Java gesture recognizer Tasks API and unit test.

PiperOrigin-RevId: 480978244
This commit is contained in:
MediaPipe Team 2022-10-13 14:00:35 -07:00 committed by Copybara-Service
parent 12c323ffde
commit 9353ed6cce
7 changed files with 1016 additions and 3 deletions

View File

@ -87,9 +87,8 @@ struct GestureRecognizerOptions {
// Performs hand gesture recognition on the given image.
//
// TODO add the link to DevSite.
// This API expects expects a pre-trained hand gesture model asset bundle, or a
// custom one created using Model Maker. See <link to the DevSite documentation
// page>.
// This API expects a pre-trained hand gesture model asset bundle, or a custom
// one created using Model Maker. See <link to the DevSite documentation page>.
//
// Inputs:
// Image

View File

@ -40,6 +40,7 @@ cc_binary(
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/core/jni:model_resources_cache_jni",

View File

@ -20,6 +20,7 @@ android_library(
name = "gesturerecognizer",
srcs = [
"GestureRecognitionResult.java",
"GestureRecognizer.java",
],
javacopts = [
"-Xep:AndroidJdkLibsChecker:OFF",
@ -29,11 +30,19 @@ android_library(
"//mediapipe/framework:calculator_options_java_proto_lite",
"//mediapipe/framework/formats:classification_java_proto_lite",
"//mediapipe/framework/formats:landmark_java_proto_lite",
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
"//mediapipe/java/com/google/mediapipe/framework/image",
"//mediapipe/tasks/cc/components/processors/proto:classifier_options_java_proto_lite",
"//mediapipe/tasks/cc/core/proto:base_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/gesture_recognizer/proto:gesture_recognizer_graph_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/gesture_recognizer/proto:hand_gesture_recognizer_graph_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/hand_detector/proto:hand_detector_graph_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarker_graph_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarks_detector_graph_options_java_proto_lite",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:category",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:landmark",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/core",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/vision/core",
"//third_party:autovalue",
"@maven//:com_google_guava_guava",
],

View File

@ -0,0 +1,466 @@
// Copyright 2022 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.gesturerecognizer;
import android.content.Context;
import android.os.ParcelFileDescriptor;
import com.google.auto.value.AutoValue;
import com.google.mediapipe.formats.proto.LandmarkProto.LandmarkList;
import com.google.mediapipe.formats.proto.LandmarkProto.NormalizedLandmarkList;
import com.google.mediapipe.proto.CalculatorOptionsProto.CalculatorOptions;
import com.google.mediapipe.formats.proto.ClassificationProto.ClassificationList;
import com.google.mediapipe.framework.AndroidPacketGetter;
import com.google.mediapipe.framework.Packet;
import com.google.mediapipe.framework.PacketGetter;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.Image;
import com.google.mediapipe.tasks.components.processors.proto.ClassifierOptionsProto;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.core.ErrorListener;
import com.google.mediapipe.tasks.core.OutputHandler;
import com.google.mediapipe.tasks.core.OutputHandler.ResultListener;
import com.google.mediapipe.tasks.core.TaskInfo;
import com.google.mediapipe.tasks.core.TaskOptions;
import com.google.mediapipe.tasks.core.TaskRunner;
import com.google.mediapipe.tasks.core.proto.BaseOptionsProto;
import com.google.mediapipe.tasks.vision.core.BaseVisionTaskApi;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.handdetector.HandDetectorGraphOptionsProto;
import com.google.mediapipe.tasks.vision.handlandmarker.HandLandmarkerGraphOptionsProto;
import com.google.mediapipe.tasks.vision.handlandmarker.HandLandmarksDetectorGraphOptionsProto;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Optional;
/**
* Performs gesture recognition on images.
*
* <p>This API expects a pre-trained hand gesture model asset bundle, or a custom one created using
* Model Maker. See <TODO link to the DevSite documentation page>.
*
* <ul>
* <li>Input image {@link Image}
* <ul>
* <li>The image that gesture recognition runs on.
* </ul>
* <li>Output GestureRecognitionResult {@link GestureRecognitionResult}
* <ul>
* <li>A GestureRecognitionResult containing hand landmarks and recognized hand gestures.
* </ul>
* </ul>
*/
public final class GestureRecognizer extends BaseVisionTaskApi {
private static final String TAG = GestureRecognizer.class.getSimpleName();
private static final String IMAGE_IN_STREAM_NAME = "image_in";
private static final List<String> INPUT_STREAMS =
Collections.unmodifiableList(Arrays.asList("IMAGE:" + IMAGE_IN_STREAM_NAME));
private static final List<String> OUTPUT_STREAMS =
Collections.unmodifiableList(
Arrays.asList(
"LANDMARKS:hand_landmarks",
"WORLD_LANDMARKS:world_hand_landmarks",
"HANDEDNESS:handedness",
"HAND_GESTURES:hand_gestures",
"IMAGE:image_out"));
private static final int LANDMARKS_OUT_STREAM_INDEX = 0;
private static final int WORLD_LANDMARKS_OUT_STREAM_INDEX = 1;
private static final int HANDEDNESS_OUT_STREAM_INDEX = 2;
private static final int HAND_GESTURES_OUT_STREAM_INDEX = 3;
private static final int IMAGE_OUT_STREAM_INDEX = 4;
private static final String TASK_GRAPH_NAME =
"mediapipe.tasks.vision.gesture_recognizer.GestureRecognizerGraph";
/**
* Creates a {@link GestureRecognizer} instance from a model file and the default {@link
* GestureRecognizerOptions}.
*
* @param context an Android {@link Context}.
* @param modelPath path to the gesture recognition model with metadata in the assets.
* @throws MediaPipeException if there is an error during {@link GestureRecognizer} creation.
*/
public static GestureRecognizer createFromFile(Context context, String modelPath) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetPath(modelPath).build();
return createFromOptions(
context, GestureRecognizerOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates a {@link GestureRecognizer} instance from a model file and the default {@link
* GestureRecognizerOptions}.
*
* @param context an Android {@link Context}.
* @param modelFile the gesture recognition model {@link File} instance.
* @throws IOException if an I/O error occurs when opening the tflite model file.
* @throws MediaPipeException if there is an error during {@link GestureRecognizer} creation.
*/
public static GestureRecognizer createFromFile(Context context, File modelFile)
throws IOException {
try (ParcelFileDescriptor descriptor =
ParcelFileDescriptor.open(modelFile, ParcelFileDescriptor.MODE_READ_ONLY)) {
BaseOptions baseOptions =
BaseOptions.builder().setModelAssetFileDescriptor(descriptor.getFd()).build();
return createFromOptions(
context, GestureRecognizerOptions.builder().setBaseOptions(baseOptions).build());
}
}
/**
* Creates a {@link GestureRecognizer} instance from a model buffer and the default {@link
* GestureRecognizerOptions}.
*
* @param context an Android {@link Context}.
* @param modelBuffer a direct {@link ByteBuffer} or a {@link MappedByteBuffer} of the detection
* model.
* @throws MediaPipeException if there is an error during {@link GestureRecognizer} creation.
*/
public static GestureRecognizer createFromBuffer(Context context, final ByteBuffer modelBuffer) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetBuffer(modelBuffer).build();
return createFromOptions(
context, GestureRecognizerOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates a {@link GestureRecognizer} instance from a {@link GestureRecognizerOptions}.
*
* @param context an Android {@link Context}.
* @param recognizerOptions a {@link GestureRecognizerOptions} instance.
* @throws MediaPipeException if there is an error during {@link GestureRecognizer} creation.
*/
public static GestureRecognizer createFromOptions(
Context context, GestureRecognizerOptions recognizerOptions) {
// TODO: Consolidate OutputHandler and TaskRunner.
OutputHandler<GestureRecognitionResult, Image> handler = new OutputHandler<>();
handler.setOutputPacketConverter(
new OutputHandler.OutputPacketConverter<GestureRecognitionResult, Image>() {
@Override
public GestureRecognitionResult convertToTaskResult(List<Packet> packets) {
// If there is no hands detected in the image, just returns empty lists.
if (packets.get(HAND_GESTURES_OUT_STREAM_INDEX).isEmpty()) {
return GestureRecognitionResult.create(
new ArrayList<>(),
new ArrayList<>(),
new ArrayList<>(),
new ArrayList<>(),
packets.get(HAND_GESTURES_OUT_STREAM_INDEX).getTimestamp());
}
return GestureRecognitionResult.create(
PacketGetter.getProtoVector(
packets.get(LANDMARKS_OUT_STREAM_INDEX), NormalizedLandmarkList.parser()),
PacketGetter.getProtoVector(
packets.get(WORLD_LANDMARKS_OUT_STREAM_INDEX), LandmarkList.parser()),
PacketGetter.getProtoVector(
packets.get(HANDEDNESS_OUT_STREAM_INDEX), ClassificationList.parser()),
PacketGetter.getProtoVector(
packets.get(HAND_GESTURES_OUT_STREAM_INDEX), ClassificationList.parser()),
packets.get(HAND_GESTURES_OUT_STREAM_INDEX).getTimestamp());
}
@Override
public Image convertToTaskInput(List<Packet> packets) {
return new BitmapImageBuilder(
AndroidPacketGetter.getBitmapFromRgb(packets.get(IMAGE_OUT_STREAM_INDEX)))
.build();
}
});
recognizerOptions.resultListener().ifPresent(handler::setResultListener);
recognizerOptions.errorListener().ifPresent(handler::setErrorListener);
TaskRunner runner =
TaskRunner.create(
context,
TaskInfo.<GestureRecognizerOptions>builder()
.setTaskGraphName(TASK_GRAPH_NAME)
.setInputStreams(INPUT_STREAMS)
.setOutputStreams(OUTPUT_STREAMS)
.setTaskOptions(recognizerOptions)
.setEnableFlowLimiting(recognizerOptions.runningMode() == RunningMode.LIVE_STREAM)
.build(),
handler);
return new GestureRecognizer(runner, recognizerOptions.runningMode());
}
/**
* Constructor to initialize an {@link GestureRecognizer} from a {@link TaskRunner} and a {@link
* RunningMode}.
*
* @param taskRunner a {@link TaskRunner}.
* @param runningMode a mediapipe vision task {@link RunningMode}.
*/
private GestureRecognizer(TaskRunner taskRunner, RunningMode runningMode) {
super(taskRunner, runningMode, IMAGE_IN_STREAM_NAME);
}
/**
* Performs gesture recognition on the provided single image. Only use this method when the {@link
* GestureRecognizer} is created with {@link RunningMode.IMAGE}. TODO update java doc
* for input image format.
*
* <p>{@link GestureRecognizer} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @throws MediaPipeException if there is an internal error.
*/
public GestureRecognitionResult recognize(Image inputImage) {
return (GestureRecognitionResult) processImageData(inputImage);
}
/**
* Performs gesture recognition on the provided video frame. Only use this method when the {@link
* GestureRecognizer} is created with {@link RunningMode.VIDEO}.
*
* <p>It's required to provide the video frame's timestamp (in milliseconds). The input timestamps
* must be monotonically increasing.
*
* <p>{@link GestureRecognizer} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public GestureRecognitionResult recognizeForVideo(Image inputImage, long inputTimestampMs) {
return (GestureRecognitionResult) processVideoData(inputImage, inputTimestampMs);
}
/**
* Sends live image data to perform gesture recognition, and the results will be available via the
* {@link ResultListener} provided in the {@link GestureRecognizerOptions}. Only use this method
* when the {@link GestureRecognition} is created with {@link RunningMode.LIVE_STREAM}.
*
* <p>It's required to provide a timestamp (in milliseconds) to indicate when the input image is
* sent to the gesture recognizer. The input timestamps must be monotonically increasing.
*
* <p>{@link GestureRecognizer} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public void recognizeAsync(Image inputImage, long inputTimestampMs) {
sendLiveStreamData(inputImage, inputTimestampMs);
}
/** Options for setting up an {@link GestureRecognizer}. */
@AutoValue
public abstract static class GestureRecognizerOptions extends TaskOptions {
/** Builder for {@link GestureRecognizerOptions}. */
@AutoValue.Builder
public abstract static class Builder {
/** Sets the base options for the gesture recognizer task. */
public abstract Builder setBaseOptions(BaseOptions value);
/**
* Sets the running mode for the gesture recognizer task. Default to the image mode. Gesture
* recognizer has three modes:
*
* <ul>
* <li>IMAGE: The mode for recognizing gestures on single image inputs.
* <li>VIDEO: The mode for recognizing gestures on the decoded frames of a video.
* <li>LIVE_STREAM: The mode for for recognizing gestures on a live stream of input data,
* such as from camera. In this mode, {@code setResultListener} must be called to set up
* a listener to receive the recognition results asynchronously.
* </ul>
*/
public abstract Builder setRunningMode(RunningMode value);
// TODO: remove these. Temporary solutions before bundle asset is ready.
public abstract Builder setBaseOptionsHandDetector(BaseOptions value);
public abstract Builder setBaseOptionsHandLandmarker(BaseOptions value);
public abstract Builder setBaseOptionsGestureRecognizer(BaseOptions value);
/** Sets the maximum number of hands can be detected by the GestureRecognizer. */
public abstract Builder setNumHands(Integer value);
/** Sets minimum confidence score for the hand detection to be considered successfully */
public abstract Builder setMinHandDetectionConfidence(Float value);
/** Sets minimum confidence score of hand presence score in the hand landmark detection. */
public abstract Builder setMinHandPresenceConfidence(Float value);
/** Sets the minimum confidence score for the hand tracking to be considered successfully. */
public abstract Builder setMinTrackingConfidence(Float value);
/**
* Sets the minimum confidence score for the gestures to be considered successfully. If < 0,
* the gesture confidence threshold=0.5 for the model is used.
*
* <p>TODO Note this option is subject to change, after scoring merging
* calculator is implemented.
*/
public abstract Builder setMinGestureConfidence(Float value);
/**
* Sets the result listener to receive the detection results asynchronously when the gesture
* recognizer is in the live stream mode.
*/
public abstract Builder setResultListener(
ResultListener<GestureRecognitionResult, Image> value);
/** Sets an optional error listener. */
public abstract Builder setErrorListener(ErrorListener value);
abstract GestureRecognizerOptions autoBuild();
/**
* Validates and builds the {@link GestureRecognizerOptions} instance.
*
* @throws IllegalArgumentException if the result listener and the running mode are not
* properly configured. The result listener should only be set when the object detector is
* in the live stream mode.
*/
public final GestureRecognizerOptions build() {
GestureRecognizerOptions options = autoBuild();
if (options.runningMode() == RunningMode.LIVE_STREAM) {
if (!options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The gesture recognizer is in the live stream mode, a user-defined result listener"
+ " must be provided in GestureRecognizerOptions.");
}
} else if (options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The gesture recognizer is in the image or the video mode, a user-defined result"
+ " listener shouldn't be provided in GestureRecognizerOptions.");
}
return options;
}
}
abstract BaseOptions baseOptions();
// TODO: remove these. Temporary solutions before bundle asset is ready.
abstract BaseOptions baseOptionsHandDetector();
abstract BaseOptions baseOptionsHandLandmarker();
abstract BaseOptions baseOptionsGestureRecognizer();
abstract RunningMode runningMode();
abstract Optional<Integer> numHands();
abstract Optional<Float> minHandDetectionConfidence();
abstract Optional<Float> minHandPresenceConfidence();
abstract Optional<Float> minTrackingConfidence();
// TODO update gesture confidence options after score merging calculator is ready.
abstract Optional<Float> minGestureConfidence();
abstract Optional<ResultListener<GestureRecognitionResult, Image>> resultListener();
abstract Optional<ErrorListener> errorListener();
public static Builder builder() {
return new AutoValue_GestureRecognizer_GestureRecognizerOptions.Builder()
.setRunningMode(RunningMode.IMAGE)
.setNumHands(1)
.setMinHandDetectionConfidence(0.5f)
.setMinHandPresenceConfidence(0.5f)
.setMinTrackingConfidence(0.5f)
.setMinGestureConfidence(-1f);
}
/**
* Converts a {@link GestureRecognizerOptions} to a {@link CalculatorOptions} protobuf message.
*/
@Override
public CalculatorOptions convertToCalculatorOptionsProto() {
BaseOptionsProto.BaseOptions.Builder baseOptionsBuilder =
BaseOptionsProto.BaseOptions.newBuilder()
.setUseStreamMode(runningMode() != RunningMode.IMAGE)
.mergeFrom(convertBaseOptionsToProto(baseOptions()));
GestureRecognizerGraphOptionsProto.GestureRecognizerGraphOptions.Builder taskOptionsBuilder =
GestureRecognizerGraphOptionsProto.GestureRecognizerGraphOptions.newBuilder()
.setBaseOptions(baseOptionsBuilder);
// Setup HandDetectorGraphOptions.
HandDetectorGraphOptionsProto.HandDetectorGraphOptions.Builder
handDetectorGraphOptionsBuilder =
HandDetectorGraphOptionsProto.HandDetectorGraphOptions.newBuilder()
.setBaseOptions(
BaseOptionsProto.BaseOptions.newBuilder()
.setUseStreamMode(runningMode() != RunningMode.IMAGE)
.mergeFrom(convertBaseOptionsToProto(baseOptionsHandDetector())));
numHands().ifPresent(handDetectorGraphOptionsBuilder::setNumHands);
minHandDetectionConfidence()
.ifPresent(handDetectorGraphOptionsBuilder::setMinDetectionConfidence);
// Setup HandLandmarkerGraphOptions.
HandLandmarksDetectorGraphOptionsProto.HandLandmarksDetectorGraphOptions.Builder
handLandmarksDetectorGraphOptionsBuilder =
HandLandmarksDetectorGraphOptionsProto.HandLandmarksDetectorGraphOptions.newBuilder()
.setBaseOptions(
BaseOptionsProto.BaseOptions.newBuilder()
.setUseStreamMode(runningMode() != RunningMode.IMAGE)
.mergeFrom(convertBaseOptionsToProto(baseOptionsHandLandmarker())));
minHandPresenceConfidence()
.ifPresent(handLandmarksDetectorGraphOptionsBuilder::setMinDetectionConfidence);
HandLandmarkerGraphOptionsProto.HandLandmarkerGraphOptions.Builder
handLandmarkerGraphOptionsBuilder =
HandLandmarkerGraphOptionsProto.HandLandmarkerGraphOptions.newBuilder()
.setBaseOptions(
BaseOptionsProto.BaseOptions.newBuilder()
.setUseStreamMode(runningMode() != RunningMode.IMAGE)
.mergeFrom(convertBaseOptionsToProto(baseOptionsHandLandmarker())));
minTrackingConfidence()
.ifPresent(handLandmarkerGraphOptionsBuilder::setMinTrackingConfidence);
handLandmarkerGraphOptionsBuilder
.setHandDetectorGraphOptions(handDetectorGraphOptionsBuilder.build())
.setHandLandmarksDetectorGraphOptions(handLandmarksDetectorGraphOptionsBuilder.build());
// Setup HandGestureRecognizerGraphOptions.
HandGestureRecognizerGraphOptionsProto.HandGestureRecognizerGraphOptions.Builder
handGestureRecognizerGraphOptionsBuilder =
HandGestureRecognizerGraphOptionsProto.HandGestureRecognizerGraphOptions.newBuilder()
.setBaseOptions(
BaseOptionsProto.BaseOptions.newBuilder()
.setUseStreamMode(runningMode() != RunningMode.IMAGE)
.mergeFrom(convertBaseOptionsToProto(baseOptionsGestureRecognizer())));
ClassifierOptionsProto.ClassifierOptions.Builder classifierOptionsBuilder =
ClassifierOptionsProto.ClassifierOptions.newBuilder();
minGestureConfidence().ifPresent(classifierOptionsBuilder::setScoreThreshold);
handGestureRecognizerGraphOptionsBuilder.setClassifierOptions(
classifierOptionsBuilder.build());
taskOptionsBuilder
.setHandLandmarkerGraphOptions(handLandmarkerGraphOptionsBuilder.build())
.setHandGestureRecognizerGraphOptions(handGestureRecognizerGraphOptionsBuilder.build());
return CalculatorOptions.newBuilder()
.setExtension(
GestureRecognizerGraphOptionsProto.GestureRecognizerGraphOptions.ext,
taskOptionsBuilder.build())
.build();
}
}
}

View File

@ -0,0 +1,24 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.google.mediapipe.tasks.vision.gesturerecognizertest"
android:versionCode="1"
android:versionName="1.0" >
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-sdk android:minSdkVersion="24"
android:targetSdkVersion="30" />
<application
android:label="gesturerecognizertest"
android:name="android.support.multidex.MultiDexApplication"
android:taskAffinity="">
<uses-library android:name="android.test.runner" />
</application>
<instrumentation
android:name="com.google.android.apps.common.testing.testrunner.GoogleInstrumentationTestRunner"
android:targetPackage="com.google.mediapipe.tasks.vision.gesturerecognizertest" />
</manifest>

View File

@ -0,0 +1,19 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
# TODO: Enable this in OSS

View File

@ -0,0 +1,495 @@
// Copyright 2022 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.gesturerecognizer;
import static com.google.common.truth.Truth.assertThat;
import static org.junit.Assert.assertThrows;
import android.content.res.AssetManager;
import android.graphics.BitmapFactory;
import androidx.test.core.app.ApplicationProvider;
import androidx.test.ext.junit.runners.AndroidJUnit4;
import com.google.common.truth.Correspondence;
import com.google.mediapipe.formats.proto.ClassificationProto;
import com.google.mediapipe.framework.MediaPipeException;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.Image;
import com.google.mediapipe.tasks.components.containers.Category;
import com.google.mediapipe.tasks.components.containers.Landmark;
import com.google.mediapipe.tasks.components.containers.proto.LandmarksDetectionResultProto.LandmarksDetectionResult;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.gesturerecognizer.GestureRecognizer.GestureRecognizerOptions;
import java.io.InputStream;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;
/** Test for {@link GestureRecognizer}. */
@RunWith(Suite.class)
@SuiteClasses({GestureRecognizerTest.General.class, GestureRecognizerTest.RunningModeTest.class})
public class GestureRecognizerTest {
private static final String HAND_DETECTOR_MODEL_FILE = "palm_detection_full.tflite";
private static final String HAND_LANDMARKER_MODEL_FILE = "hand_landmark_full.tflite";
private static final String GESTURE_RECOGNIZER_MODEL_FILE =
"cg_classifier_screen3d_landmark_features_nn_2022_08_04_base_simple_model.tflite";
private static final String TWO_HANDS_IMAGE = "right_hands.jpg";
private static final String THUMB_UP_IMAGE = "thumb_up.jpg";
private static final String NO_HANDS_IMAGE = "cats_and_dogs.jpg";
private static final String THUMB_UP_LANDMARKS = "thumb_up_landmarks.pb";
private static final String TAG = "Gesture Recognizer Test";
private static final String THUMB_UP_LABEL = "Thumb_Up";
private static final int THUMB_UP_INDEX = 5;
private static final float LANDMARKS_ERROR_TOLERANCE = 0.03f;
private static final int IMAGE_WIDTH = 382;
private static final int IMAGE_HEIGHT = 406;
@RunWith(AndroidJUnit4.class)
public static final class General extends GestureRecognizerTest {
@Test
public void recognize_successWithValidModels() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult actualResult =
gestureRecognizer.recognize(getImageFromAsset(THUMB_UP_IMAGE));
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
}
@Test
public void recognize_successWithEmptyResult() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult actualResult =
gestureRecognizer.recognize(getImageFromAsset(NO_HANDS_IMAGE));
assertThat(actualResult.landmarks()).isEmpty();
assertThat(actualResult.worldLandmarks()).isEmpty();
assertThat(actualResult.handednesses()).isEmpty();
assertThat(actualResult.gestures()).isEmpty();
}
@Test
public void recognize_successWithMinGestureConfidence() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
// TODO update the confidence to be in range [0,1] after embedding model
// and scoring calculator is integrated.
.setMinGestureConfidence(3.0f)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult actualResult =
gestureRecognizer.recognize(getImageFromAsset(THUMB_UP_IMAGE));
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
// Only contains one top scoring gesture.
assertThat(actualResult.gestures().get(0)).hasSize(1);
assertActualGestureEqualExpectedGesture(
actualResult.gestures().get(0).get(0), expectedResult.gestures().get(0).get(0));
}
@Test
public void recognize_successWithNumHands() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setNumHands(2)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult actualResult =
gestureRecognizer.recognize(getImageFromAsset(TWO_HANDS_IMAGE));
assertThat(actualResult.handednesses()).hasSize(2);
}
}
@RunWith(AndroidJUnit4.class)
public static final class RunningModeTest extends GestureRecognizerTest {
@Test
public void create_failsWithIllegalResultListenerInNonLiveStreamMode() throws Exception {
for (RunningMode mode : new RunningMode[] {RunningMode.IMAGE, RunningMode.VIDEO}) {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder()
.setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE)
.build())
.setBaseOptionsHandDetector(
BaseOptions.builder()
.setModelAssetPath(HAND_DETECTOR_MODEL_FILE)
.build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder()
.setModelAssetPath(HAND_LANDMARKER_MODEL_FILE)
.build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder()
.setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE)
.build())
.setRunningMode(mode)
.setResultListener((gestureRecognitionResult, inputImage) -> {})
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener shouldn't be provided");
}
}
}
@Test
public void create_failsWithMissingResultListenerInLiveSteamMode() throws Exception {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder()
.setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE)
.build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder()
.setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE)
.build())
.setRunningMode(RunningMode.LIVE_STREAM)
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener must be provided");
}
@Test
public void recognize_failsWithCallingWrongApiInImageMode() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.IMAGE)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognizeForVideo(getImageFromAsset(THUMB_UP_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognizeAsync(getImageFromAsset(THUMB_UP_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void recognize_failsWithCallingWrongApiInVideoMode() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.VIDEO)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognize(getImageFromAsset(THUMB_UP_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognizeAsync(getImageFromAsset(THUMB_UP_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void recognize_failsWithCallingWrongApiInLiveSteamMode() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener((gestureRecognitionResult, inputImage) -> {})
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognize(getImageFromAsset(THUMB_UP_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() -> gestureRecognizer.recognizeForVideo(getImageFromAsset(THUMB_UP_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
}
@Test
public void recognize_successWithImageMode() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.IMAGE)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult actualResult =
gestureRecognizer.recognize(getImageFromAsset(THUMB_UP_IMAGE));
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
}
@Test
public void recognize_successWithVideoMode() throws Exception {
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.VIDEO)
.build();
GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
for (int i = 0; i < 3; i++) {
GestureRecognitionResult actualResult =
gestureRecognizer.recognizeForVideo(getImageFromAsset(THUMB_UP_IMAGE), i);
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
}
}
@Test
public void recognize_failsWithOutOfOrderInputTimestamps() throws Exception {
Image image = getImageFromAsset(THUMB_UP_IMAGE);
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(actualResult, inputImage) -> {
assertActualResultApproximatelyEqualsToExpectedResult(
actualResult, expectedResult);
assertImageSizeIsExpected(inputImage);
})
.build();
try (GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
gestureRecognizer.recognizeAsync(image, 1);
MediaPipeException exception =
assertThrows(MediaPipeException.class, () -> gestureRecognizer.recognizeAsync(image, 0));
assertThat(exception)
.hasMessageThat()
.contains("having a smaller timestamp than the processed timestamp");
}
}
@Test
public void recognize_successWithLiveSteamMode() throws Exception {
Image image = getImageFromAsset(THUMB_UP_IMAGE);
GestureRecognitionResult expectedResult =
getExpectedGestureRecognitionResult(THUMB_UP_LANDMARKS, THUMB_UP_LABEL, THUMB_UP_INDEX);
GestureRecognizerOptions options =
GestureRecognizerOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setBaseOptionsHandDetector(
BaseOptions.builder().setModelAssetPath(HAND_DETECTOR_MODEL_FILE).build())
.setBaseOptionsHandLandmarker(
BaseOptions.builder().setModelAssetPath(HAND_LANDMARKER_MODEL_FILE).build())
.setBaseOptionsGestureRecognizer(
BaseOptions.builder().setModelAssetPath(GESTURE_RECOGNIZER_MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(actualResult, inputImage) -> {
assertActualResultApproximatelyEqualsToExpectedResult(
actualResult, expectedResult);
assertImageSizeIsExpected(inputImage);
})
.build();
try (GestureRecognizer gestureRecognizer =
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
for (int i = 0; i < 3; i++) {
gestureRecognizer.recognizeAsync(image, i);
}
}
}
private static Image getImageFromAsset(String filePath) throws Exception {
AssetManager assetManager = ApplicationProvider.getApplicationContext().getAssets();
InputStream istr = assetManager.open(filePath);
return new BitmapImageBuilder(BitmapFactory.decodeStream(istr)).build();
}
private static GestureRecognitionResult getExpectedGestureRecognitionResult(
String filePath, String gestureLabel, int gestureIndex) throws Exception {
AssetManager assetManager = ApplicationProvider.getApplicationContext().getAssets();
InputStream istr = assetManager.open(filePath);
LandmarksDetectionResult landmarksDetectionResultProto =
LandmarksDetectionResult.parser().parseFrom(istr);
ClassificationProto.ClassificationList gesturesProto =
ClassificationProto.ClassificationList.newBuilder()
.addClassification(
ClassificationProto.Classification.newBuilder()
.setLabel(gestureLabel)
.setIndex(gestureIndex))
.build();
return GestureRecognitionResult.create(
Arrays.asList(landmarksDetectionResultProto.getLandmarks()),
Arrays.asList(landmarksDetectionResultProto.getWorldLandmarks()),
Arrays.asList(landmarksDetectionResultProto.getClassifications()),
Arrays.asList(gesturesProto),
/*timestampMs=*/ 0);
}
private static void assertActualResultApproximatelyEqualsToExpectedResult(
GestureRecognitionResult actualResult, GestureRecognitionResult expectedResult) {
// Expects to have the same number of hands detected.
assertThat(actualResult.landmarks()).hasSize(expectedResult.landmarks().size());
assertThat(actualResult.worldLandmarks()).hasSize(expectedResult.worldLandmarks().size());
assertThat(actualResult.handednesses()).hasSize(expectedResult.handednesses().size());
assertThat(actualResult.gestures()).hasSize(expectedResult.gestures().size());
// Actual landmarks match expected landmarks.
assertThat(actualResult.landmarks().get(0))
.comparingElementsUsing(
Correspondence.from(
(Correspondence.BinaryPredicate<Landmark, Landmark>)
(actual, expected) -> {
return Correspondence.tolerance(LANDMARKS_ERROR_TOLERANCE)
.compare(actual.x(), expected.x())
&& Correspondence.tolerance(LANDMARKS_ERROR_TOLERANCE)
.compare(actual.y(), expected.y());
},
"landmarks approximately equal to"))
.containsExactlyElementsIn(expectedResult.landmarks().get(0));
// Actual handedness matches expected handedness.
Category actualTopHandedness = actualResult.handednesses().get(0).get(0);
Category expectedTopHandedness = expectedResult.handednesses().get(0).get(0);
assertThat(actualTopHandedness.index()).isEqualTo(expectedTopHandedness.index());
assertThat(actualTopHandedness.categoryName()).isEqualTo(expectedTopHandedness.categoryName());
// Actual gesture with top score matches expected gesture.
Category actualTopGesture = actualResult.gestures().get(0).get(0);
Category expectedTopGesture = expectedResult.gestures().get(0).get(0);
assertActualGestureEqualExpectedGesture(actualTopGesture, expectedTopGesture);
}
private static void assertActualGestureEqualExpectedGesture(
Category actualGesture, Category expectedGesture) {
assertThat(actualGesture.index()).isEqualTo(actualGesture.index());
assertThat(expectedGesture.categoryName()).isEqualTo(expectedGesture.categoryName());
}
private static void assertImageSizeIsExpected(Image inputImage) {
assertThat(inputImage).isNotNull();
assertThat(inputImage.getWidth()).isEqualTo(IMAGE_WIDTH);
assertThat(inputImage.getHeight()).isEqualTo(IMAGE_HEIGHT);
}
}