|
||||
|
||||
// Assume all inputs are render streams; adjust below.
|
||||
int num_render_streams = cc->Inputs().NumEntries();
|
||||
|
||||
// Input image to render onto copy of.
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag(kInputFrameTagGpu)) {
|
||||
cc->Inputs().Tag(kInputFrameTagGpu).Set<mediapipe::GpuBuffer>();
|
||||
num_render_streams = cc->Inputs().NumEntries() - 1;
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
if (cc->Inputs().HasTag(kInputFrameTag)) {
|
||||
cc->Inputs().Tag(kInputFrameTag).Set<ImageFrame>();
|
||||
num_render_streams = cc->Inputs().NumEntries() - 1;
|
||||
}
|
||||
|
||||
// Data streams to render.
|
||||
|
@ -246,12 +238,10 @@ REGISTER_CALCULATOR(AnnotationOverlayCalculator);
|
|||
if (cc->Inputs().HasTag(kInputFrameTagGpu) ||
|
||||
cc->Inputs().HasTag(kInputFrameTag)) {
|
||||
image_frame_available_ = true;
|
||||
num_render_streams_ = cc->Inputs().NumEntries() - 1;
|
||||
} else {
|
||||
image_frame_available_ = false;
|
||||
RET_CHECK(options_.has_canvas_width_px());
|
||||
RET_CHECK(options_.has_canvas_height_px());
|
||||
num_render_streams_ = cc->Inputs().NumEntries();
|
||||
}
|
||||
|
||||
// Initialize the helper renderer library.
|
||||
|
|
259
mediapipe/calculators/util/association_calculator.h
Normal file
|
@ -0,0 +1,259 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_UTIL_ASSOCIATION_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_UTIL_ASSOCIATION_CALCULATOR_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
#include "mediapipe/calculators/util/association_calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_context.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/collection_item_id.h"
|
||||
#include "mediapipe/framework/port/canonical_errors.h"
|
||||
#include "mediapipe/framework/port/rectangle.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Computes the overlap similarity based on Intersection over Union (IoU) of
|
||||
// two rectangles.
|
||||
inline float OverlapSimilarity(const Rectangle_f& rect1,
|
||||
const Rectangle_f& rect2) {
|
||||
if (!rect1.Intersects(rect2)) return 0.0f;
|
||||
// Compute IoU similarity score.
|
||||
const float intersection_area = Rectangle_f(rect1).Intersect(rect2).Area();
|
||||
const float normalization = rect1.Area() + rect2.Area() - intersection_area;
|
||||
return normalization > 0.0f ? intersection_area / normalization : 0.0f;
|
||||
}
|
||||
|
||||
// AssocationCalculator<T> accepts multiple inputs of vectors of type T that can
|
||||
// be converted to Rectangle_f. The output is a vector of type T that contains
|
||||
// elements from the input vectors that don't overlap with each other. When
|
||||
// two elements overlap, the element that comes in from a later input stream
|
||||
// is kept in the output. This association operation is useful for multiple
|
||||
// instance inference pipelines in MediaPipe.
|
||||
// If an input stream is tagged with "PREV" tag, IDs of overlapping elements
|
||||
// from "PREV" input stream are propagated to the output. Elements in the "PREV"
|
||||
// input stream that don't overlap with other elements are not added to the
|
||||
// output. This stream is designed to take detections from previous timestamp,
|
||||
// e.g. output of PreviousLoopbackCalculator to provide temporal association.
|
||||
// See AssociationDetectionCalculator and AssociationNormRectCalculator for
|
||||
// example uses.
|
||||
template <typename T>
|
||||
class AssociationCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
// Atmost one input stream can be tagged with "PREV".
|
||||
RET_CHECK_LE(cc->Inputs().NumEntries("PREV"), 1);
|
||||
|
||||
if (cc->Inputs().HasTag("PREV")) {
|
||||
RET_CHECK_GE(cc->Inputs().NumEntries(), 2);
|
||||
}
|
||||
|
||||
for (CollectionItemId id = cc->Inputs().BeginId();
|
||||
id < cc->Inputs().EndId(); ++id) {
|
||||
cc->Inputs().Get(id).Set<std::vector<T>>();
|
||||
}
|
||||
|
||||
cc->Outputs().Index(0).Set<std::vector<T>>();
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
|
||||
has_prev_input_stream_ = cc->Inputs().HasTag("PREV");
|
||||
if (has_prev_input_stream_) {
|
||||
prev_input_stream_id_ = cc->Inputs().GetId("PREV", 0);
|
||||
}
|
||||
options_ = cc->Options<::mediapipe::AssociationCalculatorOptions>();
|
||||
CHECK_GE(options_.min_similarity_threshold(), 0);
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
auto get_non_overlapping_elements = GetNonOverlappingElements(cc);
|
||||
if (!get_non_overlapping_elements.ok()) {
|
||||
return get_non_overlapping_elements.status();
|
||||
}
|
||||
std::list<T> result = get_non_overlapping_elements.ValueOrDie();
|
||||
|
||||
if (has_prev_input_stream_ &&
|
||||
!cc->Inputs().Get(prev_input_stream_id_).IsEmpty()) {
|
||||
// Processed all regular input streams. Now compare the result list
|
||||
// elements with those in the PREV input stream, and propagate IDs from
|
||||
// PREV input stream as appropriate.
|
||||
const std::vector<T>& prev_input_vec =
|
||||
cc->Inputs()
|
||||
.Get(prev_input_stream_id_)
|
||||
.template Get<std::vector<T>>();
|
||||
|
||||
MP_RETURN_IF_ERROR(
|
||||
PropagateIdsFromPreviousToCurrent(prev_input_vec, &result));
|
||||
}
|
||||
|
||||
auto output = absl::make_unique<std::vector<T>>();
|
||||
for (auto it = result.begin(); it != result.end(); ++it) {
|
||||
output->push_back(*it);
|
||||
}
|
||||
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
protected:
|
||||
::mediapipe::AssociationCalculatorOptions options_;
|
||||
|
||||
bool has_prev_input_stream_;
|
||||
CollectionItemId prev_input_stream_id_;
|
||||
|
||||
virtual ::mediapipe::StatusOr<Rectangle_f> GetRectangle(const T& input) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
virtual std::pair<bool, int> GetId(const T& input) { return {false, -1}; }
|
||||
|
||||
virtual void SetId(T* input, int id) {}
|
||||
|
||||
private:
|
||||
// Get a list of non-overlapping elements from all input streams, with
|
||||
// increasing order of priority based on input stream index.
|
||||
mediapipe::StatusOr<std::list<T>> GetNonOverlappingElements(
|
||||
CalculatorContext* cc) {
|
||||
std::list<T> result;
|
||||
|
||||
// Initialize result with the first non-empty input vector.
|
||||
CollectionItemId non_empty_id = cc->Inputs().BeginId();
|
||||
for (CollectionItemId id = cc->Inputs().BeginId();
|
||||
id < cc->Inputs().EndId(); ++id) {
|
||||
if (id == prev_input_stream_id_ || cc->Inputs().Get(id).IsEmpty()) {
|
||||
continue;
|
||||
}
|
||||
const std::vector<T>& input_vec =
|
||||
cc->Inputs().Get(id).Get<std::vector<T>>();
|
||||
if (!input_vec.empty()) {
|
||||
non_empty_id = id;
|
||||
result.push_back(input_vec[0]);
|
||||
for (int j = 1; j < input_vec.size(); ++j) {
|
||||
MP_RETURN_IF_ERROR(AddElementToList(input_vec[j], &result));
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Compare remaining input vectors with the non-empty result vector,
|
||||
// remove lower-priority overlapping elements from the result vector and
|
||||
// had corresponding higher-priority elements as necessary.
|
||||
for (CollectionItemId id = non_empty_id + 1; id < cc->Inputs().EndId();
|
||||
++id) {
|
||||
if (id == prev_input_stream_id_ || cc->Inputs().Get(id).IsEmpty()) {
|
||||
continue;
|
||||
}
|
||||
const std::vector<T>& input_vec =
|
||||
cc->Inputs().Get(id).Get<std::vector<T>>();
|
||||
|
||||
for (int vi = 0; vi < input_vec.size(); ++vi) {
|
||||
MP_RETURN_IF_ERROR(AddElementToList(input_vec[vi], &result));
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
::mediapipe::Status AddElementToList(T element, std::list<T>* current) {
|
||||
// Compare this element with elements of the input collection. If this
|
||||
// element has high overlap with elements of the collection, remove
|
||||
// those elements from the collection and add this element.
|
||||
ASSIGN_OR_RETURN(auto cur_rect, GetRectangle(element));
|
||||
|
||||
bool change_id = false;
|
||||
int new_elem_id = -1;
|
||||
|
||||
for (auto uit = current->begin(); uit != current->end();) {
|
||||
ASSIGN_OR_RETURN(auto prev_rect, GetRectangle(*uit));
|
||||
if (OverlapSimilarity(cur_rect, prev_rect) >
|
||||
options_.min_similarity_threshold()) {
|
||||
std::pair<bool, int> prev_id = GetId(*uit);
|
||||
// If prev_id.first is false when some element doesn't have an ID,
|
||||
// change_id and new_elem_id will not be updated.
|
||||
if (prev_id.first) {
|
||||
change_id = prev_id.first;
|
||||
new_elem_id = prev_id.second;
|
||||
}
|
||||
uit = current->erase(uit);
|
||||
} else {
|
||||
++uit;
|
||||
}
|
||||
}
|
||||
|
||||
if (change_id) {
|
||||
SetId(&element, new_elem_id);
|
||||
}
|
||||
current->push_back(element);
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
// Compare elements of the current list with elements in from the collection
|
||||
// of elements from the previous input stream, and propagate IDs from the
|
||||
// previous input stream as appropriate.
|
||||
::mediapipe::Status PropagateIdsFromPreviousToCurrent(
|
||||
const std::vector<T>& prev_input_vec, std::list<T>* current) {
|
||||
for (auto vit = current->begin(); vit != current->end(); ++vit) {
|
||||
auto get_cur_rectangle = GetRectangle(*vit);
|
||||
if (!get_cur_rectangle.ok()) {
|
||||
return get_cur_rectangle.status();
|
||||
}
|
||||
const Rectangle_f& cur_rect = get_cur_rectangle.ValueOrDie();
|
||||
|
||||
bool change_id = false;
|
||||
int id_for_vi = -1;
|
||||
|
||||
for (int ui = 0; ui < prev_input_vec.size(); ++ui) {
|
||||
auto get_prev_rectangle = GetRectangle(prev_input_vec[ui]);
|
||||
if (!get_prev_rectangle.ok()) {
|
||||
return get_prev_rectangle.status();
|
||||
}
|
||||
const Rectangle_f& prev_rect = get_prev_rectangle.ValueOrDie();
|
||||
|
||||
if (OverlapSimilarity(cur_rect, prev_rect) >
|
||||
options_.min_similarity_threshold()) {
|
||||
std::pair<bool, int> prev_id = GetId(prev_input_vec[ui]);
|
||||
// If prev_id.first is false when some element doesn't have an ID,
|
||||
// change_id and id_for_vi will not be updated.
|
||||
if (prev_id.first) {
|
||||
change_id = prev_id.first;
|
||||
id_for_vi = prev_id.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (change_id) {
|
||||
T element = *vit;
|
||||
SetId(&element, id_for_vi);
|
||||
*vit = element;
|
||||
}
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_UTIL_ASSOCIATION_CALCULATOR_H_
|
27
mediapipe/calculators/util/association_calculator.proto
Normal file
|
@ -0,0 +1,27 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
syntax = "proto2";
|
||||
|
||||
package mediapipe;
|
||||
|
||||
import "mediapipe/framework/calculator.proto";
|
||||
|
||||
message AssociationCalculatorOptions {
|
||||
extend CalculatorOptions {
|
||||
optional AssociationCalculatorOptions ext = 275124847;
|
||||
}
|
||||
|
||||
optional float min_similarity_threshold = 1 [default = 1.0];
|
||||
}
|
476
mediapipe/calculators/util/association_calculator_test.cc
Normal file
|
@ -0,0 +1,476 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/framework/calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/calculator_runner.h"
|
||||
#include "mediapipe/framework/collection_item_id.h"
|
||||
#include "mediapipe/framework/deps/message_matchers.h"
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
#include "mediapipe/framework/formats/location_data.pb.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
#include "mediapipe/framework/packet.h"
|
||||
#include "mediapipe/framework/port/gmock.h"
|
||||
#include "mediapipe/framework/port/gtest.h"
|
||||
#include "mediapipe/framework/port/parse_text_proto.h"
|
||||
#include "mediapipe/framework/port/status_matchers.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
namespace {
|
||||
|
||||
::mediapipe::Detection DetectionWithRelativeLocationData(double xmin,
|
||||
double ymin,
|
||||
double width,
|
||||
double height) {
|
||||
::mediapipe::Detection detection;
|
||||
::mediapipe::LocationData* location_data = detection.mutable_location_data();
|
||||
location_data->set_format(::mediapipe::LocationData::RELATIVE_BOUNDING_BOX);
|
||||
location_data->mutable_relative_bounding_box()->set_xmin(xmin);
|
||||
location_data->mutable_relative_bounding_box()->set_ymin(ymin);
|
||||
location_data->mutable_relative_bounding_box()->set_width(width);
|
||||
location_data->mutable_relative_bounding_box()->set_height(height);
|
||||
return detection;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
class AssociationDetectionCalculatorTest : public ::testing::Test {
|
||||
protected:
|
||||
AssociationDetectionCalculatorTest() {
|
||||
// 0.4 ================
|
||||
// | | | |
|
||||
// 0.3 ===================== | DET2 | |
|
||||
// | | | DET1 | | | DET4 |
|
||||
// 0.2 | DET0 | =========== ================
|
||||
// | | | | | |
|
||||
// 0.1 =====|=============== |
|
||||
// | DET3 | | |
|
||||
// 0.0 ================ |
|
||||
// | DET5 |
|
||||
// -0.1 ===========
|
||||
// 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
|
||||
|
||||
// Detection det_0.
|
||||
det_0 = DetectionWithRelativeLocationData(/*xmin=*/0.1, /*ymin=*/0.1,
|
||||
/*width=*/0.2, /*height=*/0.2);
|
||||
det_0.set_detection_id(0);
|
||||
|
||||
// Detection det_1.
|
||||
det_1 = DetectionWithRelativeLocationData(/*xmin=*/0.3, /*ymin=*/0.1,
|
||||
/*width=*/0.2, /*height=*/0.2);
|
||||
det_1.set_detection_id(1);
|
||||
|
||||
// Detection det_2.
|
||||
det_2 = DetectionWithRelativeLocationData(/*xmin=*/0.9, /*ymin=*/0.2,
|
||||
/*width=*/0.2, /*height=*/0.2);
|
||||
det_2.set_detection_id(2);
|
||||
|
||||
// Detection det_3.
|
||||
det_3 = DetectionWithRelativeLocationData(/*xmin=*/0.2, /*ymin=*/0.0,
|
||||
/*width=*/0.3, /*height=*/0.3);
|
||||
det_3.set_detection_id(3);
|
||||
|
||||
// Detection det_4.
|
||||
det_4 = DetectionWithRelativeLocationData(/*xmin=*/1.0, /*ymin=*/0.2,
|
||||
/*width=*/0.2, /*height=*/0.2);
|
||||
det_4.set_detection_id(4);
|
||||
|
||||
// Detection det_5.
|
||||
det_5 = DetectionWithRelativeLocationData(/*xmin=*/0.3, /*ymin=*/-0.1,
|
||||
/*width=*/0.3, /*height=*/0.3);
|
||||
det_5.set_detection_id(5);
|
||||
}
|
||||
|
||||
::mediapipe::Detection det_0, det_1, det_2, det_3, det_4, det_5;
|
||||
};
|
||||
|
||||
TEST_F(AssociationDetectionCalculatorTest, DetectionAssocTest) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationDetectionCalculator"
|
||||
input_stream: "input_vec_0"
|
||||
input_stream: "input_vec_1"
|
||||
input_stream: "input_vec_2"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream 0: det_0, det_1, det_2.
|
||||
auto input_vec_0 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_0->push_back(det_0);
|
||||
input_vec_0->push_back(det_1);
|
||||
input_vec_0->push_back(det_2);
|
||||
runner.MutableInputs()->Index(0).packets.push_back(
|
||||
Adopt(input_vec_0.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 1: det_3, det_4.
|
||||
auto input_vec_1 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_1->push_back(det_3);
|
||||
input_vec_1->push_back(det_4);
|
||||
runner.MutableInputs()->Index(1).packets.push_back(
|
||||
Adopt(input_vec_1.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 2: det_5.
|
||||
auto input_vec_2 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_2->push_back(det_5);
|
||||
runner.MutableInputs()->Index(2).packets.push_back(
|
||||
Adopt(input_vec_2.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::Detection>>();
|
||||
|
||||
// det_3 overlaps with det_0, det_1 and det_5 overlaps with det_3. Since det_5
|
||||
// is in the highest priority, we remove other rects. det_4 overlaps with
|
||||
// det_2, and det_4 is higher priority, so we keep it. The final output
|
||||
// therefore contains 2 elements.
|
||||
EXPECT_EQ(2, assoc_rects.size());
|
||||
// Outputs are in order of inputs, so det_4 is before det_5 in output vector.
|
||||
|
||||
// det_4 overlaps with det_2, so new id for det_4 is 2.
|
||||
EXPECT_TRUE(assoc_rects[0].has_detection_id());
|
||||
EXPECT_EQ(2, assoc_rects[0].detection_id());
|
||||
det_4.set_detection_id(2);
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(det_4));
|
||||
|
||||
// det_3 overlaps with det_0, so new id for det_3 is 0.
|
||||
// det_3 overlaps with det_1, so new id for det_3 is 1.
|
||||
// det_5 overlaps with det_3, so new id for det_5 is 1.
|
||||
EXPECT_TRUE(assoc_rects[1].has_detection_id());
|
||||
EXPECT_EQ(1, assoc_rects[1].detection_id());
|
||||
det_5.set_detection_id(1);
|
||||
EXPECT_THAT(assoc_rects[1], EqualsProto(det_5));
|
||||
}
|
||||
|
||||
TEST_F(AssociationDetectionCalculatorTest, DetectionAssocTestWithPrev) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationDetectionCalculator"
|
||||
input_stream: "PREV:input_vec_0"
|
||||
input_stream: "input_vec_1"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream 0: det_3, det_4.
|
||||
auto input_vec_0 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_0->push_back(det_3);
|
||||
input_vec_0->push_back(det_4);
|
||||
CollectionItemId prev_input_stream_id =
|
||||
runner.MutableInputs()->GetId("PREV", 0);
|
||||
runner.MutableInputs()
|
||||
->Get(prev_input_stream_id)
|
||||
.packets.push_back(Adopt(input_vec_0.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 1: det_5.
|
||||
auto input_vec_1 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_1->push_back(det_5);
|
||||
CollectionItemId input_stream_id = runner.MutableInputs()->GetId("", 0);
|
||||
runner.MutableInputs()
|
||||
->Get(input_stream_id)
|
||||
.packets.push_back(Adopt(input_vec_1.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::Detection>>();
|
||||
|
||||
// det_5 overlaps with det_3 and doesn't overlap with det_4. Since det_4 is
|
||||
// in the PREV input stream, it doesn't get copied to the output, so the final
|
||||
// output contains 1 element.
|
||||
EXPECT_EQ(1, assoc_rects.size());
|
||||
|
||||
// det_5 overlaps with det_3, det_3 is in PREV, so new id for det_5 is 3.
|
||||
EXPECT_TRUE(assoc_rects[0].has_detection_id());
|
||||
EXPECT_EQ(3, assoc_rects[0].detection_id());
|
||||
det_5.set_detection_id(3);
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(det_5));
|
||||
}
|
||||
|
||||
TEST_F(AssociationDetectionCalculatorTest, DetectionAssocTestReverse) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationDetectionCalculator"
|
||||
input_stream: "input_vec_0"
|
||||
input_stream: "input_vec_1"
|
||||
input_stream: "input_vec_2"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream 0: det_5.
|
||||
auto input_vec_0 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_0->push_back(det_5);
|
||||
runner.MutableInputs()->Index(0).packets.push_back(
|
||||
Adopt(input_vec_0.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 1: det_3, det_4.
|
||||
auto input_vec_1 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_1->push_back(det_3);
|
||||
input_vec_1->push_back(det_4);
|
||||
runner.MutableInputs()->Index(1).packets.push_back(
|
||||
Adopt(input_vec_1.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 2: det_0, det_1, det_2.
|
||||
auto input_vec_2 = absl::make_unique<std::vector<::mediapipe::Detection>>();
|
||||
input_vec_2->push_back(det_0);
|
||||
input_vec_2->push_back(det_1);
|
||||
input_vec_2->push_back(det_2);
|
||||
runner.MutableInputs()->Index(2).packets.push_back(
|
||||
Adopt(input_vec_2.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::Detection>>();
|
||||
|
||||
// det_3 overlaps with det_5, so det_5 is removed. det_0 overlaps with det_3,
|
||||
// so det_3 is removed as det_0 is in higher priority for keeping. det_2
|
||||
// overlaps with det_4 so det_4 is removed as det_2 is higher priority for
|
||||
// keeping. The final output therefore contains 3 elements.
|
||||
EXPECT_EQ(3, assoc_rects.size());
|
||||
// Outputs are in same order as inputs.
|
||||
|
||||
// det_3 overlaps with det_5, so new id for det_3 is 5.
|
||||
// det_0 overlaps with det_3, so new id for det_0 is 5.
|
||||
EXPECT_TRUE(assoc_rects[0].has_detection_id());
|
||||
EXPECT_EQ(5, assoc_rects[0].detection_id());
|
||||
det_0.set_detection_id(5);
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(det_0));
|
||||
|
||||
// det_1 stays with id 1.
|
||||
EXPECT_TRUE(assoc_rects[1].has_detection_id());
|
||||
EXPECT_EQ(1, assoc_rects[1].detection_id());
|
||||
EXPECT_THAT(assoc_rects[1], EqualsProto(det_1));
|
||||
|
||||
// det_2 overlaps with det_4, so new id for det_2 is 4.
|
||||
EXPECT_TRUE(assoc_rects[2].has_detection_id());
|
||||
EXPECT_EQ(4, assoc_rects[2].detection_id());
|
||||
det_2.set_detection_id(4);
|
||||
EXPECT_THAT(assoc_rects[2], EqualsProto(det_2));
|
||||
}
|
||||
|
||||
class AssociationNormRectCalculatorTest : public ::testing::Test {
|
||||
protected:
|
||||
AssociationNormRectCalculatorTest() {
|
||||
// 0.4 ================
|
||||
// | | | |
|
||||
// 0.3 ===================== | NR2 | |
|
||||
// | | | NR1 | | | NR4 |
|
||||
// 0.2 | NR0 | =========== ================
|
||||
// | | | | | |
|
||||
// 0.1 =====|=============== |
|
||||
// | NR3 | | |
|
||||
// 0.0 ================ |
|
||||
// | NR5 |
|
||||
// -0.1 ===========
|
||||
// 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
|
||||
|
||||
// NormalizedRect nr_0.
|
||||
nr_0.set_x_center(0.2);
|
||||
nr_0.set_y_center(0.2);
|
||||
nr_0.set_width(0.2);
|
||||
nr_0.set_height(0.2);
|
||||
|
||||
// NormalizedRect nr_1.
|
||||
nr_1.set_x_center(0.4);
|
||||
nr_1.set_y_center(0.2);
|
||||
nr_1.set_width(0.2);
|
||||
nr_1.set_height(0.2);
|
||||
|
||||
// NormalizedRect nr_2.
|
||||
nr_2.set_x_center(1.0);
|
||||
nr_2.set_y_center(0.3);
|
||||
nr_2.set_width(0.2);
|
||||
nr_2.set_height(0.2);
|
||||
|
||||
// NormalizedRect nr_3.
|
||||
nr_3.set_x_center(0.35);
|
||||
nr_3.set_y_center(0.15);
|
||||
nr_3.set_width(0.3);
|
||||
nr_3.set_height(0.3);
|
||||
|
||||
// NormalizedRect nr_4.
|
||||
nr_4.set_x_center(1.1);
|
||||
nr_4.set_y_center(0.3);
|
||||
nr_4.set_width(0.2);
|
||||
nr_4.set_height(0.2);
|
||||
|
||||
// NormalizedRect nr_5.
|
||||
nr_5.set_x_center(0.45);
|
||||
nr_5.set_y_center(0.05);
|
||||
nr_5.set_width(0.3);
|
||||
nr_5.set_height(0.3);
|
||||
}
|
||||
|
||||
::mediapipe::NormalizedRect nr_0, nr_1, nr_2, nr_3, nr_4, nr_5;
|
||||
};
|
||||
|
||||
TEST_F(AssociationNormRectCalculatorTest, NormRectAssocTest) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "input_vec_0"
|
||||
input_stream: "input_vec_1"
|
||||
input_stream: "input_vec_2"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream 0: nr_0, nr_1, nr_2.
|
||||
auto input_vec_0 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_0->push_back(nr_0);
|
||||
input_vec_0->push_back(nr_1);
|
||||
input_vec_0->push_back(nr_2);
|
||||
runner.MutableInputs()->Index(0).packets.push_back(
|
||||
Adopt(input_vec_0.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 1: nr_3, nr_4.
|
||||
auto input_vec_1 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_1->push_back(nr_3);
|
||||
input_vec_1->push_back(nr_4);
|
||||
runner.MutableInputs()->Index(1).packets.push_back(
|
||||
Adopt(input_vec_1.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 2: nr_5.
|
||||
auto input_vec_2 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_2->push_back(nr_5);
|
||||
runner.MutableInputs()->Index(2).packets.push_back(
|
||||
Adopt(input_vec_2.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::NormalizedRect>>();
|
||||
|
||||
// nr_3 overlaps with nr_0, nr_1 and nr_5 overlaps with nr_3. Since nr_5 is
|
||||
// in the highest priority, we remove other rects.
|
||||
// nr_4 overlaps with nr_2, and nr_4 is higher priority, so we keep it.
|
||||
// The final output therefore contains 2 elements.
|
||||
EXPECT_EQ(2, assoc_rects.size());
|
||||
// Outputs are in order of inputs, so nr_4 is before nr_5 in output vector.
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(nr_4));
|
||||
EXPECT_THAT(assoc_rects[1], EqualsProto(nr_5));
|
||||
}
|
||||
|
||||
TEST_F(AssociationNormRectCalculatorTest, NormRectAssocTestReverse) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "input_vec_0"
|
||||
input_stream: "input_vec_1"
|
||||
input_stream: "input_vec_2"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream 0: nr_5.
|
||||
auto input_vec_0 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_0->push_back(nr_5);
|
||||
runner.MutableInputs()->Index(0).packets.push_back(
|
||||
Adopt(input_vec_0.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 1: nr_3, nr_4.
|
||||
auto input_vec_1 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_1->push_back(nr_3);
|
||||
input_vec_1->push_back(nr_4);
|
||||
runner.MutableInputs()->Index(1).packets.push_back(
|
||||
Adopt(input_vec_1.release()).At(Timestamp(1)));
|
||||
|
||||
// Input Stream 2: nr_0, nr_1, nr_2.
|
||||
auto input_vec_2 =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec_2->push_back(nr_0);
|
||||
input_vec_2->push_back(nr_1);
|
||||
input_vec_2->push_back(nr_2);
|
||||
runner.MutableInputs()->Index(2).packets.push_back(
|
||||
Adopt(input_vec_2.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::NormalizedRect>>();
|
||||
|
||||
// nr_3 overlaps with nr_5, so nr_5 is removed. nr_0 overlaps with nr_3, so
|
||||
// nr_3 is removed as nr_0 is in higher priority for keeping. nr_2 overlaps
|
||||
// with nr_4 so nr_4 is removed as nr_2 is higher priority for keeping.
|
||||
// The final output therefore contains 3 elements.
|
||||
EXPECT_EQ(3, assoc_rects.size());
|
||||
// Outputs are in same order as inputs.
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(nr_0));
|
||||
EXPECT_THAT(assoc_rects[1], EqualsProto(nr_1));
|
||||
EXPECT_THAT(assoc_rects[2], EqualsProto(nr_2));
|
||||
}
|
||||
|
||||
TEST_F(AssociationNormRectCalculatorTest, NormRectAssocSingleInputStream) {
|
||||
CalculatorRunner runner(ParseTextProtoOrDie<CalculatorGraphConfig::Node>(R"(
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "input_vec"
|
||||
output_stream: "output_vec"
|
||||
options {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
)"));
|
||||
|
||||
// Input Stream : nr_3, nr_5.
|
||||
auto input_vec =
|
||||
absl::make_unique<std::vector<::mediapipe::NormalizedRect>>();
|
||||
input_vec->push_back(nr_3);
|
||||
input_vec->push_back(nr_5);
|
||||
runner.MutableInputs()->Index(0).packets.push_back(
|
||||
Adopt(input_vec.release()).At(Timestamp(1)));
|
||||
|
||||
MP_ASSERT_OK(runner.Run()) << "Calculator execution failed.";
|
||||
const std::vector<Packet>& output = runner.Outputs().Index(0).packets;
|
||||
EXPECT_EQ(1, output.size());
|
||||
const auto& assoc_rects =
|
||||
output[0].Get<std::vector<::mediapipe::NormalizedRect>>();
|
||||
|
||||
// nr_5 overlaps with nr_3. Since nr_5 is after nr_3 in the same input stream
|
||||
// we remove nr_3 and keep nr_5.
|
||||
// The final output therefore contains 1 elements.
|
||||
EXPECT_EQ(1, assoc_rects.size());
|
||||
EXPECT_THAT(assoc_rects[0], EqualsProto(nr_5));
|
||||
}
|
||||
|
||||
} // namespace mediapipe
|
|
@ -0,0 +1,77 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/util/association_calculator.h"
|
||||
#include "mediapipe/framework/calculator_context.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
#include "mediapipe/framework/formats/location.h"
|
||||
#include "mediapipe/framework/port/rectangle.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// A subclass of AssociationCalculator<T> for Detection. Example:
|
||||
// node {
|
||||
// calculator: "AssociationDetectionCalculator"
|
||||
// input_stream: "PREV:input_vec_0"
|
||||
// input_stream: "input_vec_1"
|
||||
// input_stream: "input_vec_2"
|
||||
// output_stream: "output_vec"
|
||||
// options {
|
||||
// [mediapipe.AssociationCalculatorOptions.ext] {
|
||||
// min_similarity_threshold: 0.1
|
||||
// }
|
||||
// }
|
||||
class AssociationDetectionCalculator
|
||||
: public AssociationCalculator<::mediapipe::Detection> {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
return AssociationCalculator<::mediapipe::Detection>::GetContract(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::Detection>::Open(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::Detection>::Process(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Close(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::Detection>::Close(cc);
|
||||
}
|
||||
|
||||
protected:
|
||||
::mediapipe::StatusOr<Rectangle_f> GetRectangle(
|
||||
const ::mediapipe::Detection& input) override {
|
||||
if (!input.has_location_data()) {
|
||||
return ::mediapipe::InternalError("Missing location_data in Detection");
|
||||
}
|
||||
const Location location(input.location_data());
|
||||
return location.GetRelativeBBox();
|
||||
}
|
||||
|
||||
std::pair<bool, int> GetId(const ::mediapipe::Detection& input) override {
|
||||
return {input.has_detection_id(), input.detection_id()};
|
||||
}
|
||||
|
||||
void SetId(::mediapipe::Detection* input, int id) override {
|
||||
input->set_detection_id(id);
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_CALCULATOR(AssociationDetectionCalculator);
|
||||
|
||||
} // namespace mediapipe
|
|
@ -0,0 +1,72 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/util/association_calculator.h"
|
||||
#include "mediapipe/framework/calculator_context.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
#include "mediapipe/framework/port/rectangle.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// A subclass of AssociationCalculator<T> for NormalizedRect. Example use case:
|
||||
// node {
|
||||
// calculator: "AssociationNormRectCalculator"
|
||||
// input_stream: "input_vec_0"
|
||||
// input_stream: "input_vec_1"
|
||||
// input_stream: "input_vec_2"
|
||||
// output_stream: "output_vec"
|
||||
// options {
|
||||
// [mediapipe.AssociationCalculatorOptions.ext] {
|
||||
// min_similarity_threshold: 0.1
|
||||
// }
|
||||
// }
|
||||
class AssociationNormRectCalculator
|
||||
: public AssociationCalculator<::mediapipe::NormalizedRect> {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
return AssociationCalculator<::mediapipe::NormalizedRect>::GetContract(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::NormalizedRect>::Open(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::NormalizedRect>::Process(cc);
|
||||
}
|
||||
|
||||
::mediapipe::Status Close(CalculatorContext* cc) override {
|
||||
return AssociationCalculator<::mediapipe::NormalizedRect>::Close(cc);
|
||||
}
|
||||
|
||||
protected:
|
||||
::mediapipe::StatusOr<Rectangle_f> GetRectangle(
|
||||
const ::mediapipe::NormalizedRect& input) override {
|
||||
if (!input.has_x_center() || !input.has_y_center() || !input.has_width() ||
|
||||
!input.has_height()) {
|
||||
return ::mediapipe::InternalError(
|
||||
"Missing dimensions in NormalizedRect.");
|
||||
}
|
||||
const float xmin = input.x_center() - input.width() / 2.0;
|
||||
const float ymin = input.y_center() - input.height() / 2.0;
|
||||
// TODO: Support rotation for rectangle.
|
||||
return Rectangle_f(xmin, ymin, input.width(), input.height());
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_CALCULATOR(AssociationNormRectCalculator);
|
||||
|
||||
} // namespace mediapipe
|
|
@ -0,0 +1,26 @@
|
|||
|
||||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/util/collection_has_min_size_calculator.h"
|
||||
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef CollectionHasMinSizeCalculator<std::vector<::mediapipe::NormalizedRect>>
|
||||
NormalizedRectVectorHasMinSizeCalculator;
|
||||
REGISTER_CALCULATOR(NormalizedRectVectorHasMinSizeCalculator);
|
||||
|
||||
} // namespace mediapipe
|
|
@ -0,0 +1,84 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_UTIL_COLLECTION_HAS_MIN_SIZE_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_UTIL_COLLECTION_HAS_MIN_SIZE_CALCULATOR_H_
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/calculators/util/collection_has_min_size_calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/port/canonical_errors.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Deterimines if an input iterable collection has a minimum size, specified
|
||||
// in CollectionHasMinSizeCalculatorOptions. Example usage:
|
||||
// node {
|
||||
// calculator: "IntVectorHasMinSizeCalculator"
|
||||
// input_stream: "ITERABLE:input_int_vector"
|
||||
// output_stream: "has_min_ints"
|
||||
// options {
|
||||
// [mediapipe.CollectionHasMinSizeCalculatorOptions.ext] {
|
||||
// min_size: 2
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
template <typename IterableT>
|
||||
class CollectionHasMinSizeCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("ITERABLE"));
|
||||
RET_CHECK_EQ(1, cc->Inputs().NumEntries());
|
||||
|
||||
RET_CHECK_EQ(1, cc->Outputs().NumEntries());
|
||||
|
||||
RET_CHECK_GE(
|
||||
cc->Options<::mediapipe::CollectionHasMinSizeCalculatorOptions>()
|
||||
.min_size(),
|
||||
0);
|
||||
|
||||
cc->Inputs().Tag("ITERABLE").Set<IterableT>();
|
||||
cc->Outputs().Index(0).Set<bool>();
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
min_size_ =
|
||||
cc->Options<::mediapipe::CollectionHasMinSizeCalculatorOptions>()
|
||||
.min_size();
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
const IterableT& input = cc->Inputs().Tag("ITERABLE").Get<IterableT>();
|
||||
bool has_min_size = input.size() >= min_size_;
|
||||
|
||||
cc->Outputs().Index(0).AddPacket(
|
||||
MakePacket<bool>(has_min_size).At(cc->InputTimestamp()));
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
private:
|
||||
int min_size_ = 0;
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_UTIL_COLLECTION_HAS_MIN_SIZE_CALCULATOR_H_
|
|
@ -0,0 +1,29 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
syntax = "proto2";
|
||||
|
||||
package mediapipe;
|
||||
|
||||
import "mediapipe/framework/calculator.proto";
|
||||
|
||||
message CollectionHasMinSizeCalculatorOptions {
|
||||
extend CalculatorOptions {
|
||||
optional CollectionHasMinSizeCalculatorOptions ext = 259397840;
|
||||
}
|
||||
|
||||
// The minimum size an input iterable collection should have for the
|
||||
// calculator to output true.
|
||||
optional int32 min_size = 1 [default = 0];
|
||||
}
|
34
mediapipe/calculators/util/filter_collection_calculator.cc
Normal file
|
@ -0,0 +1,34 @@
|
|||
|
||||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/util/filter_collection_calculator.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef FilterCollectionCalculator<std::vector<::mediapipe::NormalizedRect>>
|
||||
FilterNormalizedRectCollectionCalculator;
|
||||
REGISTER_CALCULATOR(FilterNormalizedRectCollectionCalculator);
|
||||
|
||||
typedef FilterCollectionCalculator<
|
||||
std::vector<std::vector<::mediapipe::NormalizedLandmark>>>
|
||||
FilterLandmarksCollectionCalculator;
|
||||
REGISTER_CALCULATOR(FilterLandmarksCollectionCalculator);
|
||||
|
||||
} // namespace mediapipe
|
109
mediapipe/calculators/util/filter_collection_calculator.h
Normal file
|
@ -0,0 +1,109 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_UTIL_FILTER_VECTOR_CALCULATOR_H_
|
||||
#define MEDIAPIPE_CALCULATORS_UTIL_FILTER_VECTOR_CALCULATOR_H_
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/port/canonical_errors.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// A calculator that gates elements of an input collection based on
|
||||
// corresponding boolean values of the "CONDITION" vector. If there is no input
|
||||
// collection or "CONDITION" vector, the calculator forwards timestamp bounds
|
||||
// for downstream calculators. If the "CONDITION" vector has false values for
|
||||
// all elements of the input collection, the calculator outputs a packet
|
||||
// containing an empty collection.
|
||||
// Example usage:
|
||||
// node {
|
||||
// calculator: "FilterCollectionCalculator"
|
||||
// input_stream: "ITERABLE:input_collection"
|
||||
// input_stream: "CONDITION:condition_vector"
|
||||
// output_stream: "ITERABLE:output_collection"
|
||||
// }
|
||||
// This calculator is able to handle collections of copyable types T.
|
||||
template <typename IterableT>
|
||||
class FilterCollectionCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("ITERABLE"));
|
||||
RET_CHECK(cc->Inputs().HasTag("CONDITION"));
|
||||
RET_CHECK(cc->Outputs().HasTag("ITERABLE"));
|
||||
|
||||
cc->Inputs().Tag("ITERABLE").Set<IterableT>();
|
||||
cc->Inputs().Tag("CONDITION").Set<std::vector<bool>>();
|
||||
|
||||
cc->Outputs().Tag("ITERABLE").Set<IterableT>();
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Open(CalculatorContext* cc) override {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) override {
|
||||
if (cc->Inputs().Tag("ITERABLE").IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
if (cc->Inputs().Tag("CONDITION").IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
const std::vector<bool>& filter_by =
|
||||
cc->Inputs().Tag("CONDITION").Get<std::vector<bool>>();
|
||||
|
||||
return FilterCollection<IterableT>(
|
||||
std::is_copy_constructible<typename IterableT::value_type>(), cc,
|
||||
filter_by);
|
||||
}
|
||||
|
||||
template <typename IterableU>
|
||||
::mediapipe::Status FilterCollection(std::true_type, CalculatorContext* cc,
|
||||
const std::vector<bool>& filter_by) {
|
||||
const IterableU& input = cc->Inputs().Tag("ITERABLE").Get<IterableU>();
|
||||
if (input.size() != filter_by.size()) {
|
||||
return ::mediapipe::InternalError(absl::StrCat(
|
||||
"Input vector size: ", input.size(),
|
||||
" doesn't mach condition vector size: ", filter_by.size()));
|
||||
}
|
||||
|
||||
auto output = absl::make_unique<IterableU>();
|
||||
for (int i = 0; i < input.size(); ++i) {
|
||||
if (filter_by[i]) {
|
||||
output->push_back(input[i]);
|
||||
}
|
||||
}
|
||||
cc->Outputs().Tag("ITERABLE").Add(output.release(), cc->InputTimestamp());
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
template <typename IterableU>
|
||||
::mediapipe::Status FilterCollection(std::false_type, CalculatorContext* cc,
|
||||
const std::vector<bool>& filter_by) {
|
||||
return ::mediapipe::InternalError(
|
||||
"Cannot copy input collection to filter it.");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_UTIL_FILTER_VECTOR_CALCULATOR_H_
|
|
@ -23,7 +23,9 @@ namespace mediapipe {
|
|||
namespace {
|
||||
|
||||
constexpr char kNormRectTag[] = "NORM_RECT";
|
||||
constexpr char kNormRectsTag[] = "NORM_RECTS";
|
||||
constexpr char kRectTag[] = "RECT";
|
||||
constexpr char kRectsTag[] = "RECTS";
|
||||
constexpr char kImageSizeTag[] = "IMAGE_SIZE";
|
||||
|
||||
// Wraps around an angle in radians to within -M_PI and M_PI.
|
||||
|
@ -72,17 +74,31 @@ REGISTER_CALCULATOR(RectTransformationCalculator);
|
|||
|
||||
::mediapipe::Status RectTransformationCalculator::GetContract(
|
||||
CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag(kNormRectTag) ^ cc->Inputs().HasTag(kRectTag));
|
||||
RET_CHECK_EQ((cc->Inputs().HasTag(kNormRectTag) ? 1 : 0) +
|
||||
(cc->Inputs().HasTag(kNormRectsTag) ? 1 : 0) +
|
||||
(cc->Inputs().HasTag(kRectTag) ? 1 : 0) +
|
||||
(cc->Inputs().HasTag(kRectsTag) ? 1 : 0),
|
||||
1);
|
||||
if (cc->Inputs().HasTag(kRectTag)) {
|
||||
cc->Inputs().Tag(kRectTag).Set<Rect>();
|
||||
cc->Outputs().Index(0).Set<Rect>();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kRectsTag)) {
|
||||
cc->Inputs().Tag(kRectsTag).Set<std::vector<Rect>>();
|
||||
cc->Outputs().Index(0).Set<std::vector<Rect>>();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormRectTag)) {
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageSizeTag));
|
||||
cc->Inputs().Tag(kNormRectTag).Set<NormalizedRect>();
|
||||
cc->Inputs().Tag(kImageSizeTag).Set<std::pair<int, int>>();
|
||||
cc->Outputs().Index(0).Set<NormalizedRect>();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormRectsTag)) {
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageSizeTag));
|
||||
cc->Inputs().Tag(kNormRectsTag).Set<std::vector<NormalizedRect>>();
|
||||
cc->Inputs().Tag(kImageSizeTag).Set<std::pair<int, int>>();
|
||||
cc->Outputs().Index(0).Set<std::vector<NormalizedRect>>();
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
@ -105,7 +121,17 @@ REGISTER_CALCULATOR(RectTransformationCalculator);
|
|||
cc->Outputs().Index(0).AddPacket(
|
||||
MakePacket<Rect>(rect).At(cc->InputTimestamp()));
|
||||
}
|
||||
|
||||
if (cc->Inputs().HasTag(kRectsTag) &&
|
||||
!cc->Inputs().Tag(kRectsTag).IsEmpty()) {
|
||||
auto rects = cc->Inputs().Tag(kRectsTag).Get<std::vector<Rect>>();
|
||||
auto output_rects = absl::make_unique<std::vector<Rect>>(rects.size());
|
||||
for (int i = 0; i < rects.size(); ++i) {
|
||||
output_rects->at(i) = rects[i];
|
||||
auto it = output_rects->begin() + i;
|
||||
TransformRect(&(*it));
|
||||
}
|
||||
cc->Outputs().Index(0).Add(output_rects.release(), cc->InputTimestamp());
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormRectTag) &&
|
||||
!cc->Inputs().Tag(kNormRectTag).IsEmpty()) {
|
||||
auto rect = cc->Inputs().Tag(kNormRectTag).Get<NormalizedRect>();
|
||||
|
@ -115,6 +141,21 @@ REGISTER_CALCULATOR(RectTransformationCalculator);
|
|||
cc->Outputs().Index(0).AddPacket(
|
||||
MakePacket<NormalizedRect>(rect).At(cc->InputTimestamp()));
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormRectsTag) &&
|
||||
!cc->Inputs().Tag(kNormRectsTag).IsEmpty()) {
|
||||
auto rects =
|
||||
cc->Inputs().Tag(kNormRectsTag).Get<std::vector<NormalizedRect>>();
|
||||
const auto& image_size =
|
||||
cc->Inputs().Tag(kImageSizeTag).Get<std::pair<int, int>>();
|
||||
auto output_rects =
|
||||
absl::make_unique<std::vector<NormalizedRect>>(rects.size());
|
||||
for (int i = 0; i < rects.size(); ++i) {
|
||||
output_rects->at(i) = rects[i];
|
||||
auto it = output_rects->begin() + i;
|
||||
TransformNormalizedRect(&(*it), image_size.first, image_size.second);
|
||||
}
|
||||
cc->Outputs().Index(0).Add(output_rects.release(), cc->InputTimestamp());
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
|
|
@ -13,12 +13,16 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
load(
|
||||
"//mediapipe/framework/tool:mediapipe_graph.bzl",
|
||||
"mediapipe_binary_graph",
|
||||
)
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "flow_to_image_calculator_proto",
|
||||
srcs = ["flow_to_image_calculator.proto"],
|
||||
|
@ -52,9 +56,7 @@ mediapipe_cc_proto_library(
|
|||
cc_library(
|
||||
name = "flow_to_image_calculator",
|
||||
srcs = ["flow_to_image_calculator.cc"],
|
||||
visibility = [
|
||||
"//visibility:public",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//mediapipe/calculators/video:flow_to_image_calculator_cc_proto",
|
||||
"//mediapipe/calculators/video/tool:flow_quantizer_model",
|
||||
|
@ -129,10 +131,20 @@ cc_library(
|
|||
alwayslink = 1,
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "test_videos",
|
||||
srcs = [
|
||||
"testdata/format_FLV_H264_AAC.video",
|
||||
"testdata/format_MKV_VP8_VORBIS.video",
|
||||
"testdata/format_MP4_AVC720P_AAC.video",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "opencv_video_decoder_calculator_test",
|
||||
srcs = ["opencv_video_decoder_calculator_test.cc"],
|
||||
data = ["//mediapipe/calculators/video/testdata:test_videos"],
|
||||
data = [":test_videos"],
|
||||
deps = [
|
||||
":opencv_video_decoder_calculator",
|
||||
"//mediapipe/framework:calculator_runner",
|
||||
|
@ -151,7 +163,7 @@ cc_test(
|
|||
cc_test(
|
||||
name = "opencv_video_encoder_calculator_test",
|
||||
srcs = ["opencv_video_encoder_calculator_test.cc"],
|
||||
data = ["//mediapipe/calculators/video/testdata:test_videos"],
|
||||
data = [":test_videos"],
|
||||
deps = [
|
||||
":opencv_video_decoder_calculator",
|
||||
":opencv_video_encoder_calculator",
|
||||
|
@ -175,7 +187,6 @@ cc_test(
|
|||
cc_test(
|
||||
name = "tvl1_optical_flow_calculator_test",
|
||||
srcs = ["tvl1_optical_flow_calculator_test.cc"],
|
||||
data = ["//mediapipe/calculators/image/testdata:test_images"],
|
||||
deps = [
|
||||
":tvl1_optical_flow_calculator",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
|
|
|
@ -123,6 +123,7 @@ class OpenCvVideoDecoderCalculator : public CalculatorBase {
|
|||
cc->Outputs()
|
||||
.Tag("VIDEO_PRESTREAM")
|
||||
.Add(header.release(), Timestamp::PreStream());
|
||||
cc->Outputs().Tag("VIDEO_PRESTREAM").Close();
|
||||
}
|
||||
// Rewind to the very first frame.
|
||||
cap_->set(cv::CAP_PROP_POS_AVI_RATIO, 0);
|
||||
|
|
26
mediapipe/calculators/video/testdata/BUILD
vendored
|
@ -1,26 +0,0 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
filegroup(
|
||||
name = "test_videos",
|
||||
srcs = [
|
||||
"format_FLV_H264_AAC.video",
|
||||
"format_MKV_VP8_VORBIS.video",
|
||||
"format_MP4_AVC720P_AAC.video",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
)
|
|
@ -13,24 +13,24 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//mediapipe/calculators/video:__subpackages__"])
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
|
||||
proto_library(
|
||||
name = "flow_quantizer_model_proto",
|
||||
srcs = ["flow_quantizer_model.proto"],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
visibility = ["//visibility:public"],
|
||||
)
|
||||
|
||||
mediapipe_cc_proto_library(
|
||||
name = "flow_quantizer_model_cc_proto",
|
||||
srcs = ["flow_quantizer_model.proto"],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":flow_quantizer_model_proto"],
|
||||
)
|
||||
|
||||
|
|
|
@ -76,6 +76,15 @@ MediaPipe with a TFLite model for hand tracking in a GPU-accelerated pipeline.
|
|||
* [Android](./hand_tracking_mobile_gpu.md)
|
||||
* [iOS](./hand_tracking_mobile_gpu.md)
|
||||
|
||||
### Multi-Hand Tracking with GPU
|
||||
|
||||
[Multi-Hand Tracking with GPU](./multi_hand_tracking_mobile_gpu.md) illustrates
|
||||
how to use MediaPipe with a TFLite model for multi-hand tracking in a
|
||||
GPU-accelerated pipeline.
|
||||
|
||||
* [Android](./multi_hand_tracking_mobile_gpu.md)
|
||||
* [iOS](./multi_hand_tracking_mobile_gpu.md)
|
||||
|
||||
### Hair Segmentation with GPU
|
||||
|
||||
[Hair Segmentation on GPU](./hair_segmentation_mobile_gpu.md) illustrates how to
|
||||
|
@ -132,6 +141,15 @@ with live video from a webcam.
|
|||
* [Desktop GPU](./hand_tracking_desktop.md)
|
||||
* [Desktop CPU](./hand_tracking_desktop.md)
|
||||
|
||||
### Multi-Hand Tracking on Desktop with Webcam
|
||||
|
||||
[Multi-Hand Tracking on Desktop with Webcam](./multi_hand_tracking_desktop.md)
|
||||
shows how to use MediaPipe with a TFLite model for multi-hand tracking on
|
||||
desktop using CPU or GPU with live video from a webcam.
|
||||
|
||||
* [Desktop GPU](./multi_hand_tracking_desktop.md)
|
||||
* [Desktop CPU](./multi_hand_tracking_desktop.md)
|
||||
|
||||
### Hair Segmentation on Desktop with Webcam
|
||||
|
||||
[Hair Segmentation on Desktop with Webcam](./hair_segmentation_desktop.md) shows
|
||||
|
|
|
@ -77,7 +77,7 @@ below and paste it into
|
|||
```bash
|
||||
# MediaPipe graph that performs face detection with TensorFlow Lite on CPU & GPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/desktop/face_detection:face_detection_cpu.
|
||||
# mediapipe/examples/desktop/face_detection:face_detection_cpu.
|
||||
|
||||
# Images on CPU coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -31,8 +31,6 @@ $ bazel build -c opt --copt -DMESA_EGL_NO_X11_HEADERS \
|
|||
#INFO: Found 1 target...
|
||||
#Target //mediapipe/examples/desktop/hair_segmentation:hair_segmentation_gpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/hair_segmentation/hair_segmentation_gpu
|
||||
#INFO: Elapsed time: 18.209s, Forge stats: 13026/13057 actions cached, 20.8s CPU used, 0.0s queue time, 89.3 MB ObjFS output (novel bytes: 87.4 MB), 0.0 MB local output, Critical Path: 11.88s, Remote (86.01% of the time): [queue: 0.00%, network: 16.83%, setup: 4.59%, process: 38.92%]
|
||||
#INFO: Streaming build results to: http://sponge2/37d5a184-293b-4e98-a43e-b22084db3142
|
||||
#INFO: Build completed successfully, 12210 total actions
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
|
@ -53,7 +51,7 @@ below and paste it into
|
|||
```bash
|
||||
# MediaPipe graph that performs hair segmentation with TensorFlow Lite on GPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
|
||||
|
||||
# Images on GPU coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -29,7 +29,7 @@ below and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev/).
|
|||
```bash
|
||||
# MediaPipe graph that performs hair segmentation with TensorFlow Lite on GPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
|
||||
|
||||
# Images on GPU coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -31,8 +31,6 @@ $ bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \
|
|||
# It should print:
|
||||
#Target //mediapipe/examples/desktop/hand_tracking:hand_tracking_cpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/hand_tracking/hand_tracking_cpu
|
||||
#INFO: Elapsed time: 22.645s, Forge stats: 13356/13463 actions cached, 1.5m CPU used, 0.0s queue time, 819.8 MB ObjFS output (novel bytes: 85.6 MB), 0.0 MB local output, Critical Path: 14.43s, Remote (87.25% of the time): [queue: 0.00%, network: 14.88%, setup: 4.80%, process: 39.80%, fetch: 18.15%]
|
||||
#INFO: Streaming build results to: http://sponge2/360196b9-33ab-44b1-84a7-1022b5043307
|
||||
#INFO: Build completed successfully, 12517 total actions
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
|
@ -54,8 +52,6 @@ $ bazel build -c opt --copt -DMESA_EGL_NO_X11_HEADERS \
|
|||
# It should print:
|
||||
# Target //mediapipe/examples/desktop/hand_tracking:hand_tracking_gpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/hand_tracking/hand_tracking_gpu
|
||||
#INFO: Elapsed time: 84.055s, Forge stats: 6858/19343 actions cached, 1.6h CPU used, 0.9s queue time, 1.68 GB ObjFS output (novel bytes: 485.1 MB), 0.0 MB local output, Critical Path: 48.14s, Remote (99.40% of the time): [queue: 0.00%, setup: 5.59%, process: 74.44%]
|
||||
#INFO: Streaming build results to: http://sponge2/00c7f95f-6fbc-432d-8978-f5d361efca3b
|
||||
#INFO: Build completed successfully, 22455 total actions
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
|
@ -77,7 +73,7 @@ below and paste it into
|
|||
# MediaPipe graph that performs hand tracking on desktop with TensorFlow Lite
|
||||
# on CPU & GPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/hand_tracking:hand_tracking_cpu.
|
||||
# mediapipe/examples/desktop/hand_tracking:hand_tracking_cpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -100,8 +100,8 @@ see the Visualizing Subgraphs section in the
|
|||
```bash
|
||||
# MediaPipe graph that performs hand tracking with TensorFlow Lite on GPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/handtrackinggpu and
|
||||
# mediapipie/examples/ios/handtrackinggpu.
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/handtrackinggpu and
|
||||
# mediapipe/examples/ios/handtrackinggpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
After Width: | Height: | Size: 149 KiB |
BIN
mediapipe/docs/images/mobile/multi_hand_landmark_subgraph.png
Normal file
After Width: | Height: | Size: 193 KiB |
After Width: | Height: | Size: 213 KiB |
After Width: | Height: | Size: 2.2 MiB |
BIN
mediapipe/docs/images/mobile/multi_hand_tracking_android_gpu.gif
Normal file
After Width: | Height: | Size: 2.6 MiB |
BIN
mediapipe/docs/images/mobile/multi_hand_tracking_mobile.png
Normal file
After Width: | Height: | Size: 112 KiB |
BIN
mediapipe/docs/images/multi_hand_tracking_desktop.png
Normal file
After Width: | Height: | Size: 124 KiB |
|
@ -7,11 +7,8 @@ future.
|
|||
Note: If you plan to use TensorFlow calculators and example apps, there is a
|
||||
known issue with gcc and g++ version 6.3 and 7.3. Please use other versions.
|
||||
|
||||
Note: While Mediapipe configures TensorFlow, if you see the
|
||||
following error:
|
||||
`"...git_configure.bzl", line 14, in _fail fail(("%sGit Configuration
|
||||
Error:%s %...)))`,
|
||||
please install the python future library using: `$ pip install --user future`.
|
||||
Note: To make Mediapipe work with TensorFlow, please install the python "future"
|
||||
library and the python "six" library using `pip install --user future six`.
|
||||
|
||||
Choose your operating system:
|
||||
|
||||
|
@ -42,11 +39,19 @@ To build and run iOS apps:
|
|||
$ cd mediapipe
|
||||
```
|
||||
|
||||
2. Install Bazel (version between 0.24.1 and 0.29.1).
|
||||
2. Install Bazel (0.24.1 and above required).
|
||||
|
||||
Follow the official
|
||||
[documentation](https://docs.bazel.build/versions/master/install-ubuntu.html)
|
||||
to install Bazel manually. Note that MediaPipe doesn't support Bazel 1.0.0+ yet.
|
||||
Option 1. Use package manager tool to install the latest version of Bazel.
|
||||
|
||||
```bash
|
||||
$ sudo apt-get install bazel
|
||||
|
||||
# Run 'bazel version' to check version of bazel installed
|
||||
```
|
||||
|
||||
Option 2. Follow the official
|
||||
[Bazel documentation](https://docs.bazel.build/versions/master/install-ubuntu.html)
|
||||
to install any version of Bazel manually.
|
||||
|
||||
3. Install OpenCV and FFmpeg.
|
||||
|
||||
|
@ -152,11 +157,11 @@ To build and run iOS apps:
|
|||
$ cd mediapipe
|
||||
```
|
||||
|
||||
2. Install Bazel (version between 0.24.1 and 0.29.1).
|
||||
2. Install Bazel (0.24.1 and above required).
|
||||
|
||||
Follow the official
|
||||
[documentation](https://docs.bazel.build/versions/master/install-redhat.html)
|
||||
to install Bazel manually. Note that MediaPipe doesn't support Bazel 1.0.0+ yet.
|
||||
[Bazel documentation](https://docs.bazel.build/versions/master/install-redhat.html)
|
||||
to install Bazel manually.
|
||||
|
||||
3. Install OpenCV.
|
||||
|
||||
|
@ -240,24 +245,19 @@ To build and run iOS apps:
|
|||
$ cd mediapipe
|
||||
```
|
||||
|
||||
3. Install Bazel (version between 0.24.1 and 0.29.1).
|
||||
3. Install Bazel (0.24.1 and above required).
|
||||
|
||||
Option 1. Use package manager tool to install Bazel 0.29.1
|
||||
Option 1. Use package manager tool to install the latest version of Bazel.
|
||||
|
||||
```bash
|
||||
# If Bazel 1.0.0+ was installed.
|
||||
$ brew uninstall bazel
|
||||
|
||||
# Install Bazel 0.29.1
|
||||
$ brew install https://raw.githubusercontent.com/bazelbuild/homebrew-tap/223ffb570c21c0a2af251afc6df9dec0214c6e74/Formula/bazel.rb
|
||||
$ brew link bazel
|
||||
$ brew install bazel
|
||||
|
||||
# Run 'bazel version' to check version of bazel installed
|
||||
```
|
||||
|
||||
Option 2. Follow the official
|
||||
[documentation](https://docs.bazel.build/versions/master/install-os-x.html#install-with-installer-mac-os-x)
|
||||
to install Bazel manually. Note that MediaPipe doesn't support Bazel 1.0.0+ yet.
|
||||
[Bazel documentation](https://docs.bazel.build/versions/master/install-os-x.html#install-with-installer-mac-os-x)
|
||||
to install any version of Bazel manually.
|
||||
|
||||
4. Install OpenCV and FFmpeg.
|
||||
|
||||
|
|
177
mediapipe/docs/multi_hand_tracking_desktop.md
Normal file
|
@ -0,0 +1,177 @@
|
|||
## Multi-Hand Tracking on Desktop
|
||||
|
||||
This is an example of using MediaPipe to run hand tracking models (TensorFlow
|
||||
Lite) and render bounding boxes on the detected hand instances (for multiple
|
||||
hands). To know more about the hand tracking models, please refer to the model
|
||||
[`README file`]. Moreover, if you are interested in running the same TensorfFlow
|
||||
Lite model on Android/iOS, please see the
|
||||
[Mulit-Hand Tracking on GPU on Android/iOS](multi_hand_tracking_mobile_gpu.md)
|
||||
and
|
||||
|
||||
We show the hand tracking demos with TensorFlow Lite model using the Webcam:
|
||||
|
||||
- [TensorFlow Lite Multi-Hand Tracking Demo with Webcam (CPU)](#tensorflow-lite-multi-hand-tracking-demo-with-webcam-cpu)
|
||||
|
||||
- [TensorFlow Lite Multi-Hand Tracking Demo with Webcam (GPU)](#tensorflow-lite-multi-hand-tracking-demo-with-webcam-gpu)
|
||||
|
||||
Note: Desktop GPU works only on Linux. Mesa drivers need to be installed. Please
|
||||
see
|
||||
[step 4 of "Installing on Debian and Ubuntu" in the installation guide](./install.md).
|
||||
|
||||
Note: If MediaPipe depends on OpenCV 2, please see the
|
||||
[known issues with OpenCV 2](#known-issues-with-opencv-2) section.
|
||||
|
||||
### TensorFlow Lite Multi-Hand Tracking Demo with Webcam (CPU)
|
||||
|
||||
To build and run the TensorFlow Lite example on desktop (CPU) with Webcam, run:
|
||||
|
||||
```bash
|
||||
# Video from webcam running on desktop CPU
|
||||
$ bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \
|
||||
mediapipe/examples/desktop/multi_hand_tracking:multi_hand_tracking_cpu
|
||||
|
||||
# It should print:
|
||||
#Target //mediapipe/examples/desktop/multi_hand_tracking:multi_hand_tracking_cpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/multi_hand_tracking/multi_hand_tracking_cpu
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
# Any errors is likely due to your webcam being not accessible
|
||||
$ GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/multi_hand_tracking/multi_hand_tracking_cpu \
|
||||
--calculator_graph_config_file=mediapipe/graphs/hand_tracking/multi_hand_tracking_desktop_live.pbtxt
|
||||
```
|
||||
|
||||
### TensorFlow Lite Multi-Hand Tracking Demo with Webcam (GPU)
|
||||
|
||||
To build and run the TensorFlow Lite example on desktop (GPU) with Webcam, run:
|
||||
|
||||
```bash
|
||||
# Video from webcam running on desktop GPU
|
||||
# This works only for linux currently
|
||||
$ bazel build -c opt --copt -DMESA_EGL_NO_X11_HEADERS \
|
||||
mediapipe/examples/desktop/multi_hand_tracking:multi_hand_tracking_gpu
|
||||
|
||||
# It should print:
|
||||
# Target //mediapipe/examples/desktop/multi_hand_tracking:multi_hand_tracking_gpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/multi_hand_tracking/multi_hand_tracking_gpu
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
# Any errors is likely due to your webcam being not accessible,
|
||||
# or GPU drivers not setup properly.
|
||||
$ GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/multi_hand_tracking/multi_hand_tracking_gpu \
|
||||
--calculator_graph_config_file=mediapipe/graphs/hand_tracking/multi_hand_tracking_mobile.pbtxt
|
||||
```
|
||||
|
||||
#### Graph
|
||||
|
||||
![graph visualization](images/multi_hand_tracking_desktop.png)
|
||||
|
||||
To visualize the graph as shown above, copy the text specification of the graph
|
||||
below and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev).
|
||||
|
||||
```bash
|
||||
# MediaPipe graph that performs multi-hand tracking on desktop with TensorFlow
|
||||
# Lite on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/multi_hand_tracking:multi_hand_tracking_cpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
output_stream: "output_video"
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided min_size.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_multi_hand_rects_from_landmarks"
|
||||
output_stream: "prev_has_enough_hands"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.CollectionHasMinSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify max_vec_size in
|
||||
# ClipVectorSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_gpu.pbtxt
|
||||
min_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drops the incoming image if the previous frame had at least N hands.
|
||||
# Otherwise, passes the incoming image through to trigger a new round of hand
|
||||
# detection in MultiHandDetectionSubgraph.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "DISALLOW:prev_has_enough_hands"
|
||||
output_stream: "multi_hand_detection_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.GateCalculatorOptions] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detections hands (see multi_hand_detection_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandDetectionSubgraph"
|
||||
input_stream: "multi_hand_detection_input_video"
|
||||
output_stream: "DETECTIONS:multi_palm_detections"
|
||||
output_stream: "NORM_RECTS:multi_palm_rects"
|
||||
}
|
||||
|
||||
# Subgraph that localizes hand landmarks for multiple hands (see
|
||||
# multi_hand_landmark.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
output_stream: "NORM_RECTS:multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches a hand rectangle fed back from MultiHandLandmarkSubgraph, and upon the
|
||||
# arrival of the next input image sends out the cached rectangle with the
|
||||
# timestamp replaced by that of the input image, essentially generating a packet
|
||||
# that carries the previous hand rectangle. Note that upon the arrival of the
|
||||
# very first input image, an empty packet is sent out to jump start the
|
||||
# feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:input_video"
|
||||
input_stream: "LOOP:multi_hand_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# frame and those from the current frame if MultiHandDetectionSubgraph runs.
|
||||
# This calculator ensures that the output multi_hand_rects vector doesn't
|
||||
# contain overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "prev_multi_hand_rects_from_landmarks"
|
||||
input_stream: "multi_palm_rects"
|
||||
output_stream: "multi_hand_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.AssociationCalculatorOptions] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that renders annotations and overlays them on top of the input
|
||||
# images (see multi_hand_renderer_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandRendererSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "DETECTIONS:multi_palm_detections"
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|
||||
```
|
||||
|
||||
[`README file`]:https://github.com/google/mediapipe/tree/master/mediapipe/README.md
|
755
mediapipe/docs/multi_hand_tracking_mobile_gpu.md
Normal file
|
@ -0,0 +1,755 @@
|
|||
# Multi-Hand Tracking (GPU)
|
||||
|
||||
This doc focuses on the
|
||||
[example graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/hand_tracking/multi_hand_tracking_mobile.pbtxt)
|
||||
that performs multi-hand tracking with TensorFlow Lite on GPU. It is related to
|
||||
the [hand_tracking_example](./hand_tracking_mobile_gpu.md), and we recommend
|
||||
users to review the (single) hand tracking example first.
|
||||
|
||||
![multi_hand_tracking_android_gpu.gif](images/mobile/multi_hand_tracking_android_gpu.gif)
|
||||
|
||||
In the visualization above, the red dots represent the hand landmarks and the
|
||||
green lines are simply connections between selected landmark paris for
|
||||
visualization of the hand skeleton. When there are fewer than `N` hands (`N=2`
|
||||
in the graphs here), the purple box represents a hand rectangle that covers the
|
||||
entire hand, derived from hand detection (see
|
||||
[hand_detection_example](./hand_detection_mobile_gpu.md)). When there are `N`
|
||||
hands (i.e. 2 hands for the graphs here), the red boxes represent hand
|
||||
rectangles for each of the hands, derived from the previous round of hand
|
||||
landmark localization using an ML model (see also
|
||||
[model card](https://mediapipe.page.link/handmc)). Hand landmark localization
|
||||
for each hand is performed only within the hand rectangle for computational
|
||||
efficiency and accuracy. Hand detection is only invoked whenever there are fewer
|
||||
than `N` hands in the previous iteration.
|
||||
|
||||
This example can also run a model that localizes hand landmarks in 3D (i.e.,
|
||||
estimating an extra z coordinate):
|
||||
|
||||
![multi_hand_tracking_3d_android_gpu.gif](images/mobile/multi_hand_tracking_3d_android_gpu.gif)
|
||||
|
||||
In the visualization above, the localized hand landmarks are represented by dots
|
||||
in different shades, with the brighter ones denoting landmarks closer to the
|
||||
camera.
|
||||
|
||||
## Android
|
||||
|
||||
[Source](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/multihandtrackinggpu)
|
||||
|
||||
To build the app yourself, run:
|
||||
|
||||
```bash
|
||||
bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/multihandtrackinggpu
|
||||
```
|
||||
|
||||
To build for the 3D mode, run:
|
||||
|
||||
```bash
|
||||
bazel build -c opt --config=android_arm64 --define 3D=true mediapipe/examples/android/src/java/com/google/mediapipe/apps/multihandtrackinggpu
|
||||
```
|
||||
|
||||
Once the app is built, install it on Android device with:
|
||||
|
||||
```bash
|
||||
adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/multihandtrackinggpu/multihandtrackinggpu.apk
|
||||
```
|
||||
|
||||
## iOS
|
||||
|
||||
[Source](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/multihandtrackinggpu).
|
||||
|
||||
See the general [instructions](./mediapipe_ios_setup.md) for building iOS
|
||||
examples and generating an Xcode project. This will be the HandDetectionGpuApp
|
||||
target.
|
||||
|
||||
To build on the command line:
|
||||
|
||||
```bash
|
||||
bazel build -c opt --config=ios_arm64 mediapipe/examples/ios/multihandtrackinggpu:MultiHandTrackingGpuApp
|
||||
```
|
||||
|
||||
To build for the 3D mode, run:
|
||||
|
||||
```bash
|
||||
bazel build -c opt --config=ios_arm64 --define 3D=true mediapipe/examples/ios/multihandtrackinggpu:MultiHandTrackingGpuApp
|
||||
```
|
||||
|
||||
## Graph
|
||||
|
||||
The multi-hand tracking [main graph](#main-graph) internal utilizes a
|
||||
[multi_hand_detection_subgraph](#multi-hand-detection-subgraph), a
|
||||
[multi_hand_landmark_subgraph](#multi-hand-landmark-subgraph), and a
|
||||
[multi_hand_renderer_subgraph](#multi-hand-renderer-subgraph).
|
||||
|
||||
The subgraphs show up in the main graph visualization as nodes colored in
|
||||
purple, and the subgraph itself can also be visualized just like a regular
|
||||
graph. For more information on how to visualize a graph that includes subgraphs,
|
||||
see the Visualizing Subgraphs section in the
|
||||
[visualizer documentation](./visualizer.md).
|
||||
|
||||
### Main Graph
|
||||
|
||||
![multi_hand_tracking_mobile_graph](images/mobile/multi_hand_tracking_mobile.png)
|
||||
|
||||
There are two key differences between this graph and the
|
||||
[single_hand_tracking_mobile_graph](./hand_tracking_mobile_gpu.md).
|
||||
|
||||
1. There is a `NormalizedRectVectorHasMinSize` calculator, that checks if in
|
||||
input vector of `NormalizedRect` objects has a minimum size equal to `N`. In
|
||||
this graph, if the vector contains fewer than `N` objects,
|
||||
`MultiHandDetection` subgraph runs. Otherwise, the `GateCalculator` doesn't
|
||||
send any image packets to the `MultiHandDetection` subgraph. This way, the
|
||||
main graph is efficient in that it avoids running the costly hand detection
|
||||
step when there are already `N` hands in the frame.
|
||||
2. The `MergeCalculator` has been replaced by the `AssociationNormRect`
|
||||
calculator. This `AssociationNormRect` takes as input a vector of
|
||||
`NormalizedRect` objects from the `MultiHandDetection` subgraph on the
|
||||
current frame, and a vector of `NormalizedRect` objects from the
|
||||
`MultiHandLandmark` subgraph from the previous frame, and performs an
|
||||
association operation between these objects. This calculator ensures that
|
||||
the output vector doesn't contain overlapping regions based on the specified
|
||||
`min_similarity_threshold`.
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/hand_tracking/multi_hand_tracking_mobile.pbtxt)
|
||||
|
||||
```bash
|
||||
# MediaPipe graph that performs multi-hand tracking with TensorFlow Lite on GPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/multihandtrackinggpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
output_stream: "output_video"
|
||||
|
||||
# Throttles the images flowing downstream for flow control. It passes through
|
||||
# the very first incoming image unaltered, and waits for downstream nodes
|
||||
# (calculators and subgraphs) in the graph to finish their tasks before it
|
||||
# passes through another image. All images that come in while waiting are
|
||||
# dropped, limiting the number of in-flight images in most part of the graph to
|
||||
# 1. This prevents the downstream nodes from queuing up incoming images and data
|
||||
# excessively, which leads to increased latency and memory usage, unwanted in
|
||||
# real-time mobile applications. It also eliminates unnecessarily computation,
|
||||
# e.g., the output produced by a node may get dropped downstream if the
|
||||
# subsequent nodes are still busy processing previous inputs.
|
||||
node {
|
||||
calculator: "FlowLimiterCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "FINISHED:multi_hand_rects"
|
||||
input_stream_info: {
|
||||
tag_index: "FINISHED"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "throttled_input_video"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided min_size.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_multi_hand_rects_from_landmarks"
|
||||
output_stream: "prev_has_enough_hands"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.CollectionHasMinSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify max_vec_size in
|
||||
# ClipVectorSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_gpu.pbtxt
|
||||
min_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drops the incoming image if the previous frame had at least N hands.
|
||||
# Otherwise, passes the incoming image through to trigger a new round of hand
|
||||
# detection in MultiHandDetectionSubgraph.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "throttled_input_video"
|
||||
input_stream: "DISALLOW:prev_has_enough_hands"
|
||||
output_stream: "multi_hand_detection_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.GateCalculatorOptions] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detections hands (see multi_hand_detection_gpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandDetectionSubgraph"
|
||||
input_stream: "multi_hand_detection_input_video"
|
||||
output_stream: "DETECTIONS:multi_palm_detections"
|
||||
output_stream: "NORM_RECTS:multi_palm_rects"
|
||||
}
|
||||
|
||||
# Subgraph that localizes hand landmarks for multiple hands (see
|
||||
# multi_hand_landmark.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
output_stream: "NORM_RECTS:multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches a hand rectangle fed back from MultiHandLandmarkSubgraph, and upon the
|
||||
# arrival of the next input image sends out the cached rectangle with the
|
||||
# timestamp replaced by that of the input image, essentially generating a packet
|
||||
# that carries the previous hand rectangle. Note that upon the arrival of the
|
||||
# very first input image, an empty packet is sent out to jump start the
|
||||
# feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:throttled_input_video"
|
||||
input_stream: "LOOP:multi_hand_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# frame and those from the current frame if MultiHandDetectionSubgraph runs.
|
||||
# This calculator ensures that the output multi_hand_rects vector doesn't
|
||||
# contain overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "prev_multi_hand_rects_from_landmarks"
|
||||
input_stream: "multi_palm_rects"
|
||||
output_stream: "multi_hand_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.AssociationCalculatorOptions] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that renders annotations and overlays them on top of the input
|
||||
# images (see multi_hand_renderer_gpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandRendererSubgraph"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_stream: "DETECTIONS:multi_palm_detections"
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|
||||
```
|
||||
|
||||
### Multi-Hand Detection Subgraph
|
||||
|
||||
![multi_hand_detection_gpu_subgraph](images/mobile/multi_hand_detection_gpu_subgraph.png)
|
||||
|
||||
This graph outputs a vector of `NormalizedRect` objects corresponding to each of
|
||||
the hand instances visible in the frame. Note that at the end of this graph,
|
||||
there is a `ClipNormalizedRectVectorSizeCalculator`. This calculator clips the
|
||||
size of the input vector to a maximum size `N`. This implies that the
|
||||
`MultiHandDetection` subgraph outputs a vector of maximum `N` hand instance
|
||||
locations.
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_gpu.pbtxt)
|
||||
|
||||
```bash
|
||||
# MediaPipe multi-hand detection subgraph.
|
||||
|
||||
type: "MultiHandDetectionSubgraph"
|
||||
|
||||
input_stream: "input_video"
|
||||
output_stream: "DETECTIONS:palm_detections"
|
||||
output_stream: "NORM_RECTS:clipped_hand_rects_from_palm_detections"
|
||||
|
||||
# Transforms the input image on GPU to a 256x256 image. To scale the input
|
||||
# image, the scale_mode option is set to FIT to preserve the aspect ratio,
|
||||
# resulting in potential letterboxing in the transformed image.
|
||||
node: {
|
||||
calculator: "ImageTransformationCalculator"
|
||||
input_stream: "IMAGE_GPU:input_video"
|
||||
output_stream: "IMAGE_GPU:transformed_input_video"
|
||||
output_stream: "LETTERBOX_PADDING:letterbox_padding"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||
output_width: 256
|
||||
output_height: 256
|
||||
scale_mode: FIT
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Generates a single side packet containing a TensorFlow Lite op resolver that
|
||||
# supports custom ops needed by the model used in this graph.
|
||||
node {
|
||||
calculator: "TfLiteCustomOpResolverCalculator"
|
||||
output_side_packet: "opresolver"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteCustomOpResolverCalculatorOptions] {
|
||||
use_gpu: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Converts the transformed input image on GPU into an image tensor stored as a
|
||||
# TfLiteTensor.
|
||||
node {
|
||||
calculator: "TfLiteConverterCalculator"
|
||||
input_stream: "IMAGE_GPU:transformed_input_video"
|
||||
output_stream: "TENSORS_GPU:image_tensor"
|
||||
}
|
||||
|
||||
# Runs a TensorFlow Lite model on GPU that takes an image tensor and outputs a
|
||||
# vector of tensors representing, for instance, detection boxes/keypoints and
|
||||
# scores.
|
||||
node {
|
||||
calculator: "TfLiteInferenceCalculator"
|
||||
input_stream: "TENSORS_GPU:image_tensor"
|
||||
output_stream: "TENSORS_GPU:detection_tensors"
|
||||
input_side_packet: "CUSTOM_OP_RESOLVER:opresolver"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
||||
model_path: "mediapipe/models/palm_detection.tflite"
|
||||
use_gpu: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Generates a single side packet containing a vector of SSD anchors based on
|
||||
# the specification in the options.
|
||||
node {
|
||||
calculator: "SsdAnchorsCalculator"
|
||||
output_side_packet: "anchors"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.SsdAnchorsCalculatorOptions] {
|
||||
num_layers: 5
|
||||
min_scale: 0.1171875
|
||||
max_scale: 0.75
|
||||
input_size_height: 256
|
||||
input_size_width: 256
|
||||
anchor_offset_x: 0.5
|
||||
anchor_offset_y: 0.5
|
||||
strides: 8
|
||||
strides: 16
|
||||
strides: 32
|
||||
strides: 32
|
||||
strides: 32
|
||||
aspect_ratios: 1.0
|
||||
fixed_anchor_size: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
|
||||
# the SSD anchors and the specification in the options, into a vector of
|
||||
# detections. Each detection describes a detected object.
|
||||
node {
|
||||
calculator: "TfLiteTensorsToDetectionsCalculator"
|
||||
input_stream: "TENSORS_GPU:detection_tensors"
|
||||
input_side_packet: "ANCHORS:anchors"
|
||||
output_stream: "DETECTIONS:detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteTensorsToDetectionsCalculatorOptions] {
|
||||
num_classes: 1
|
||||
num_boxes: 2944
|
||||
num_coords: 18
|
||||
box_coord_offset: 0
|
||||
keypoint_coord_offset: 4
|
||||
num_keypoints: 7
|
||||
num_values_per_keypoint: 2
|
||||
sigmoid_score: true
|
||||
score_clipping_thresh: 100.0
|
||||
reverse_output_order: true
|
||||
|
||||
x_scale: 256.0
|
||||
y_scale: 256.0
|
||||
h_scale: 256.0
|
||||
w_scale: 256.0
|
||||
min_score_thresh: 0.7
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Performs non-max suppression to remove excessive detections.
|
||||
node {
|
||||
calculator: "NonMaxSuppressionCalculator"
|
||||
input_stream: "detections"
|
||||
output_stream: "filtered_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.NonMaxSuppressionCalculatorOptions] {
|
||||
min_suppression_threshold: 0.3
|
||||
overlap_type: INTERSECTION_OVER_UNION
|
||||
algorithm: WEIGHTED
|
||||
return_empty_detections: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Maps detection label IDs to the corresponding label text ("Palm"). The label
|
||||
# map is provided in the label_map_path option.
|
||||
node {
|
||||
calculator: "DetectionLabelIdToTextCalculator"
|
||||
input_stream: "filtered_detections"
|
||||
output_stream: "labeled_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] {
|
||||
label_map_path: "mediapipe/models/palm_detection_labelmap.txt"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Adjusts detection locations (already normalized to [0.f, 1.f]) on the
|
||||
# letterboxed image (after image transformation with the FIT scale mode) to the
|
||||
# corresponding locations on the same image with the letterbox removed (the
|
||||
# input image to the graph before image transformation).
|
||||
node {
|
||||
calculator: "DetectionLetterboxRemovalCalculator"
|
||||
input_stream: "DETECTIONS:labeled_detections"
|
||||
input_stream: "LETTERBOX_PADDING:letterbox_padding"
|
||||
output_stream: "DETECTIONS:palm_detections"
|
||||
}
|
||||
|
||||
# Extracts image size from the input images.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE_GPU:input_video"
|
||||
output_stream: "SIZE:image_size"
|
||||
}
|
||||
|
||||
# Converts each palm detection into a rectangle (normalized by image size)
|
||||
# that encloses the palm and is rotated such that the line connecting center of
|
||||
# the wrist and MCP of the middle finger is aligned with the Y-axis of the
|
||||
# rectangle.
|
||||
node {
|
||||
calculator: "DetectionsToRectsCalculator"
|
||||
input_stream: "DETECTIONS:palm_detections"
|
||||
input_stream: "IMAGE_SIZE:image_size"
|
||||
output_stream: "NORM_RECTS:palm_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.DetectionsToRectsCalculatorOptions] {
|
||||
rotation_vector_start_keypoint_index: 0 # Center of wrist.
|
||||
rotation_vector_end_keypoint_index: 2 # MCP of middle finger.
|
||||
rotation_vector_target_angle_degrees: 90
|
||||
output_zero_rect_for_empty_detections: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Expands and shifts the rectangle that contains the palm so that it's likely
|
||||
# to cover the entire hand.
|
||||
node {
|
||||
calculator: "RectTransformationCalculator"
|
||||
input_stream: "NORM_RECTS:palm_rects"
|
||||
input_stream: "IMAGE_SIZE:image_size"
|
||||
output_stream: "hand_rects_from_palm_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.RectTransformationCalculatorOptions] {
|
||||
scale_x: 2.6
|
||||
scale_y: 2.6
|
||||
shift_y: -0.5
|
||||
square_long: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Clips the size of the input vector to the provided max_vec_size. This
|
||||
# determines the maximum number of hand instances this graph outputs.
|
||||
# Note that the performance gain of clipping detections earlier in this graph is
|
||||
# minimal because NMS will minimize overlapping detections and the number of
|
||||
# detections isn't expected to exceed 5-10.
|
||||
node {
|
||||
calculator: "ClipNormalizedRectVectorSizeCalculator"
|
||||
input_stream: "hand_rects_from_palm_detections"
|
||||
output_stream: "clipped_hand_rects_from_palm_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ClipVectorSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify min_size in
|
||||
# CollectionHsMinSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/multi_hand_tracking_mobile.pbtxt and
|
||||
# mediapipe/graphs/hand_tracking/multi_hand_tracking_desktop_live.pbtxt.
|
||||
max_vec_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Multi-Hand Landmark Subgraph
|
||||
|
||||
![multi_hand_landmark_subgraph.pbtxt](images/mobile/multi_hand_landmark_subgraph.png)
|
||||
|
||||
This graph accepts as input a vector of `NormalizedRect` objects, corresponding
|
||||
the the region of each hand instance in the input image. For each
|
||||
`NormalizedRect` object, the graph runs the existing `HandLandmark` subgraph and
|
||||
collect the outputs of this subgraph into vectors. This is enabled by
|
||||
`BeginLoop` and `EndLoop` calculators.
|
||||
|
||||
The `BeginLoop` calculator accepts as input a packet containing an iterable
|
||||
collection of elements. This calculator is templatized (see
|
||||
[begin_loop_calculator.h](https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/begin_loop_calculator.h)).
|
||||
If the input packet arrived at a timestamp `ts`, this calculator outputs each
|
||||
element in the collection at a fake timestamp `internal_ts`. At the end of the
|
||||
collection, the calculator outputs the arrival timestamp `ts` in the output
|
||||
stream tagged with `BATCH_END`.
|
||||
|
||||
The nodes between the `BeginLoop` calculator and the corresponding `EndLoop`
|
||||
calculator process individual packets at the fake timestamps `internal_ts`.
|
||||
After each element is processed, it is sent to the `EndLoop` calculator (see
|
||||
[end_loop_calculator.h](https://github.com/google/mediapipe/tree/master/mediapipe/calculators/core/end_loop_calculator.h)),
|
||||
which collects these elements in an output collection. The `EndLoop` calculator
|
||||
listens for packets from the `BATCH_END` output stream of the `BeginLoop`
|
||||
calculator. When the `BATCH_END` packet containing the real timestamp `ts`
|
||||
arrives at the `EndLoop` calculator, the `EndLoop` calculator outputs a packet
|
||||
containing the collection of processed elements at the real timestamp `ts`.
|
||||
|
||||
In the multi-hand landmark subgraph, the `EndLoop` calculators collect the
|
||||
output vector of hand landmarks per hand instance, the boolean values indicating
|
||||
the presence of each hand and the `NormalizedRect` objects corresponding to the
|
||||
regions surrounding each hand into vectors.
|
||||
|
||||
Finally, based on the hand presence boolean value, the graph filters the
|
||||
collections of hand landmarks and `NormalizdRect` objects corresponding to each
|
||||
hand instance.
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/hand_tracking/subgraphs/multi_hand_landmark.pbtxt)
|
||||
|
||||
```bash
|
||||
# MediaPipe hand landmark localization subgraph.
|
||||
|
||||
type: "MultiHandLandmarkSubgraph"
|
||||
|
||||
input_stream: "IMAGE:input_video"
|
||||
# A vector of NormalizedRect, one per each hand detected.
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
# A vector of NormalizedLandmarks, one set per each hand.
|
||||
output_stream: "LANDMARKS:filtered_multi_hand_landmarks"
|
||||
# A vector of NormalizedRect, one per each hand.
|
||||
output_stream: "NORM_RECTS:filtered_multi_hand_rects_for_next_frame"
|
||||
|
||||
# Outputs each element of multi_hand_rects at a fake timestamp for the rest
|
||||
# of the graph to process. Clones the input_video packet for each
|
||||
# single_hand_rect at the fake timestamp. At the end of the loop,
|
||||
# outputs the BATCH_END timestamp for downstream calculators to inform them
|
||||
# that all elements in the vector have been processed.
|
||||
node {
|
||||
calculator: "BeginLoopNormalizedRectCalculator"
|
||||
input_stream: "ITERABLE:multi_hand_rects"
|
||||
input_stream: "CLONE:input_video"
|
||||
output_stream: "ITEM:single_hand_rect"
|
||||
output_stream: "CLONE:input_video_cloned"
|
||||
output_stream: "BATCH_END:single_hand_rect_timestamp"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "HandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:input_video_cloned"
|
||||
input_stream: "NORM_RECT:single_hand_rect"
|
||||
output_stream: "LANDMARKS:single_hand_landmarks"
|
||||
output_stream: "NORM_RECT:single_hand_rect_from_landmarks"
|
||||
output_stream: "PRESENCE:single_hand_presence"
|
||||
}
|
||||
|
||||
# Collects the boolean presence value for each single hand into a vector. Upon
|
||||
# receiving the BATCH_END timestamp, outputs a vector of boolean values at the
|
||||
# BATCH_END timestamp.
|
||||
node {
|
||||
calculator: "EndLoopBooleanCalculator"
|
||||
input_stream: "ITEM:single_hand_presence"
|
||||
input_stream: "BATCH_END:single_hand_rect_timestamp"
|
||||
output_stream: "ITERABLE:multi_hand_presence"
|
||||
}
|
||||
|
||||
# Collects a set of landmarks for each hand into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedLandmarksVectorCalculator"
|
||||
input_stream: "ITEM:single_hand_landmarks"
|
||||
input_stream: "BATCH_END:single_hand_rect_timestamp"
|
||||
output_stream: "ITERABLE:multi_hand_landmarks"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each hand into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:single_hand_rect_from_landmarks"
|
||||
input_stream: "BATCH_END:single_hand_rect_timestamp"
|
||||
output_stream: "ITERABLE:multi_hand_rects_for_next_frame"
|
||||
}
|
||||
|
||||
# Filters the input vector of landmarks based on hand presence value for each
|
||||
# hand. If the hand presence for hand #i is false, the set of landmarks
|
||||
# corresponding to that hand are dropped from the vector.
|
||||
node {
|
||||
calculator: "FilterLandmarksCollectionCalculator"
|
||||
input_stream: "ITERABLE:multi_hand_landmarks"
|
||||
input_stream: "CONDITION:multi_hand_presence"
|
||||
output_stream: "ITERABLE:filtered_multi_hand_landmarks"
|
||||
}
|
||||
|
||||
# Filters the input vector of NormalizedRect based on hand presence value for
|
||||
# each hand. If the hand presence for hand #i is false, the NormalizedRect
|
||||
# corresponding to that hand are dropped from the vector.
|
||||
node {
|
||||
calculator: "FilterNormalizedRectCollectionCalculator"
|
||||
input_stream: "ITERABLE:multi_hand_rects_for_next_frame"
|
||||
input_stream: "CONDITION:multi_hand_presence"
|
||||
output_stream: "ITERABLE:filtered_multi_hand_rects_for_next_frame"
|
||||
}
|
||||
```
|
||||
|
||||
### Multi-Hand Renderer Subgraph
|
||||
|
||||
![multi_hand_renderer_gpu_subgraph.pbtxt](images/mobile/multi_hand_renderer_gpu_subgraph.png)
|
||||
|
||||
This graph also uses `BeginLoop` and `EndLoop` calculators to iteratively
|
||||
convert a set of hand landmarks per hand instance into corresponding
|
||||
`RenderData` objects.
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/hand_tracking/subgraphs/multi_hand_renderer_gpu.pbtxt)
|
||||
|
||||
```bash
|
||||
# MediaPipe multi-hand tracking rendering subgraph.
|
||||
|
||||
type: "MultiHandRendererSubgraph"
|
||||
|
||||
input_stream: "IMAGE:input_image"
|
||||
# A vector of NormalizedLandmarks, one for each hand.
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
# A vector of NormalizedRect, one for each hand.
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
# A vector of NormalizedRect, one for each hand.
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
# A vector of Detection, one for each hand.
|
||||
input_stream: "DETECTIONS:palm_detections"
|
||||
output_stream: "IMAGE:output_image"
|
||||
|
||||
# Converts detections to drawing primitives for annotation overlay.
|
||||
node {
|
||||
calculator: "DetectionsToRenderDataCalculator"
|
||||
input_stream: "DETECTIONS:palm_detections"
|
||||
output_stream: "RENDER_DATA:detection_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
|
||||
thickness: 4.0
|
||||
color { r: 0 g: 255 b: 0 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Converts normalized rects to drawing primitives for annotation overlay.
|
||||
node {
|
||||
calculator: "RectToRenderDataCalculator"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "RENDER_DATA:multi_hand_rects_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.RectToRenderDataCalculatorOptions] {
|
||||
filled: false
|
||||
color { r: 255 g: 0 b: 0 }
|
||||
thickness: 4.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Converts normalized rects to drawing primitives for annotation overlay.
|
||||
node {
|
||||
calculator: "RectToRenderDataCalculator"
|
||||
input_stream: "NORM_RECTS:multi_palm_rects"
|
||||
output_stream: "RENDER_DATA:multi_palm_rects_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.RectToRenderDataCalculatorOptions] {
|
||||
filled: false
|
||||
color { r: 125 g: 0 b: 122 }
|
||||
thickness: 4.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Outputs each element of multi_palm_landmarks at a fake timestamp for the rest
|
||||
# of the graph to process. At the end of the loop, outputs the BATCH_END
|
||||
# timestamp for downstream calculators to inform them that all elements in the
|
||||
# vector have been processed.
|
||||
node {
|
||||
calculator: "BeginLoopNormalizedLandmarksVectorCalculator"
|
||||
input_stream: "ITERABLE:multi_hand_landmarks"
|
||||
output_stream: "ITEM:single_hand_landmarks"
|
||||
output_stream: "BATCH_END:landmark_timestamp"
|
||||
}
|
||||
|
||||
# Converts landmarks to drawing primitives for annotation overlay.
|
||||
node {
|
||||
calculator: "LandmarksToRenderDataCalculator"
|
||||
input_stream: "NORM_LANDMARKS:single_hand_landmarks"
|
||||
output_stream: "RENDER_DATA:single_hand_landmark_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
|
||||
landmark_connections: 0
|
||||
landmark_connections: 1
|
||||
landmark_connections: 1
|
||||
landmark_connections: 2
|
||||
landmark_connections: 2
|
||||
landmark_connections: 3
|
||||
landmark_connections: 3
|
||||
landmark_connections: 4
|
||||
landmark_connections: 0
|
||||
landmark_connections: 5
|
||||
landmark_connections: 5
|
||||
landmark_connections: 6
|
||||
landmark_connections: 6
|
||||
landmark_connections: 7
|
||||
landmark_connections: 7
|
||||
landmark_connections: 8
|
||||
landmark_connections: 5
|
||||
landmark_connections: 9
|
||||
landmark_connections: 9
|
||||
landmark_connections: 10
|
||||
landmark_connections: 10
|
||||
landmark_connections: 11
|
||||
landmark_connections: 11
|
||||
landmark_connections: 12
|
||||
landmark_connections: 9
|
||||
landmark_connections: 13
|
||||
landmark_connections: 13
|
||||
landmark_connections: 14
|
||||
landmark_connections: 14
|
||||
landmark_connections: 15
|
||||
landmark_connections: 15
|
||||
landmark_connections: 16
|
||||
landmark_connections: 13
|
||||
landmark_connections: 17
|
||||
landmark_connections: 0
|
||||
landmark_connections: 17
|
||||
landmark_connections: 17
|
||||
landmark_connections: 18
|
||||
landmark_connections: 18
|
||||
landmark_connections: 19
|
||||
landmark_connections: 19
|
||||
landmark_connections: 20
|
||||
landmark_color { r: 255 g: 0 b: 0 }
|
||||
connection_color { r: 0 g: 255 b: 0 }
|
||||
thickness: 4.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Collects a RenderData object for each hand into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of RenderData at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopRenderDataCalculator"
|
||||
input_stream: "ITEM:single_hand_landmark_render_data"
|
||||
input_stream: "BATCH_END:landmark_timestamp"
|
||||
output_stream: "ITERABLE:multi_hand_landmarks_render_data"
|
||||
}
|
||||
|
||||
# Draws annotations and overlays them on top of the input images. Consumes
|
||||
# a vector of RenderData objects and draws each of them on the input frame.
|
||||
node {
|
||||
calculator: "AnnotationOverlayCalculator"
|
||||
input_stream: "INPUT_FRAME_GPU:input_image"
|
||||
input_stream: "detection_render_data"
|
||||
input_stream: "multi_hand_rects_render_data"
|
||||
input_stream: "multi_palm_rects_render_data"
|
||||
input_stream: "VECTOR:0:multi_hand_landmarks_render_data"
|
||||
output_stream: "OUTPUT_FRAME_GPU:output_image"
|
||||
}
|
||||
```
|
|
@ -54,7 +54,7 @@ below and paste it into
|
|||
# MediaPipe graph that performs object detection on desktop with TensorFlow
|
||||
# on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/object_detection:object_detection_tensorflow.
|
||||
# mediapipe/examples/desktop/object_detection:object_detection_tensorflow.
|
||||
|
||||
# Decodes an input video file into images and a video header.
|
||||
node {
|
||||
|
@ -218,8 +218,6 @@ $ bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \
|
|||
# It should print:
|
||||
#Target //mediapipe/examples/desktop/object_detection:object_detection_cpu up-to-date:
|
||||
# bazel-bin/mediapipe/examples/desktop/object_detection/object_detection_cpu
|
||||
#INFO: Elapsed time: 16.020s, Forge stats: 13001/13003 actions cached, 2.1s CPU used, 0.0s queue time, 89.0 MB ObjFS output (novel bytes: 88.0 MB), 0.0 MB local output, Critical Path: 10.01s, Remote (41.42% of the time): [queue: 0.00%, setup: 4.21%, process: 12.48%]
|
||||
#INFO: Streaming build results to: http://sponge2/1824d4cc-ba63-4350-bdc0-aacbd45b902b
|
||||
#INFO: Build completed successfully, 12154 total actions
|
||||
|
||||
# This will open up your webcam as long as it is connected and on
|
||||
|
@ -240,7 +238,7 @@ below and paste it into
|
|||
# MediaPipe graph that performs object detection on desktop with TensorFlow Lite
|
||||
# on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/object_detection:object_detection_tflite.
|
||||
# mediapipe/examples/desktop/object_detection:object_detection_tflite.
|
||||
|
||||
# max_queue_size limits the number of packets enqueued on any input stream
|
||||
# by throttling inputs to the graph. This makes the graph only process one
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="com.google.mediapipe.apps.multihandtrackinggpu">
|
||||
|
||||
<uses-sdk
|
||||
android:minSdkVersion="21"
|
||||
android:targetSdkVersion="27" />
|
||||
|
||||
<!-- For using the camera -->
|
||||
<uses-permission android:name="android.permission.CAMERA" />
|
||||
<uses-feature android:name="android.hardware.camera" />
|
||||
<uses-feature android:name="android.hardware.camera.autofocus" />
|
||||
<!-- For MediaPipe -->
|
||||
<uses-feature android:glEsVersion="0x00020000" android:required="true" />
|
||||
|
||||
|
||||
<application
|
||||
android:allowBackup="true"
|
||||
android:label="@string/app_name"
|
||||
android:supportsRtl="true"
|
||||
android:theme="@style/AppTheme">
|
||||
<activity
|
||||
android:name=".MainActivity"
|
||||
android:exported="true"
|
||||
android:screenOrientation="portrait">
|
||||
<intent-filter>
|
||||
<action android:name="android.intent.action.MAIN" />
|
||||
<category android:name="android.intent.category.LAUNCHER" />
|
||||
</intent-filter>
|
||||
</activity>
|
||||
</application>
|
||||
|
||||
</manifest>
|
|
@ -0,0 +1,103 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
cc_binary(
|
||||
name = "libmediapipe_jni.so",
|
||||
linkshared = 1,
|
||||
linkstatic = 1,
|
||||
deps = [
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_mobile_calculators",
|
||||
"//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "mediapipe_jni_lib",
|
||||
srcs = [":libmediapipe_jni.so"],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
# Maps the binary graph to an alias (e.g., the app name) for convenience so that the alias can be
|
||||
# easily incorporated into the app via, for example,
|
||||
# MainActivity.BINARY_GRAPH_NAME = "appname.binarypb".
|
||||
genrule(
|
||||
name = "binary_graph",
|
||||
srcs = ["//mediapipe/graphs/hand_tracking:multi_hand_tracking_mobile_gpu_binary_graph"],
|
||||
outs = ["multihandtrackinggpu.binarypb"],
|
||||
cmd = "cp $< $@",
|
||||
)
|
||||
|
||||
# To use the 3D model instead of the default 2D model, add "--define 3D=true" to the
|
||||
# bazel build command.
|
||||
config_setting(
|
||||
name = "use_3d_model",
|
||||
define_values = {
|
||||
"3D": "true",
|
||||
},
|
||||
)
|
||||
|
||||
genrule(
|
||||
name = "model",
|
||||
srcs = select({
|
||||
"//conditions:default": ["//mediapipe/models:hand_landmark.tflite"],
|
||||
":use_3d_model": ["//mediapipe/models:hand_landmark_3d.tflite"],
|
||||
}),
|
||||
outs = ["hand_landmark.tflite"],
|
||||
cmd = "cp $< $@",
|
||||
)
|
||||
|
||||
android_library(
|
||||
name = "mediapipe_lib",
|
||||
srcs = glob(["*.java"]),
|
||||
assets = [
|
||||
":binary_graph",
|
||||
":model",
|
||||
"//mediapipe/models:palm_detection.tflite",
|
||||
"//mediapipe/models:palm_detection_labelmap.txt",
|
||||
],
|
||||
assets_dir = "",
|
||||
manifest = "AndroidManifest.xml",
|
||||
resource_files = glob(["res/**"]),
|
||||
deps = [
|
||||
":mediapipe_jni_lib",
|
||||
"//mediapipe/java/com/google/mediapipe/components:android_camerax_helper",
|
||||
"//mediapipe/java/com/google/mediapipe/components:android_components",
|
||||
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
|
||||
"//mediapipe/java/com/google/mediapipe/glutil",
|
||||
"//third_party:androidx_appcompat",
|
||||
"//third_party:androidx_constraint_layout",
|
||||
"//third_party:androidx_legacy_support_v4",
|
||||
"//third_party:androidx_material",
|
||||
"//third_party:androidx_recyclerview",
|
||||
"//third_party:opencv",
|
||||
"@androidx_concurrent_futures//jar",
|
||||
"@androidx_lifecycle//jar",
|
||||
"@com_google_code_findbugs//jar",
|
||||
"@com_google_guava_android//jar",
|
||||
],
|
||||
)
|
||||
|
||||
android_binary(
|
||||
name = "multihandtrackinggpu",
|
||||
manifest = "AndroidManifest.xml",
|
||||
manifest_values = {"applicationId": "com.google.mediapipe.apps.multihandtrackinggpu"},
|
||||
multidex = "native",
|
||||
deps = [
|
||||
":mediapipe_lib",
|
||||
],
|
||||
)
|
|
@ -0,0 +1,167 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package com.google.mediapipe.apps.multihandtrackinggpu;
|
||||
|
||||
import android.graphics.SurfaceTexture;
|
||||
import android.os.Bundle;
|
||||
import androidx.appcompat.app.AppCompatActivity;
|
||||
import android.util.Size;
|
||||
import android.view.SurfaceHolder;
|
||||
import android.view.SurfaceView;
|
||||
import android.view.View;
|
||||
import android.view.ViewGroup;
|
||||
import com.google.mediapipe.components.CameraHelper;
|
||||
import com.google.mediapipe.components.CameraXPreviewHelper;
|
||||
import com.google.mediapipe.components.ExternalTextureConverter;
|
||||
import com.google.mediapipe.components.FrameProcessor;
|
||||
import com.google.mediapipe.components.PermissionHelper;
|
||||
import com.google.mediapipe.framework.AndroidAssetUtil;
|
||||
import com.google.mediapipe.glutil.EglManager;
|
||||
|
||||
/** Main activity of MediaPipe example apps. */
|
||||
public class MainActivity extends AppCompatActivity {
|
||||
private static final String TAG = "MainActivity";
|
||||
|
||||
private static final String BINARY_GRAPH_NAME = "multihandtrackinggpu.binarypb";
|
||||
private static final String INPUT_VIDEO_STREAM_NAME = "input_video";
|
||||
private static final String OUTPUT_VIDEO_STREAM_NAME = "output_video";
|
||||
private static final CameraHelper.CameraFacing CAMERA_FACING = CameraHelper.CameraFacing.FRONT;
|
||||
|
||||
// Flips the camera-preview frames vertically before sending them into FrameProcessor to be
|
||||
// processed in a MediaPipe graph, and flips the processed frames back when they are displayed.
|
||||
// This is needed because OpenGL represents images assuming the image origin is at the bottom-left
|
||||
// corner, whereas MediaPipe in general assumes the image origin is at top-left.
|
||||
private static final boolean FLIP_FRAMES_VERTICALLY = true;
|
||||
|
||||
static {
|
||||
// Load all native libraries needed by the app.
|
||||
System.loadLibrary("mediapipe_jni");
|
||||
System.loadLibrary("opencv_java4");
|
||||
}
|
||||
|
||||
// {@link SurfaceTexture} where the camera-preview frames can be accessed.
|
||||
private SurfaceTexture previewFrameTexture;
|
||||
// {@link SurfaceView} that displays the camera-preview frames processed by a MediaPipe graph.
|
||||
private SurfaceView previewDisplayView;
|
||||
|
||||
// Creates and manages an {@link EGLContext}.
|
||||
private EglManager eglManager;
|
||||
// Sends camera-preview frames into a MediaPipe graph for processing, and displays the processed
|
||||
// frames onto a {@link Surface}.
|
||||
private FrameProcessor processor;
|
||||
// Converts the GL_TEXTURE_EXTERNAL_OES texture from Android camera into a regular texture to be
|
||||
// consumed by {@link FrameProcessor} and the underlying MediaPipe graph.
|
||||
private ExternalTextureConverter converter;
|
||||
|
||||
// Handles camera access via the {@link CameraX} Jetpack support library.
|
||||
private CameraXPreviewHelper cameraHelper;
|
||||
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_main);
|
||||
|
||||
previewDisplayView = new SurfaceView(this);
|
||||
setupPreviewDisplayView();
|
||||
|
||||
// Initialize asset manager so that MediaPipe native libraries can access the app assets, e.g.,
|
||||
// binary graphs.
|
||||
AndroidAssetUtil.initializeNativeAssetManager(this);
|
||||
|
||||
eglManager = new EglManager(null);
|
||||
processor =
|
||||
new FrameProcessor(
|
||||
this,
|
||||
eglManager.getNativeContext(),
|
||||
BINARY_GRAPH_NAME,
|
||||
INPUT_VIDEO_STREAM_NAME,
|
||||
OUTPUT_VIDEO_STREAM_NAME);
|
||||
processor.getVideoSurfaceOutput().setFlipY(FLIP_FRAMES_VERTICALLY);
|
||||
|
||||
PermissionHelper.checkAndRequestCameraPermissions(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void onResume() {
|
||||
super.onResume();
|
||||
converter = new ExternalTextureConverter(eglManager.getContext());
|
||||
converter.setFlipY(FLIP_FRAMES_VERTICALLY);
|
||||
converter.setConsumer(processor);
|
||||
if (PermissionHelper.cameraPermissionsGranted(this)) {
|
||||
startCamera();
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void onPause() {
|
||||
super.onPause();
|
||||
converter.close();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onRequestPermissionsResult(
|
||||
int requestCode, String[] permissions, int[] grantResults) {
|
||||
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
|
||||
PermissionHelper.onRequestPermissionsResult(requestCode, permissions, grantResults);
|
||||
}
|
||||
|
||||
private void setupPreviewDisplayView() {
|
||||
previewDisplayView.setVisibility(View.GONE);
|
||||
ViewGroup viewGroup = findViewById(R.id.preview_display_layout);
|
||||
viewGroup.addView(previewDisplayView);
|
||||
|
||||
previewDisplayView
|
||||
.getHolder()
|
||||
.addCallback(
|
||||
new SurfaceHolder.Callback() {
|
||||
@Override
|
||||
public void surfaceCreated(SurfaceHolder holder) {
|
||||
processor.getVideoSurfaceOutput().setSurface(holder.getSurface());
|
||||
}
|
||||
|
||||
@Override
|
||||
public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
|
||||
// (Re-)Compute the ideal size of the camera-preview display (the area that the
|
||||
// camera-preview frames get rendered onto, potentially with scaling and rotation)
|
||||
// based on the size of the SurfaceView that contains the display.
|
||||
Size viewSize = new Size(width, height);
|
||||
Size displaySize = cameraHelper.computeDisplaySizeFromViewSize(viewSize);
|
||||
|
||||
// Connect the converter to the camera-preview frames as its input (via
|
||||
// previewFrameTexture), and configure the output width and height as the computed
|
||||
// display size.
|
||||
converter.setSurfaceTextureAndAttachToGLContext(
|
||||
previewFrameTexture, displaySize.getWidth(), displaySize.getHeight());
|
||||
}
|
||||
|
||||
@Override
|
||||
public void surfaceDestroyed(SurfaceHolder holder) {
|
||||
processor.getVideoSurfaceOutput().setSurface(null);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
private void startCamera() {
|
||||
cameraHelper = new CameraXPreviewHelper();
|
||||
cameraHelper.setOnCameraStartedListener(
|
||||
surfaceTexture -> {
|
||||
previewFrameTexture = surfaceTexture;
|
||||
// Make the display view visible to start showing the preview. This triggers the
|
||||
// SurfaceHolder.Callback added to (the holder of) previewDisplayView.
|
||||
previewDisplayView.setVisibility(View.VISIBLE);
|
||||
});
|
||||
cameraHelper.startCamera(this, CAMERA_FACING, /*surfaceTexture=*/ null);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:app="http://schemas.android.com/apk/res-auto"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent">
|
||||
|
||||
<FrameLayout
|
||||
android:id="@+id/preview_display_layout"
|
||||
android:layout_width="fill_parent"
|
||||
android:layout_height="fill_parent"
|
||||
android:layout_weight="1">
|
||||
<TextView
|
||||
android:id="@+id/no_camera_access_view"
|
||||
android:layout_height="fill_parent"
|
||||
android:layout_width="fill_parent"
|
||||
android:gravity="center"
|
||||
android:text="@string/no_camera_access" />
|
||||
</FrameLayout>
|
||||
</androidx.constraintlayout.widget.ConstraintLayout>
|
|
@ -0,0 +1,6 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="colorPrimary">#008577</color>
|
||||
<color name="colorPrimaryDark">#00574B</color>
|
||||
<color name="colorAccent">#D81B60</color>
|
||||
</resources>
|
|
@ -0,0 +1,4 @@
|
|||
<resources>
|
||||
<string name="app_name" translatable="false">Multi-Hand Tracking GPU</string>
|
||||
<string name="no_camera_access" translatable="false">Please grant camera permissions.</string>
|
||||
</resources>
|
|
@ -0,0 +1,11 @@
|
|||
<resources>
|
||||
|
||||
<!-- Base application theme. -->
|
||||
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
|
||||
<!-- Customize your theme here. -->
|
||||
<item name="colorPrimary">@color/colorPrimary</item>
|
||||
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
|
||||
<item name="colorAccent">@color/colorAccent</item>
|
||||
</style>
|
||||
|
||||
</resources>
|
|
@ -68,13 +68,15 @@ import os
|
|||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
import tarfile
|
||||
import tempfile
|
||||
import urllib
|
||||
import zipfile
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
from absl import logging
|
||||
import tensorflow as tf
|
||||
|
||||
from mediapipe.util.sequence import media_sequence as ms
|
||||
|
||||
CITATION = r"""@article{kay2017kinetics,
|
||||
|
@ -84,21 +86,28 @@ CITATION = r"""@article{kay2017kinetics,
|
|||
year={2017},
|
||||
url = {https://deepmind.com/research/open-source/kinetics},
|
||||
}"""
|
||||
ANNOTATION_URL = "https://storage.googleapis.com/deepmind-media/research/Kinetics_700.zip"
|
||||
ANNOTATION_URL = "https://storage.googleapis.com/deepmind-media/Datasets/kinetics700.tar.gz"
|
||||
SECONDS_TO_MICROSECONDS = 1000000
|
||||
GRAPHS = ["tvl1_flow_and_rgb_from_file.pbtxt"]
|
||||
FILEPATTERN = "kinetics_700_%s_25fps_rgb_flow"
|
||||
SPLITS = {
|
||||
"train": {
|
||||
"shards": 1000,
|
||||
"examples": 545317},
|
||||
"val": {"shards": 100,
|
||||
"examples": 35000},
|
||||
"test": {"shards": 100,
|
||||
"examples": 70000},
|
||||
"custom": {"csv": None, # Add a CSV for your own data here.
|
||||
"examples": 541632
|
||||
},
|
||||
"validate": {
|
||||
"shards": 100,
|
||||
"examples": 34727
|
||||
},
|
||||
"test": {
|
||||
"shards": 100,
|
||||
"examples": 69347
|
||||
},
|
||||
"custom": {
|
||||
"csv": None, # Add a CSV for your own data here.
|
||||
"shards": 1, # Change this number to increase sharding.
|
||||
"examples": -1}, # Negative 1 allows any number of examples.
|
||||
"examples": -1
|
||||
}, # Negative 1 allows any number of examples.
|
||||
}
|
||||
NUM_CLASSES = 700
|
||||
|
||||
|
@ -312,18 +321,16 @@ class Kinetics(object):
|
|||
logging.info("Downloading annotations.")
|
||||
paths = {}
|
||||
if download_labels_for_map:
|
||||
zip_path = os.path.join(self.path_to_data, ANNOTATION_URL.split("/")[-1])
|
||||
if not tf.io.gfile.exists(zip_path):
|
||||
urlretrieve(ANNOTATION_URL, zip_path)
|
||||
with zipfile.ZipFile(zip_path) as annotations_zip:
|
||||
annotations_zip.extractall(self.path_to_data)
|
||||
for split in ["train", "test", "val"]:
|
||||
zip_path = os.path.join(self.path_to_data,
|
||||
"kinetics_700_%s.zip" % split)
|
||||
csv_path = zip_path.replace(".zip", ".csv")
|
||||
tar_path = os.path.join(self.path_to_data, ANNOTATION_URL.split("/")[-1])
|
||||
if not tf.io.gfile.exists(tar_path):
|
||||
urlretrieve(ANNOTATION_URL, tar_path)
|
||||
with tarfile.open(tar_path) as annotations_tar:
|
||||
annotations_tar.extractall(self.path_to_data)
|
||||
for split in ["train", "test", "validate"]:
|
||||
csv_path = os.path.join(self.path_to_data, "kinetics700/%s.csv" % split)
|
||||
if not tf.io.gfile.exists(csv_path):
|
||||
with zipfile.ZipFile(zip_path) as annotations_zip:
|
||||
annotations_zip.extractall(self.path_to_data)
|
||||
with tarfile.open(tar_path) as annotations_tar:
|
||||
annotations_tar.extractall(self.path_to_data)
|
||||
paths[split] = csv_path
|
||||
for split, contents in SPLITS.items():
|
||||
if "csv" in contents and contents["csv"]:
|
||||
|
|
42
mediapipe/examples/desktop/multi_hand_tracking/BUILD
Normal file
|
@ -0,0 +1,42 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//mediapipe/examples:__subpackages__"])
|
||||
|
||||
cc_binary(
|
||||
name = "multi_hand_tracking_tflite",
|
||||
deps = [
|
||||
"//mediapipe/examples/desktop:simple_run_graph_main",
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_desktop_tflite_calculators",
|
||||
],
|
||||
)
|
||||
|
||||
cc_binary(
|
||||
name = "multi_hand_tracking_cpu",
|
||||
deps = [
|
||||
"//mediapipe/examples/desktop:demo_run_graph_main",
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_desktop_tflite_calculators",
|
||||
],
|
||||
)
|
||||
|
||||
# Linux only
|
||||
cc_binary(
|
||||
name = "multi_hand_tracking_gpu",
|
||||
deps = [
|
||||
"//mediapipe/examples/desktop:demo_run_graph_main_gpu",
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_mobile_calculators",
|
||||
],
|
||||
)
|
|
@ -16,51 +16,12 @@ licenses(["notice"]) # Apache 2.0
|
|||
|
||||
package(default_visibility = ["//mediapipe/examples:__subpackages__"])
|
||||
|
||||
cc_library(
|
||||
name = "object_detection_tensorflow_deps",
|
||||
deps = [
|
||||
"@org_tensorflow//tensorflow/c/kernels:bitcast_op",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
"@org_tensorflow//tensorflow/core/kernels:argmax_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:bias_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:cast_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:concat_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:constant_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:control_flow_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:conv_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:cwise_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:depthwise_conv_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:fused_batch_norm_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:gather_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:identity_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:logging_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:matmul_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:non_max_suppression_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:pack_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:reduction_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:relu_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:reshape_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:resize_bilinear_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:sequence_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:shape_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:slice_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:split_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:tensor_array_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:tile_ops",
|
||||
"@org_tensorflow//tensorflow/core/kernels:topk_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:transpose_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels:unpack_op",
|
||||
"@org_tensorflow//tensorflow/core/kernels/data:tensor_dataset_op",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_binary(
|
||||
name = "object_detection_tensorflow",
|
||||
deps = [
|
||||
":object_detection_tensorflow_deps",
|
||||
"//mediapipe/examples/desktop:simple_run_graph_main",
|
||||
"//mediapipe/graphs/object_detection:desktop_tensorflow_calculators",
|
||||
"@org_tensorflow//tensorflow/core:all_kernels",
|
||||
"@org_tensorflow//tensorflow/core:direct_session",
|
||||
],
|
||||
)
|
||||
|
|
21
mediapipe/examples/ios/multihandtrackinggpu/AppDelegate.h
Normal file
|
@ -0,0 +1,21 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
|
||||
@interface AppDelegate : UIResponder <UIApplicationDelegate>
|
||||
|
||||
@property(strong, nonatomic) UIWindow *window;
|
||||
|
||||
@end
|
59
mediapipe/examples/ios/multihandtrackinggpu/AppDelegate.m
Normal file
|
@ -0,0 +1,59 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "AppDelegate.h"
|
||||
|
||||
@interface AppDelegate ()
|
||||
|
||||
@end
|
||||
|
||||
@implementation AppDelegate
|
||||
|
||||
- (BOOL)application:(UIApplication *)application
|
||||
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
|
||||
// Override point for customization after application launch.
|
||||
return YES;
|
||||
}
|
||||
|
||||
- (void)applicationWillResignActive:(UIApplication *)application {
|
||||
// Sent when the application is about to move from active to inactive state. This can occur for
|
||||
// certain types of temporary interruptions (such as an incoming phone call or SMS message) or
|
||||
// when the user quits the application and it begins the transition to the background state. Use
|
||||
// this method to pause ongoing tasks, disable timers, and invalidate graphics rendering
|
||||
// callbacks. Games should use this method to pause the game.
|
||||
}
|
||||
|
||||
- (void)applicationDidEnterBackground:(UIApplication *)application {
|
||||
// Use this method to release shared resources, save user data, invalidate timers, and store
|
||||
// enough application state information to restore your application to its current state in case
|
||||
// it is terminated later. If your application supports background execution, this method is
|
||||
// called instead of applicationWillTerminate: when the user quits.
|
||||
}
|
||||
|
||||
- (void)applicationWillEnterForeground:(UIApplication *)application {
|
||||
// Called as part of the transition from the background to the active state; here you can undo
|
||||
// many of the changes made on entering the background.
|
||||
}
|
||||
|
||||
- (void)applicationDidBecomeActive:(UIApplication *)application {
|
||||
// Restart any tasks that were paused (or not yet started) while the application was inactive. If
|
||||
// the application was previously in the background, optionally refresh the user interface.
|
||||
}
|
||||
|
||||
- (void)applicationWillTerminate:(UIApplication *)application {
|
||||
// Called when the application is about to terminate. Save data if appropriate. See also
|
||||
// applicationDidEnterBackground:.
|
||||
}
|
||||
|
||||
@end
|
|
@ -0,0 +1,99 @@
|
|||
{
|
||||
"images" : [
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "20x20",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "20x20",
|
||||
"scale" : "3x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "29x29",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "29x29",
|
||||
"scale" : "3x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "40x40",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "40x40",
|
||||
"scale" : "3x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "60x60",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "iphone",
|
||||
"size" : "60x60",
|
||||
"scale" : "3x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "20x20",
|
||||
"scale" : "1x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "20x20",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "29x29",
|
||||
"scale" : "1x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "29x29",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "40x40",
|
||||
"scale" : "1x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "40x40",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "76x76",
|
||||
"scale" : "1x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "76x76",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ipad",
|
||||
"size" : "83.5x83.5",
|
||||
"scale" : "2x"
|
||||
},
|
||||
{
|
||||
"idiom" : "ios-marketing",
|
||||
"size" : "1024x1024",
|
||||
"scale" : "1x"
|
||||
}
|
||||
],
|
||||
"info" : {
|
||||
"version" : 1,
|
||||
"author" : "xcode"
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"info" : {
|
||||
"version" : 1,
|
||||
"author" : "xcode"
|
||||
}
|
||||
}
|
||||
|
95
mediapipe/examples/ios/multihandtrackinggpu/BUILD
Normal file
|
@ -0,0 +1,95 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
MIN_IOS_VERSION = "10.0"
|
||||
|
||||
load(
|
||||
"@build_bazel_rules_apple//apple:ios.bzl",
|
||||
"ios_application",
|
||||
)
|
||||
|
||||
# To use the 3D model instead of the default 2D model, add "--define 3D=true" to the
|
||||
# bazel build command.
|
||||
config_setting(
|
||||
name = "use_3d_model",
|
||||
define_values = {
|
||||
"3D": "true",
|
||||
},
|
||||
)
|
||||
|
||||
genrule(
|
||||
name = "model",
|
||||
srcs = select({
|
||||
"//conditions:default": ["//mediapipe/models:hand_landmark.tflite"],
|
||||
":use_3d_model": ["//mediapipe/models:hand_landmark_3d.tflite"],
|
||||
}),
|
||||
outs = ["hand_landmark.tflite"],
|
||||
cmd = "cp $< $@",
|
||||
)
|
||||
|
||||
ios_application(
|
||||
name = "MultiHandTrackingGpuApp",
|
||||
bundle_id = "com.google.mediapipe.MultiHandTrackingGpu",
|
||||
families = [
|
||||
"iphone",
|
||||
"ipad",
|
||||
],
|
||||
infoplists = ["Info.plist"],
|
||||
minimum_os_version = MIN_IOS_VERSION,
|
||||
provisioning_profile = "//mediapipe/examples/ios:provisioning_profile",
|
||||
deps = [
|
||||
":MultiHandTrackingGpuAppLibrary",
|
||||
"@ios_opencv//:OpencvFramework",
|
||||
],
|
||||
)
|
||||
|
||||
objc_library(
|
||||
name = "MultiHandTrackingGpuAppLibrary",
|
||||
srcs = [
|
||||
"AppDelegate.m",
|
||||
"ViewController.mm",
|
||||
"main.m",
|
||||
],
|
||||
hdrs = [
|
||||
"AppDelegate.h",
|
||||
"ViewController.h",
|
||||
],
|
||||
data = [
|
||||
"Base.lproj/LaunchScreen.storyboard",
|
||||
"Base.lproj/Main.storyboard",
|
||||
":model",
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_tracking_mobile_gpu_binary_graph",
|
||||
"//mediapipe/models:palm_detection.tflite",
|
||||
"//mediapipe/models:palm_detection_labelmap.txt",
|
||||
],
|
||||
sdk_frameworks = [
|
||||
"AVFoundation",
|
||||
"CoreGraphics",
|
||||
"CoreMedia",
|
||||
"UIKit",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/objc:mediapipe_framework_ios",
|
||||
"//mediapipe/objc:mediapipe_input_sources_ios",
|
||||
"//mediapipe/objc:mediapipe_layer_renderer",
|
||||
] + select({
|
||||
"//mediapipe:ios_i386": [],
|
||||
"//mediapipe:ios_x86_64": [],
|
||||
"//conditions:default": [
|
||||
"//mediapipe/graphs/hand_tracking:multi_hand_mobile_calculators",
|
||||
],
|
||||
}),
|
||||
)
|
|
@ -0,0 +1,25 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<document type="com.apple.InterfaceBuilder3.CocoaTouch.Storyboard.XIB" version="3.0" toolsVersion="13122.16" targetRuntime="iOS.CocoaTouch" propertyAccessControl="none" useAutolayout="YES" launchScreen="YES" useTraitCollections="YES" useSafeAreas="YES" colorMatched="YES" initialViewController="01J-lp-oVM">
|
||||
<dependencies>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.IBCocoaTouchPlugin" version="13104.12"/>
|
||||
<capability name="Safe area layout guides" minToolsVersion="9.0"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<scenes>
|
||||
<!--View Controller-->
|
||||
<scene sceneID="EHf-IW-A2E">
|
||||
<objects>
|
||||
<viewController id="01J-lp-oVM" sceneMemberID="viewController">
|
||||
<view key="view" contentMode="scaleToFill" id="Ze5-6b-2t3">
|
||||
<rect key="frame" x="0.0" y="0.0" width="375" height="667"/>
|
||||
<autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable="YES"/>
|
||||
<color key="backgroundColor" red="1" green="1" blue="1" alpha="1" colorSpace="custom" customColorSpace="sRGB"/>
|
||||
<viewLayoutGuide key="safeArea" id="6Tk-OE-BBY"/>
|
||||
</view>
|
||||
</viewController>
|
||||
<placeholder placeholderIdentifier="IBFirstResponder" id="iYj-Kq-Ea1" userLabel="First Responder" sceneMemberID="firstResponder"/>
|
||||
</objects>
|
||||
<point key="canvasLocation" x="53" y="375"/>
|
||||
</scene>
|
||||
</scenes>
|
||||
</document>
|
|
@ -0,0 +1,51 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<document type="com.apple.InterfaceBuilder3.CocoaTouch.Storyboard.XIB" version="3.0" toolsVersion="14490.70" targetRuntime="iOS.CocoaTouch" propertyAccessControl="none" useAutolayout="YES" useTraitCollections="YES" useSafeAreas="YES" colorMatched="YES" initialViewController="BYZ-38-t0r">
|
||||
<device id="retina4_7" orientation="portrait">
|
||||
<adaptation id="fullscreen"/>
|
||||
</device>
|
||||
<dependencies>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.IBCocoaTouchPlugin" version="14490.49"/>
|
||||
<capability name="Safe area layout guides" minToolsVersion="9.0"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<scenes>
|
||||
<!--View Controller-->
|
||||
<scene sceneID="tne-QT-ifu">
|
||||
<objects>
|
||||
<viewController id="BYZ-38-t0r" customClass="ViewController" sceneMemberID="viewController">
|
||||
<view key="view" contentMode="scaleToFill" id="8bC-Xf-vdC">
|
||||
<rect key="frame" x="0.0" y="0.0" width="375" height="667"/>
|
||||
<autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable="YES"/>
|
||||
<subviews>
|
||||
<view contentMode="scaleToFill" fixedFrame="YES" translatesAutoresizingMaskIntoConstraints="NO" id="EfB-xq-knP">
|
||||
<rect key="frame" x="0.0" y="20" width="375" height="647"/>
|
||||
<autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable="YES"/>
|
||||
<subviews>
|
||||
<label opaque="NO" userInteractionEnabled="NO" contentMode="left" horizontalHuggingPriority="251" verticalHuggingPriority="251" fixedFrame="YES" text="Camera access needed for this demo. Please enable camera access in the Settings app." textAlignment="center" lineBreakMode="tailTruncation" numberOfLines="0" baselineAdjustment="alignBaselines" adjustsFontSizeToFit="NO" translatesAutoresizingMaskIntoConstraints="NO" id="emf-N5-sEd">
|
||||
<rect key="frame" x="57" y="248" width="260" height="151"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMinX="YES" flexibleMaxX="YES" flexibleMinY="YES" flexibleMaxY="YES"/>
|
||||
<fontDescription key="fontDescription" type="system" pointSize="17"/>
|
||||
<color key="textColor" white="1" alpha="1" colorSpace="custom" customColorSpace="genericGamma22GrayColorSpace"/>
|
||||
<nil key="highlightedColor"/>
|
||||
</label>
|
||||
</subviews>
|
||||
<color key="backgroundColor" white="0.0" alpha="1" colorSpace="custom" customColorSpace="genericGamma22GrayColorSpace"/>
|
||||
<accessibility key="accessibilityConfiguration" label="PreviewDisplayView">
|
||||
<bool key="isElement" value="YES"/>
|
||||
</accessibility>
|
||||
</view>
|
||||
</subviews>
|
||||
<color key="backgroundColor" red="1" green="1" blue="1" alpha="1" colorSpace="custom" customColorSpace="sRGB"/>
|
||||
<viewLayoutGuide key="safeArea" id="6Tk-OE-BBY"/>
|
||||
</view>
|
||||
<connections>
|
||||
<outlet property="_liveView" destination="EfB-xq-knP" id="JQp-2n-q9q"/>
|
||||
<outlet property="_noCameraLabel" destination="emf-N5-sEd" id="91G-3Z-cU3"/>
|
||||
</connections>
|
||||
</viewController>
|
||||
<placeholder placeholderIdentifier="IBFirstResponder" id="dkx-z0-nzr" sceneMemberID="firstResponder"/>
|
||||
</objects>
|
||||
<point key="canvasLocation" x="48.799999999999997" y="20.239880059970016"/>
|
||||
</scene>
|
||||
</scenes>
|
||||
</document>
|
42
mediapipe/examples/ios/multihandtrackinggpu/Info.plist
Normal file
|
@ -0,0 +1,42 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>NSCameraUsageDescription</key>
|
||||
<string>This app uses the camera to demonstrate live video processing.</string>
|
||||
<key>CFBundleDevelopmentRegion</key>
|
||||
<string>en</string>
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>$(EXECUTABLE_NAME)</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>$(PRODUCT_BUNDLE_IDENTIFIER)</string>
|
||||
<key>CFBundleInfoDictionaryVersion</key>
|
||||
<string>6.0</string>
|
||||
<key>CFBundleName</key>
|
||||
<string>$(PRODUCT_NAME)</string>
|
||||
<key>CFBundlePackageType</key>
|
||||
<string>APPL</string>
|
||||
<key>CFBundleShortVersionString</key>
|
||||
<string>1.0</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>1</string>
|
||||
<key>LSRequiresIPhoneOS</key>
|
||||
<true/>
|
||||
<key>UILaunchStoryboardName</key>
|
||||
<string>LaunchScreen</string>
|
||||
<key>UIMainStoryboardFile</key>
|
||||
<string>Main</string>
|
||||
<key>UIRequiredDeviceCapabilities</key>
|
||||
<array>
|
||||
<string>armv7</string>
|
||||
</array>
|
||||
<key>UISupportedInterfaceOrientations</key>
|
||||
<array>
|
||||
<string>UIInterfaceOrientationPortrait</string>
|
||||
</array>
|
||||
<key>UISupportedInterfaceOrientations~ipad</key>
|
||||
<array>
|
||||
<string>UIInterfaceOrientationPortrait</string>
|
||||
</array>
|
||||
</dict>
|
||||
</plist>
|
19
mediapipe/examples/ios/multihandtrackinggpu/ViewController.h
Normal file
|
@ -0,0 +1,19 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
|
||||
@interface ViewController : UIViewController
|
||||
|
||||
@end
|
178
mediapipe/examples/ios/multihandtrackinggpu/ViewController.mm
Normal file
|
@ -0,0 +1,178 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import "ViewController.h"
|
||||
|
||||
#import "mediapipe/objc/MPPGraph.h"
|
||||
#import "mediapipe/objc/MPPCameraInputSource.h"
|
||||
#import "mediapipe/objc/MPPLayerRenderer.h"
|
||||
|
||||
static NSString* const kGraphName = @"multi_hand_tracking_mobile_gpu";
|
||||
|
||||
static const char* kInputStream = "input_video";
|
||||
static const char* kOutputStream = "output_video";
|
||||
static const char* kVideoQueueLabel = "com.google.mediapipe.example.videoQueue";
|
||||
|
||||
@interface ViewController () <MPPGraphDelegate, MPPInputSourceDelegate>
|
||||
|
||||
// The MediaPipe graph currently in use. Initialized in viewDidLoad, started in viewWillAppear: and
|
||||
// sent video frames on _videoQueue.
|
||||
@property(nonatomic) MPPGraph* mediapipeGraph;
|
||||
|
||||
@end
|
||||
|
||||
@implementation ViewController {
|
||||
/// Handles camera access via AVCaptureSession library.
|
||||
MPPCameraInputSource* _cameraSource;
|
||||
|
||||
/// Inform the user when camera is unavailable.
|
||||
IBOutlet UILabel* _noCameraLabel;
|
||||
/// Display the camera preview frames.
|
||||
IBOutlet UIView* _liveView;
|
||||
/// Render frames in a layer.
|
||||
MPPLayerRenderer* _renderer;
|
||||
|
||||
/// Process camera frames on this queue.
|
||||
dispatch_queue_t _videoQueue;
|
||||
}
|
||||
|
||||
#pragma mark - Cleanup methods
|
||||
|
||||
- (void)dealloc {
|
||||
self.mediapipeGraph.delegate = nil;
|
||||
[self.mediapipeGraph cancel];
|
||||
// Ignore errors since we're cleaning up.
|
||||
[self.mediapipeGraph closeAllInputStreamsWithError:nil];
|
||||
[self.mediapipeGraph waitUntilDoneWithError:nil];
|
||||
}
|
||||
|
||||
#pragma mark - MediaPipe graph methods
|
||||
|
||||
+ (MPPGraph*)loadGraphFromResource:(NSString*)resource {
|
||||
// Load the graph config resource.
|
||||
NSError* configLoadError = nil;
|
||||
NSBundle* bundle = [NSBundle bundleForClass:[self class]];
|
||||
if (!resource || resource.length == 0) {
|
||||
return nil;
|
||||
}
|
||||
NSURL* graphURL = [bundle URLForResource:resource withExtension:@"binarypb"];
|
||||
NSData* data = [NSData dataWithContentsOfURL:graphURL options:0 error:&configLoadError];
|
||||
if (!data) {
|
||||
NSLog(@"Failed to load MediaPipe graph config: %@", configLoadError);
|
||||
return nil;
|
||||
}
|
||||
|
||||
// Parse the graph config resource into mediapipe::CalculatorGraphConfig proto object.
|
||||
mediapipe::CalculatorGraphConfig config;
|
||||
config.ParseFromArray(data.bytes, data.length);
|
||||
|
||||
// Create MediaPipe graph with mediapipe::CalculatorGraphConfig proto object.
|
||||
MPPGraph* newGraph = [[MPPGraph alloc] initWithGraphConfig:config];
|
||||
[newGraph addFrameOutputStream:kOutputStream outputPacketType:MPPPacketTypePixelBuffer];
|
||||
return newGraph;
|
||||
}
|
||||
|
||||
#pragma mark - UIViewController methods
|
||||
|
||||
- (void)viewDidLoad {
|
||||
[super viewDidLoad];
|
||||
|
||||
_renderer = [[MPPLayerRenderer alloc] init];
|
||||
_renderer.layer.frame = _liveView.layer.bounds;
|
||||
[_liveView.layer addSublayer:_renderer.layer];
|
||||
_renderer.frameScaleMode = MPPFrameScaleModeFillAndCrop;
|
||||
// When using the front camera, mirror the input for a more natural look.
|
||||
_renderer.mirrored = YES;
|
||||
|
||||
dispatch_queue_attr_t qosAttribute = dispatch_queue_attr_make_with_qos_class(
|
||||
DISPATCH_QUEUE_SERIAL, QOS_CLASS_USER_INTERACTIVE, /*relative_priority=*/0);
|
||||
_videoQueue = dispatch_queue_create(kVideoQueueLabel, qosAttribute);
|
||||
|
||||
_cameraSource = [[MPPCameraInputSource alloc] init];
|
||||
[_cameraSource setDelegate:self queue:_videoQueue];
|
||||
_cameraSource.sessionPreset = AVCaptureSessionPresetHigh;
|
||||
_cameraSource.cameraPosition = AVCaptureDevicePositionFront;
|
||||
// The frame's native format is rotated with respect to the portrait orientation.
|
||||
_cameraSource.orientation = AVCaptureVideoOrientationPortrait;
|
||||
|
||||
self.mediapipeGraph = [[self class] loadGraphFromResource:kGraphName];
|
||||
self.mediapipeGraph.delegate = self;
|
||||
// Set maxFramesInFlight to a small value to avoid memory contention for real-time processing.
|
||||
self.mediapipeGraph.maxFramesInFlight = 2;
|
||||
}
|
||||
|
||||
// In this application, there is only one ViewController which has no navigation to other view
|
||||
// controllers, and there is only one View with live display showing the result of running the
|
||||
// MediaPipe graph on the live video feed. If more view controllers are needed later, the graph
|
||||
// setup/teardown and camera start/stop logic should be updated appropriately in response to the
|
||||
// appearance/disappearance of this ViewController, as viewWillAppear: can be invoked multiple times
|
||||
// depending on the application navigation flow in that case.
|
||||
- (void)viewWillAppear:(BOOL)animated {
|
||||
[super viewWillAppear:animated];
|
||||
|
||||
[_cameraSource requestCameraAccessWithCompletionHandler:^void(BOOL granted) {
|
||||
if (granted) {
|
||||
[self startGraphAndCamera];
|
||||
dispatch_async(dispatch_get_main_queue(), ^{
|
||||
_noCameraLabel.hidden = YES;
|
||||
});
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (void)startGraphAndCamera {
|
||||
// Start running self.mediapipeGraph.
|
||||
NSError* error;
|
||||
if (![self.mediapipeGraph startWithError:&error]) {
|
||||
NSLog(@"Failed to start graph: %@", error);
|
||||
}
|
||||
|
||||
// Start fetching frames from the camera.
|
||||
dispatch_async(_videoQueue, ^{
|
||||
[_cameraSource start];
|
||||
});
|
||||
}
|
||||
|
||||
#pragma mark - MPPGraphDelegate methods
|
||||
|
||||
// Receives CVPixelBufferRef from the MediaPipe graph. Invoked on a MediaPipe worker thread.
|
||||
- (void)mediapipeGraph:(MPPGraph*)graph
|
||||
didOutputPixelBuffer:(CVPixelBufferRef)pixelBuffer
|
||||
fromStream:(const std::string&)streamName {
|
||||
if (streamName == kOutputStream) {
|
||||
// Display the captured image on the screen.
|
||||
CVPixelBufferRetain(pixelBuffer);
|
||||
dispatch_async(dispatch_get_main_queue(), ^{
|
||||
[_renderer renderPixelBuffer:pixelBuffer];
|
||||
CVPixelBufferRelease(pixelBuffer);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#pragma mark - MPPInputSourceDelegate methods
|
||||
|
||||
// Must be invoked on _videoQueue.
|
||||
- (void)processVideoFrame:(CVPixelBufferRef)imageBuffer
|
||||
timestamp:(CMTime)timestamp
|
||||
fromSource:(MPPInputSource*)source {
|
||||
if (source != _cameraSource) {
|
||||
NSLog(@"Unknown source: %@", source);
|
||||
return;
|
||||
}
|
||||
[self.mediapipeGraph sendPixelBuffer:imageBuffer
|
||||
intoStream:kInputStream
|
||||
packetType:MPPPacketTypePixelBuffer];
|
||||
}
|
||||
|
||||
@end
|
22
mediapipe/examples/ios/multihandtrackinggpu/main.m
Normal file
|
@ -0,0 +1,22 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
#import "AppDelegate.h"
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
@autoreleasepool {
|
||||
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
|
||||
}
|
||||
}
|
|
@ -14,13 +14,12 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library", "mediapipe_py_proto_library")
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_cc_proto_library")
|
||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_py_proto_library")
|
||||
|
||||
package_group(
|
||||
name = "mediapipe_internal",
|
||||
packages = [
|
||||
|
@ -464,6 +463,8 @@ cc_library(
|
|||
"//mediapipe/framework:packet_generator_cc_proto",
|
||||
"//mediapipe/framework:status_handler_cc_proto",
|
||||
"//mediapipe/framework:thread_pool_executor_cc_proto",
|
||||
"@com_google_absl//absl/container:flat_hash_map",
|
||||
"@com_google_absl//absl/container:flat_hash_set",
|
||||
"//mediapipe/gpu:graph_support",
|
||||
"@com_google_absl//absl/base:core_headers",
|
||||
"@com_google_absl//absl/container:fixed_array",
|
||||
|
@ -1272,6 +1273,7 @@ cc_library(
|
|||
"//mediapipe/framework/tool:validate",
|
||||
"//mediapipe/framework/tool:validate_name",
|
||||
"@com_google_absl//absl/base:core_headers",
|
||||
"@com_google_absl//absl/container:flat_hash_set",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "absl/strings/str_format.h"
|
||||
|
@ -1017,8 +1018,8 @@ void CalculatorGraph::UpdateThrottledNodes(InputStreamManager* stream,
|
|||
// TODO Change the throttling code to use the index directly
|
||||
// rather than looking up a stream name.
|
||||
int node_index = validated_graph_->OutputStreamToNode(stream->Name());
|
||||
std::unordered_set<int> owned_set;
|
||||
const std::unordered_set<int>* upstream_nodes;
|
||||
absl::flat_hash_set<int> owned_set;
|
||||
const absl::flat_hash_set<int>* upstream_nodes;
|
||||
if (node_index >= validated_graph_->CalculatorInfos().size()) {
|
||||
// TODO just create a NodeTypeInfo object for each virtual node.
|
||||
owned_set.insert(node_index);
|
||||
|
@ -1100,10 +1101,10 @@ bool CalculatorGraph::UnthrottleSources() {
|
|||
// This is a sufficient because succesfully growing at least one full input
|
||||
// stream during each call to UnthrottleSources will eventually resolve
|
||||
// each deadlock.
|
||||
std::unordered_set<InputStreamManager*> full_streams;
|
||||
absl::flat_hash_set<InputStreamManager*> full_streams;
|
||||
{
|
||||
absl::MutexLock lock(&full_input_streams_mutex_);
|
||||
for (std::unordered_set<InputStreamManager*>& s : full_input_streams_) {
|
||||
for (absl::flat_hash_set<InputStreamManager*>& s : full_input_streams_) {
|
||||
if (!s.empty()) {
|
||||
full_streams.insert(s.begin(), s.end());
|
||||
}
|
||||
|
|
|
@ -23,13 +23,13 @@
|
|||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/container/flat_hash_map.h"
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "absl/synchronization/mutex.h"
|
||||
#include "mediapipe/framework/calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_base.h"
|
||||
|
@ -579,18 +579,18 @@ class CalculatorGraph {
|
|||
// A node is scheduled only if this set is empty. Similarly, a packet
|
||||
// is added to a graph input stream only if this set is empty.
|
||||
// Note that this vector contains an unused entry for each non-source node.
|
||||
std::vector<std::unordered_set<InputStreamManager*>> full_input_streams_
|
||||
std::vector<absl::flat_hash_set<InputStreamManager*>> full_input_streams_
|
||||
GUARDED_BY(full_input_streams_mutex_);
|
||||
|
||||
// Maps stream names to graph input stream objects.
|
||||
std::unordered_map<std::string, std::unique_ptr<GraphInputStream>>
|
||||
absl::flat_hash_map<std::string, std::unique_ptr<GraphInputStream>>
|
||||
graph_input_streams_;
|
||||
|
||||
// Maps graph input streams to their virtual node ids.
|
||||
std::unordered_map<std::string, int> graph_input_stream_node_ids_;
|
||||
absl::flat_hash_map<std::string, int> graph_input_stream_node_ids_;
|
||||
|
||||
// Maps graph input streams to their max queue size.
|
||||
std::unordered_map<std::string, int> graph_input_stream_max_queue_size_;
|
||||
absl::flat_hash_map<std::string, int> graph_input_stream_max_queue_size_;
|
||||
|
||||
// The factory for making counters associated with this graph.
|
||||
std::unique_ptr<CounterFactory> counter_factory_;
|
||||
|
|
|
@ -68,6 +68,7 @@ class CountAndOutputSummarySidePacketInCloseCalculator : public CalculatorBase {
|
|||
}
|
||||
|
||||
::mediapipe::Status Close(CalculatorContext* cc) final {
|
||||
absl::SleepFor(absl::Milliseconds(300)); // For GetOutputSidePacket test.
|
||||
cc->OutputSidePackets().Index(0).Set(
|
||||
MakePacket<int>(count_).At(Timestamp::Unset()));
|
||||
return ::mediapipe::OkStatus();
|
||||
|
|
|
@ -32,7 +32,7 @@ namespace mediapipe {
|
|||
namespace {
|
||||
|
||||
// Shows validation success for a graph and a subgraph.
|
||||
TEST(ValidatedGraphConfigTest, InitializeGraphFromProtos) {
|
||||
TEST(GraphValidationTest, InitializeGraphFromProtos) {
|
||||
auto config_1 = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
type: "PassThroughGraph"
|
||||
input_stream: "INPUT:stream_1"
|
||||
|
@ -102,7 +102,7 @@ TEST(ValidatedGraphConfigTest, InitializeGraphFromProtos) {
|
|||
}
|
||||
|
||||
// Shows validation failure due to an unregistered subgraph.
|
||||
TEST(ValidatedGraphConfigTest, InitializeGraphFromLinker) {
|
||||
TEST(GraphValidationTest, InitializeGraphFromLinker) {
|
||||
EXPECT_FALSE(SubgraphRegistry::IsRegistered("DubQuadTestSubgraph"));
|
||||
ValidatedGraphConfig builder_1;
|
||||
::mediapipe::Status status_1 =
|
||||
|
@ -114,7 +114,7 @@ TEST(ValidatedGraphConfigTest, InitializeGraphFromLinker) {
|
|||
}
|
||||
|
||||
// Shows validation success for a graph and a template subgraph.
|
||||
TEST(ValidatedGraphConfigTest, InitializeTemplateFromProtos) {
|
||||
TEST(GraphValidationTest, InitializeTemplateFromProtos) {
|
||||
mediapipe::tool::TemplateParser::Parser parser;
|
||||
CalculatorGraphTemplate config_1;
|
||||
CHECK(parser.ParseFromString(R"(
|
||||
|
@ -210,5 +210,109 @@ TEST(ValidatedGraphConfigTest, InitializeTemplateFromProtos) {
|
|||
)")));
|
||||
}
|
||||
|
||||
// Shows passing validation of optional subgraph inputs and output streams.
|
||||
TEST(GraphValidationTest, OptionalSubgraphStreams) {
|
||||
// A subgraph defining two optional input streams
|
||||
// and two optional output streams.
|
||||
auto config_1 = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
type: "PassThroughGraph"
|
||||
input_stream: "INPUT:input_0"
|
||||
input_stream: "INPUT:1:input_1"
|
||||
output_stream: "OUTPUT:output_0"
|
||||
output_stream: "OUTPUT:1:output_1"
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "input_0" # Any Type.
|
||||
input_stream: "input_1" # Any Type.
|
||||
output_stream: "output_0" # Same as input.
|
||||
}
|
||||
)");
|
||||
|
||||
// An enclosing graph that specifies one of the two optional input streams
|
||||
// and one of the two optional output streams.
|
||||
auto config_2 = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
input_stream: "INPUT:foo_in"
|
||||
output_stream: "OUTPUT:foo_out"
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "foo_in" # Any Type.
|
||||
output_stream: "foo_bar" # Same as input.
|
||||
}
|
||||
node {
|
||||
calculator: "PassThroughGraph"
|
||||
input_stream: "INPUT:foo_bar" # Any Type.
|
||||
output_stream: "OUTPUT:foo_out" # Same as input.
|
||||
}
|
||||
)");
|
||||
|
||||
GraphValidation validation_1;
|
||||
MP_EXPECT_OK(validation_1.Validate({config_1, config_2}, {}));
|
||||
CalculatorGraph graph_1;
|
||||
MP_EXPECT_OK(graph_1.Initialize({config_1, config_2}, {}));
|
||||
EXPECT_THAT(
|
||||
graph_1.Config(),
|
||||
|
||||
// The result includes only the requested input and output streams.
|
||||
EqualsProto(::mediapipe::ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
input_stream: "INPUT:foo_in"
|
||||
output_stream: "OUTPUT:foo_out"
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "foo_in"
|
||||
output_stream: "foo_bar"
|
||||
}
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "foo_bar"
|
||||
output_stream: "foo_out"
|
||||
}
|
||||
executor {}
|
||||
)")));
|
||||
}
|
||||
|
||||
// Shows failing validation of optional subgraph inputs and output streams.
|
||||
TEST(GraphValidationTest, OptionalSubgraphStreamsMismatched) {
|
||||
// A subgraph defining two optional input streams
|
||||
// and two optional output streams.
|
||||
auto config_1 = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
type: "PassThroughGraph"
|
||||
input_stream: "INPUT:input_0"
|
||||
input_stream: "INPUT:1:input_1"
|
||||
output_stream: "OUTPUT:output_0"
|
||||
output_stream: "OUTPUT:1:output_1"
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "input_0" # Any Type.
|
||||
input_stream: "input_1" # Any Type.
|
||||
output_stream: "output_0" # Same as input.
|
||||
}
|
||||
)");
|
||||
|
||||
// An enclosing graph that specifies one of the two optional input streams
|
||||
// and both of the two optional output streams.
|
||||
auto config_2 = ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
input_stream: "INPUT:foo_in"
|
||||
output_stream: "OUTPUT:foo_out"
|
||||
node {
|
||||
calculator: "PassThroughCalculator"
|
||||
input_stream: "foo_in" # Any Type.
|
||||
output_stream: "foo_bar" # Same as input.
|
||||
}
|
||||
node {
|
||||
calculator: "PassThroughGraph"
|
||||
input_stream: "INPUT:foo_bar" # Any Type.
|
||||
input_stream: "INPUT:1:foo_bar" # Any Type.
|
||||
output_stream: "OUTPUT:foo_out" # Same as input.
|
||||
}
|
||||
)");
|
||||
|
||||
GraphValidation validation_1;
|
||||
mediapipe::Status status = validation_1.Validate({config_1, config_2}, {});
|
||||
ASSERT_EQ(status.code(), ::mediapipe::StatusCode::kInvalidArgument);
|
||||
ASSERT_THAT(status.ToString(),
|
||||
testing::HasSubstr(
|
||||
"PassThroughCalculator must use matching tags and indexes"));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -85,7 +85,7 @@ class Packet {
|
|||
// given timestamp. Does not modify *this.
|
||||
Packet At(class Timestamp timestamp) const&;
|
||||
|
||||
// The rvalue reference overload of Packet's memeber function
|
||||
// The rvalue reference overload of Packet's member function
|
||||
// Packet::At(class Timestamp). Moves *this to a new Packet and returns
|
||||
// the new Packet with the given timestamp.
|
||||
Packet At(class Timestamp timestamp) &&;
|
||||
|
|
|
@ -247,6 +247,26 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "opencv_features2d",
|
||||
hdrs = ["opencv_features2d_inc.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":opencv_core",
|
||||
"//third_party:opencv",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "opencv_calib3d",
|
||||
hdrs = ["opencv_calib3d_inc.h"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
":opencv_core",
|
||||
"//third_party:opencv",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "parse_text_proto",
|
||||
hdrs = [
|
||||
|
|
26
mediapipe/framework/port/opencv_calib3d_inc.h
Normal file
|
@ -0,0 +1,26 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_FRAMEWORK_PORT_OPENCV_CALIB3D_INC_H_
|
||||
#define MEDIAPIPE_FRAMEWORK_PORT_OPENCV_CALIB3D_INC_H_
|
||||
|
||||
#include <opencv2/core/version.hpp>
|
||||
|
||||
#ifdef CV_VERSION_EPOCH // for OpenCV 2.x
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#else
|
||||
#include <opencv2/calib3d.hpp>
|
||||
#endif
|
||||
|
||||
#endif // MEDIAPIPE_FRAMEWORK_PORT_OPENCV_CALIB3D_INC_H_
|
26
mediapipe/framework/port/opencv_features2d_inc.h
Normal file
|
@ -0,0 +1,26 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_FRAMEWORK_PORT_OPENCV_FEATURES2D_INC_H_
|
||||
#define MEDIAPIPE_FRAMEWORK_PORT_OPENCV_FEATURES2D_INC_H_
|
||||
|
||||
#include <opencv2/core/version.hpp>
|
||||
|
||||
#ifdef CV_VERSION_EPOCH // for OpenCV 2.x
|
||||
#include <opencv2/features2d/features2d.hpp>
|
||||
#else
|
||||
#include <opencv2/features2d.hpp>
|
||||
#endif
|
||||
|
||||
#endif // MEDIAPIPE_FRAMEWORK_PORT_OPENCV_FEATURES2D_INC_H_
|
|
@ -155,7 +155,7 @@ class FixedSizeInputStreamHandler : public DefaultInputStreamHandler {
|
|||
return (fixed_min_size_) ? EraseAllSurplus() : EraseAnySurplus(keep_one);
|
||||
}
|
||||
|
||||
NodeReadiness GetNodeReadiness(Timestamp* min_stream_timestamp) {
|
||||
NodeReadiness GetNodeReadiness(Timestamp* min_stream_timestamp) override {
|
||||
DCHECK(min_stream_timestamp);
|
||||
absl::MutexLock lock(&erase_mutex_);
|
||||
// kReadyForProcess is returned only once until FillInputSet completes.
|
||||
|
|
4
mediapipe/framework/testdata/BUILD
vendored
|
@ -31,7 +31,7 @@ mediapipe_cc_proto_library(
|
|||
name = "sky_light_calculator_cc_proto",
|
||||
srcs = ["sky_light_calculator.proto"],
|
||||
cc_deps = ["//mediapipe/framework:calculator_cc_proto"],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":sky_light_calculator_proto"],
|
||||
)
|
||||
|
||||
|
@ -45,7 +45,7 @@ mediapipe_cc_proto_library(
|
|||
name = "night_light_calculator_cc_proto",
|
||||
srcs = ["night_light_calculator.proto"],
|
||||
cc_deps = ["//mediapipe/framework:calculator_cc_proto"],
|
||||
visibility = ["//mediapipe:__subpackages__"],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [":night_light_calculator_proto"],
|
||||
)
|
||||
|
||||
|
|
|
@ -177,7 +177,7 @@ cc_library(
|
|||
deps = [
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/port:statusor",
|
||||
"@org_tensorflow//tensorflow/core:protos_all_cc",
|
||||
"@org_tensorflow//tensorflow/core:protos_all",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
|
@ -110,7 +110,7 @@ def mediapipe_simple_subgraph(
|
|||
testonly: pass 1 if the graph is to be used only for tests.
|
||||
**kwargs: Remaining keyword args, forwarded to cc_library.
|
||||
"""
|
||||
graph_base_name = graph.replace(":", "/").split("/")[-1].rsplit(".", 1)[0]
|
||||
graph_base_name = name
|
||||
mediapipe_binary_graph(
|
||||
name = name + "_graph",
|
||||
graph = graph,
|
||||
|
|
|
@ -52,6 +52,31 @@ namespace tool {
|
|||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
// Returns subgraph streams not requested by a subgraph-node.
|
||||
::mediapipe::Status FindIgnoredStreams(
|
||||
const proto_ns::RepeatedPtrField<ProtoString>& src_streams,
|
||||
const proto_ns::RepeatedPtrField<ProtoString>& dst_streams,
|
||||
std::set<std::string>* result) {
|
||||
ASSIGN_OR_RETURN(auto src_map, tool::TagMap::Create(src_streams));
|
||||
ASSIGN_OR_RETURN(auto dst_map, tool::TagMap::Create(dst_streams));
|
||||
std::set_difference(src_map->Names().begin(), src_map->Names().end(),
|
||||
dst_map->Names().begin(), dst_map->Names().end(),
|
||||
std::inserter(*result, result->begin()));
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
// Removes subgraph streams not requested by a subgraph-node.
|
||||
::mediapipe::Status RemoveIgnoredStreams(
|
||||
proto_ns::RepeatedPtrField<ProtoString>* streams,
|
||||
const std::set<std::string>& missing_streams) {
|
||||
for (int i = streams->size() - 1; i >= 0; --i) {
|
||||
if (missing_streams.count(streams->Get(i)) > 0) {
|
||||
streams->DeleteSubrange(i, 1);
|
||||
}
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status TransformNames(
|
||||
CalculatorGraphConfig* config,
|
||||
const std::function<std::string(absl::string_view)>& transform) {
|
||||
|
@ -190,6 +215,14 @@ static ::mediapipe::Status PrefixNames(int subgraph_index,
|
|||
.SetPrepend()
|
||||
<< "while processing the output side packets of subgraph node "
|
||||
<< subgraph_node.calculator() << ": ";
|
||||
std::set<std::string> ignored_input_streams;
|
||||
MP_RETURN_IF_ERROR(FindIgnoredStreams(subgraph_config->input_stream(),
|
||||
subgraph_node.input_stream(),
|
||||
&ignored_input_streams));
|
||||
std::set<std::string> ignored_input_side_packets;
|
||||
MP_RETURN_IF_ERROR(FindIgnoredStreams(subgraph_config->input_side_packet(),
|
||||
subgraph_node.input_side_packet(),
|
||||
&ignored_input_side_packets));
|
||||
std::map<std::string, std::string>* name_map;
|
||||
auto replace_names = [&name_map](absl::string_view s) {
|
||||
std::string original(s);
|
||||
|
@ -207,6 +240,12 @@ static ::mediapipe::Status PrefixNames(int subgraph_index,
|
|||
TransformStreamNames(node.mutable_input_side_packet(), replace_names));
|
||||
MP_RETURN_IF_ERROR(
|
||||
TransformStreamNames(node.mutable_output_side_packet(), replace_names));
|
||||
|
||||
// Remove input streams and side packets ignored by the subgraph-node.
|
||||
MP_RETURN_IF_ERROR(RemoveIgnoredStreams(node.mutable_input_stream(),
|
||||
ignored_input_streams));
|
||||
MP_RETURN_IF_ERROR(RemoveIgnoredStreams(node.mutable_input_side_packet(),
|
||||
ignored_input_side_packets));
|
||||
}
|
||||
name_map = &side_packet_map;
|
||||
for (auto& generator : *subgraph_config->mutable_packet_generator()) {
|
||||
|
|
|
@ -14,8 +14,7 @@
|
|||
|
||||
#include "mediapipe/framework/validated_graph_config.h"
|
||||
|
||||
#include <unordered_set>
|
||||
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "absl/strings/str_join.h"
|
||||
|
@ -934,7 +933,7 @@ NodeTypeInfo::NodeRef ValidatedGraphConfig::NodeForSorterIndex(
|
|||
}
|
||||
|
||||
::mediapipe::Status ValidatedGraphConfig::ValidateExecutors() {
|
||||
std::unordered_set<ProtoString> declared_names;
|
||||
absl::flat_hash_set<ProtoString> declared_names;
|
||||
for (const ExecutorConfig& executor_config : config_.executor()) {
|
||||
if (IsReservedExecutorName(executor_config.name())) {
|
||||
return ::mediapipe::InvalidArgumentErrorBuilder(MEDIAPIPE_LOC)
|
||||
|
@ -964,7 +963,7 @@ NodeTypeInfo::NodeRef ValidatedGraphConfig::NodeForSorterIndex(
|
|||
<< "\"" << executor_name << "\" is a reserved executor name.";
|
||||
}
|
||||
// The executor must be declared in an ExecutorConfig.
|
||||
if (declared_names.find(executor_name) == declared_names.end()) {
|
||||
if (!declared_names.contains(executor_name)) {
|
||||
return ::mediapipe::InvalidArgumentErrorBuilder(MEDIAPIPE_LOC)
|
||||
<< "The executor \"" << executor_name
|
||||
<< "\" is not declared in an ExecutorConfig.";
|
||||
|
|
|
@ -16,9 +16,9 @@
|
|||
#define MEDIAPIPE_FRAMEWORK_VALIDATED_GRAPH_CONFIG_H_
|
||||
|
||||
#include <map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "mediapipe/framework/calculator.pb.h"
|
||||
#include "mediapipe/framework/calculator_contract.h"
|
||||
#include "mediapipe/framework/packet_generator.pb.h"
|
||||
|
@ -169,7 +169,7 @@ class NodeTypeInfo {
|
|||
// be a virtual node corresponding to a graph input stream (which are
|
||||
// listed by index contiguously after all calculators).
|
||||
// This function is only valid for a NodeTypeInfo of NodeType CALCULATOR.
|
||||
const std::unordered_set<int>& AncestorSources() const {
|
||||
const absl::flat_hash_set<int>& AncestorSources() const {
|
||||
return ancestor_sources_;
|
||||
}
|
||||
// Returns True if the source was not already there.
|
||||
|
@ -213,7 +213,7 @@ class NodeTypeInfo {
|
|||
NodeRef node_;
|
||||
|
||||
// The set of sources which affect this node.
|
||||
std::unordered_set<int> ancestor_sources_;
|
||||
absl::flat_hash_set<int> ancestor_sources_;
|
||||
};
|
||||
|
||||
// Information for either the input or output side of an edge. An edge
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# MediaPipe graph that performs face detection with TensorFlow Lite on CPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/desktop/face_detection:face_detection_cpu.
|
||||
# mediapipe/examples/desktop/face_detection:face_detection_cpu.
|
||||
|
||||
# Images on GPU coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -12,26 +12,33 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
load(
|
||||
"//mediapipe/framework/tool:mediapipe_graph.bzl",
|
||||
"mediapipe_binary_graph",
|
||||
)
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
cc_library(
|
||||
name = "desktop_tflite_calculators",
|
||||
name = "desktop_offline_calculators",
|
||||
deps = [
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:immediate_mux_calculator",
|
||||
"//mediapipe/calculators/core:merge_calculator",
|
||||
"//mediapipe/calculators/core:packet_inner_join_calculator",
|
||||
"//mediapipe/calculators/core:previous_loopback_calculator",
|
||||
"//mediapipe/calculators/video:opencv_video_decoder_calculator",
|
||||
"//mediapipe/calculators/video:opencv_video_encoder_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "desktop_tflite_calculators",
|
||||
deps = [
|
||||
":desktop_offline_calculators",
|
||||
"//mediapipe/calculators/core:merge_calculator",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:hand_detection_cpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:hand_landmark_cpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:renderer_cpu",
|
||||
|
@ -58,6 +65,39 @@ mediapipe_binary_graph(
|
|||
deps = [":mobile_calculators"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "multi_hand_desktop_tflite_calculators",
|
||||
deps = [
|
||||
":desktop_offline_calculators",
|
||||
"//mediapipe/calculators/util:association_norm_rect_calculator",
|
||||
"//mediapipe/calculators/util:collection_has_min_size_calculator",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_detection_cpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_landmark_cpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_renderer_cpu",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "multi_hand_mobile_calculators",
|
||||
deps = [
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:previous_loopback_calculator",
|
||||
"//mediapipe/calculators/util:association_norm_rect_calculator",
|
||||
"//mediapipe/calculators/util:collection_has_min_size_calculator",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_detection_gpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_landmark_gpu",
|
||||
"//mediapipe/graphs/hand_tracking/subgraphs:multi_hand_renderer_gpu",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_binary_graph(
|
||||
name = "multi_hand_tracking_mobile_gpu_binary_graph",
|
||||
graph = "multi_hand_tracking_mobile.pbtxt",
|
||||
output_name = "multi_hand_tracking_mobile_gpu.binarypb",
|
||||
deps = [":multi_hand_mobile_calculators"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "detection_mobile_calculators",
|
||||
deps = [
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# MediaPipe graph that performs hand detection on desktop with TensorFlow Lite
|
||||
# on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/hand_tracking:hand_detection_cpu.
|
||||
# mediapipe/examples/desktop/hand_tracking:hand_detection_cpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# MediaPipe graph that performs hand detection with TensorFlow Lite on GPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/handdetectiongpu and
|
||||
# mediapipie/examples/ios/handdetectiongpu.
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/handdetectiongpu and
|
||||
# mediapipe/examples/ios/handdetectiongpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# MediaPipe graph that performs hand tracking on desktop with TensorFlow Lite
|
||||
# on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/hand_tracking:hand_tracking_tflite.
|
||||
# mediapipe/examples/desktop/hand_tracking:hand_tracking_tflite.
|
||||
|
||||
# max_queue_size limits the number of packets enqueued on any input stream
|
||||
# by throttling inputs to the graph. This makes the graph only process one
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# MediaPipe graph that performs hand tracking with TensorFlow Lite on GPU.
|
||||
# Used in the examples in
|
||||
# mediapipie/examples/android/src/java/com/mediapipe/apps/handtrackinggpu and
|
||||
# mediapipie/examples/ios/handtrackinggpu.
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/handtrackinggpu and
|
||||
# mediapipe/examples/ios/handtrackinggpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
|
|
127
mediapipe/graphs/hand_tracking/multi_hand_tracking_desktop.pbtxt
Normal file
|
@ -0,0 +1,127 @@
|
|||
# MediaPipe graph that performs multi-hand tracking on desktop with TensorFlow
|
||||
# Lite on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/hand_tracking:multi_hand_tracking_tflite.
|
||||
|
||||
# max_queue_size limits the number of packets enqueued on any input stream
|
||||
# by throttling inputs to the graph. This makes the graph only process one
|
||||
# frame per time.
|
||||
max_queue_size: 1
|
||||
|
||||
# Decodes an input video file into images and a video header.
|
||||
node {
|
||||
calculator: "OpenCvVideoDecoderCalculator"
|
||||
input_side_packet: "INPUT_FILE_PATH:input_video_path"
|
||||
output_stream: "VIDEO:input_video"
|
||||
output_stream: "VIDEO_PRESTREAM:input_video_header"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided min_size.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_multi_hand_rects_from_landmarks"
|
||||
output_stream: "prev_has_enough_hands"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.CollectionHasMinSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify max_vec_size in
|
||||
# ClipVectorSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_cpu.pbtxt
|
||||
min_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drops the incoming image if the previous frame had at least N hands.
|
||||
# Otherwise, passes the incoming image through to trigger a new round of hand
|
||||
# detection in MultiHandDetectionSubgraph.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "DISALLOW:prev_has_enough_hands"
|
||||
output_stream: "multi_hand_detection_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.GateCalculatorOptions] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detections hands (see multi_hand_detection_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandDetectionSubgraph"
|
||||
input_stream: "multi_hand_detection_input_video"
|
||||
output_stream: "DETECTIONS:multi_palm_detections"
|
||||
output_stream: "NORM_RECTS:multi_palm_rects"
|
||||
}
|
||||
|
||||
# Subgraph that localizes hand landmarks for multiple hands (see
|
||||
# multi_hand_landmark.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
output_stream: "NORM_RECTS:multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches a hand rectangle fed back from MultiHandLandmarkSubgraph, and upon the
|
||||
# arrival of the next input image sends out the cached rectangle with the
|
||||
# timestamp replaced by that of the input image, essentially generating a packet
|
||||
# that carries the previous hand rectangle. Note that upon the arrival of the
|
||||
# very first input image, an empty packet is sent out to jump start the
|
||||
# feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:input_video"
|
||||
input_stream: "LOOP:multi_hand_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# frame and those from the current frame if MultiHandDetectionSubgraph runs.
|
||||
# This calculator ensures that the output multi_hand_rects vector doesn't
|
||||
# contain overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "prev_multi_hand_rects_from_landmarks"
|
||||
input_stream: "multi_palm_rects"
|
||||
output_stream: "multi_hand_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.AssociationCalculatorOptions] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that renders annotations and overlays them on top of the input
|
||||
# images (see multi_hand_renderer_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandRendererSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "DETECTIONS:multi_palm_detections"
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|
||||
|
||||
# Encodes the annotated images into a video file, adopting properties specified
|
||||
# in the input video header, e.g., video framerate.
|
||||
node {
|
||||
calculator: "OpenCvVideoEncoderCalculator"
|
||||
input_stream: "VIDEO:output_video"
|
||||
input_stream: "VIDEO_PRESTREAM:input_video_header"
|
||||
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
|
||||
codec: "avc1"
|
||||
video_format: "mp4"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,103 @@
|
|||
# MediaPipe graph that performs multi-hand tracking on desktop with TensorFlow
|
||||
# Lite on CPU.
|
||||
# Used in the example in
|
||||
# mediapipie/examples/desktop/hand_tracking:multi_hand_tracking_cpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
output_stream: "output_video"
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided min_size.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_multi_hand_rects_from_landmarks"
|
||||
output_stream: "prev_has_enough_hands"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.CollectionHasMinSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify max_vec_size in
|
||||
# ClipVectorSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_gpu.pbtxt
|
||||
min_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drops the incoming image if the previous frame had at least N hands.
|
||||
# Otherwise, passes the incoming image through to trigger a new round of hand
|
||||
# detection in MultiHandDetectionSubgraph.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "DISALLOW:prev_has_enough_hands"
|
||||
output_stream: "multi_hand_detection_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.GateCalculatorOptions] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detections hands (see multi_hand_detection_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandDetectionSubgraph"
|
||||
input_stream: "multi_hand_detection_input_video"
|
||||
output_stream: "DETECTIONS:multi_palm_detections"
|
||||
output_stream: "NORM_RECTS:multi_palm_rects"
|
||||
}
|
||||
|
||||
# Subgraph that localizes hand landmarks for multiple hands (see
|
||||
# multi_hand_landmark.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
output_stream: "NORM_RECTS:multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches a hand rectangle fed back from MultiHandLandmarkSubgraph, and upon the
|
||||
# arrival of the next input image sends out the cached rectangle with the
|
||||
# timestamp replaced by that of the input image, essentially generating a packet
|
||||
# that carries the previous hand rectangle. Note that upon the arrival of the
|
||||
# very first input image, an empty packet is sent out to jump start the
|
||||
# feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:input_video"
|
||||
input_stream: "LOOP:multi_hand_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# frame and those from the current frame if MultiHandDetectionSubgraph runs.
|
||||
# This calculator ensures that the output multi_hand_rects vector doesn't
|
||||
# contain overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "prev_multi_hand_rects_from_landmarks"
|
||||
input_stream: "multi_palm_rects"
|
||||
output_stream: "multi_hand_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.AssociationCalculatorOptions] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that renders annotations and overlays them on top of the input
|
||||
# images (see multi_hand_renderer_cpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandRendererSubgraph"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "DETECTIONS:multi_palm_detections"
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|
123
mediapipe/graphs/hand_tracking/multi_hand_tracking_mobile.pbtxt
Normal file
|
@ -0,0 +1,123 @@
|
|||
# MediaPipe graph that performs multi-hand tracking with TensorFlow Lite on GPU.
|
||||
# Used in the examples in
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/multihandtrackinggpu.
|
||||
|
||||
# Images coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
output_stream: "output_video"
|
||||
|
||||
# Throttles the images flowing downstream for flow control. It passes through
|
||||
# the very first incoming image unaltered, and waits for downstream nodes
|
||||
# (calculators and subgraphs) in the graph to finish their tasks before it
|
||||
# passes through another image. All images that come in while waiting are
|
||||
# dropped, limiting the number of in-flight images in most part of the graph to
|
||||
# 1. This prevents the downstream nodes from queuing up incoming images and data
|
||||
# excessively, which leads to increased latency and memory usage, unwanted in
|
||||
# real-time mobile applications. It also eliminates unnecessarily computation,
|
||||
# e.g., the output produced by a node may get dropped downstream if the
|
||||
# subsequent nodes are still busy processing previous inputs.
|
||||
node {
|
||||
calculator: "FlowLimiterCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "FINISHED:multi_hand_rects"
|
||||
input_stream_info: {
|
||||
tag_index: "FINISHED"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "throttled_input_video"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided min_size.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_multi_hand_rects_from_landmarks"
|
||||
output_stream: "prev_has_enough_hands"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.CollectionHasMinSizeCalculatorOptions] {
|
||||
# This value can be changed to support tracking arbitrary number of hands.
|
||||
# Please also remember to modify max_vec_size in
|
||||
# ClipVectorSizeCalculatorOptions in
|
||||
# mediapipe/graphs/hand_tracking/subgraphs/multi_hand_detection_gpu.pbtxt
|
||||
min_size: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drops the incoming image if the previous frame had at least N hands.
|
||||
# Otherwise, passes the incoming image through to trigger a new round of hand
|
||||
# detection in MultiHandDetectionSubgraph.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "throttled_input_video"
|
||||
input_stream: "DISALLOW:prev_has_enough_hands"
|
||||
output_stream: "multi_hand_detection_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.GateCalculatorOptions] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detections hands (see multi_hand_detection_gpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandDetectionSubgraph"
|
||||
input_stream: "multi_hand_detection_input_video"
|
||||
output_stream: "DETECTIONS:multi_palm_detections"
|
||||
output_stream: "NORM_RECTS:multi_palm_rects"
|
||||
}
|
||||
|
||||
# Subgraph that localizes hand landmarks for multiple hands (see
|
||||
# multi_hand_landmark.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandLandmarkSubgraph"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_stream: "NORM_RECTS:multi_hand_rects"
|
||||
output_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
output_stream: "NORM_RECTS:multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches a hand rectangle fed back from MultiHandLandmarkSubgraph, and upon the
|
||||
# arrival of the next input image sends out the cached rectangle with the
|
||||
# timestamp replaced by that of the input image, essentially generating a packet
|
||||
# that carries the previous hand rectangle. Note that upon the arrival of the
|
||||
# very first input image, an empty packet is sent out to jump start the
|
||||
# feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:throttled_input_video"
|
||||
input_stream: "LOOP:multi_hand_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_multi_hand_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# frame and those from the current frame if MultiHandDetectionSubgraph runs.
|
||||
# This calculator ensures that the output multi_hand_rects vector doesn't
|
||||
# contain overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "prev_multi_hand_rects_from_landmarks"
|
||||
input_stream: "multi_palm_rects"
|
||||
output_stream: "multi_hand_rects"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.AssociationCalculatorOptions] {
|
||||
min_similarity_threshold: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that renders annotations and overlays them on top of the input
|
||||
# images (see multi_hand_renderer_gpu.pbtxt).
|
||||
node {
|
||||
calculator: "MultiHandRendererSubgraph"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_stream: "DETECTIONS:multi_palm_detections"
|
||||
input_stream: "LANDMARKS:multi_hand_landmarks"
|
||||
input_stream: "NORM_RECTS:0:multi_palm_rects"
|
||||
input_stream: "NORM_RECTS:1:multi_hand_rects"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|