Add ImageProcessingOptions to all Vision Tasks

PiperOrigin-RevId: 500323261
This commit is contained in:
Sebastian Schmidt 2023-01-06 20:52:30 -08:00 committed by Copybara-Service
parent e11ba95adf
commit 9055effddd
18 changed files with 460 additions and 132 deletions

View File

@ -28,7 +28,7 @@ namespace core {
// Options for image processing.
//
// If both region-or-interest and rotation are specified, the crop around the
// region-of-interest is extracted first, the the specified rotation is applied
// region-of-interest is extracted first, then the specified rotation is applied
// to the crop.
struct ImageProcessingOptions {
// The optional region-of-interest to crop from the image. If not specified,

View File

@ -24,3 +24,8 @@ mediapipe_ts_declaration(
name = "embedding_result",
srcs = ["embedding_result.d.ts"],
)
mediapipe_ts_declaration(
name = "rect",
srcs = ["rect.d.ts"],
)

View File

@ -0,0 +1,41 @@
/**
* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Defines a rectangle, used e.g. as part of detection results or as input
* region-of-interest.
*/
export declare interface Rect {
left: number;
top: number;
right: number;
bottom: number;
}
/**
* Defines a rectangle, used e.g. as part of detection results or as input
* region-of-interest.
*
* The coordinates are normalized with respect to the image dimensions, i.e.
* generally in [0,1] but they may exceed these bounds if describing a region
* overlapping the image. The origin is on the top-left corner of the image.
*/
export declare interface RectF {
left: number;
top: number;
right: number;
bottom: number;
}

View File

@ -32,12 +32,14 @@ export declare type SpyWasmModule = jasmine.SpyObj<SpyWasmModuleInternal>;
* in pure JS/TS (and optionally spy on the calls).
*/
export function createSpyWasmModule(): SpyWasmModule {
return jasmine.createSpyObj<SpyWasmModuleInternal>([
const spyWasmModule = jasmine.createSpyObj<SpyWasmModuleInternal>([
'_setAutoRenderToScreen', 'stringToNewUTF8', '_attachProtoListener',
'_attachProtoVectorListener', '_free', '_waitUntilIdle',
'_addStringToInputStream', '_registerModelResourcesGraphService',
'_configureAudio'
'_configureAudio', '_malloc', '_addProtoToInputStream'
]);
spyWasmModule.HEAPU8 = jasmine.createSpyObj<Uint8Array>(['set']);
return spyWasmModule;
}
/**

View File

@ -5,6 +5,14 @@ load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_declaration",
package(default_visibility = ["//mediapipe/tasks:internal"])
mediapipe_ts_declaration(
name = "image_processing_options",
srcs = ["image_processing_options.d.ts"],
deps = [
"//mediapipe/tasks/web/components/containers:rect",
],
)
mediapipe_ts_declaration(
name = "vision_task_options",
srcs = ["vision_task_options.d.ts"],
@ -17,7 +25,9 @@ mediapipe_ts_library(
name = "vision_task_runner",
srcs = ["vision_task_runner.ts"],
deps = [
":image_processing_options",
":vision_task_options",
"//mediapipe/framework/formats:rect_jspb_proto",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/core:task_runner",
"//mediapipe/web/graph_runner:graph_runner_image_lib_ts",
@ -31,8 +41,10 @@ mediapipe_ts_library(
testonly = True,
srcs = ["vision_task_runner.test.ts"],
deps = [
":image_processing_options",
":vision_task_options",
":vision_task_runner",
"//mediapipe/framework/formats:rect_jspb_proto",
"//mediapipe/tasks/cc/core/proto:base_options_jspb_proto",
"//mediapipe/tasks/web/core:task_runner_test_utils",
"//mediapipe/web/graph_runner:graph_runner_ts",

View File

@ -0,0 +1,42 @@
/**
* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {RectF} from '../../../../tasks/web/components/containers/rect';
/**
* Options for image processing.
*
* If both region-or-interest and rotation are specified, the crop around the
* region-of-interest is extracted first, then the specified rotation is applied
* to the crop.
*/
export declare interface ImageProcessingOptions {
/**
* The optional region-of-interest to crop from the image. If not specified,
* the full image is used.
*
* Coordinates must be in [0,1] with 'left' < 'right' and 'top' < bottom.
*/
regionOfInterest?: RectF;
/**
* The rotation to apply to the image (or cropped region-of-interest), in
* degrees clockwise.
*
* The rotation must be a multiple (positive or negative) of 90°.
*/
rotationDegrees?: number;
}

View File

@ -16,21 +16,62 @@
import 'jasmine';
import {NormalizedRect} from '../../../../framework/formats/rect_pb';
import {BaseOptions as BaseOptionsProto} from '../../../../tasks/cc/core/proto/base_options_pb';
import {createSpyWasmModule} from '../../../../tasks/web/core/task_runner_test_utils';
import {addJasmineCustomFloatEqualityTester} from '../../../../tasks/web/core/task_runner_test_utils';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {ImageSource} from '../../../../web/graph_runner/graph_runner';
import {VisionTaskOptions} from './vision_task_options';
import {VisionGraphRunner, VisionTaskRunner} from './vision_task_runner';
class VisionTaskRunnerFake extends VisionTaskRunner<void> {
// The OSS JS API does not support the builder pattern.
// tslint:disable:jspb-use-builder-pattern
const IMAGE_STREAM = 'image_in';
const NORM_RECT_STREAM = 'norm_rect';
const IMAGE = {} as unknown as HTMLImageElement;
const TIMESTAMP = 42;
class VisionTaskRunnerFake extends VisionTaskRunner {
baseOptions = new BaseOptionsProto();
fakeGraphRunner: jasmine.SpyObj<VisionGraphRunner>;
expectedImageSource?: ImageSource;
expectedNormalizedRect?: NormalizedRect;
constructor() {
super(new VisionGraphRunner(createSpyWasmModule(), /* glCanvas= */ null));
}
super(
jasmine.createSpyObj<VisionGraphRunner>([
'addProtoToStream', 'addGpuBufferAsImageToStream',
'setAutoRenderToScreen', 'registerModelResourcesGraphService',
'finishProcessing'
]),
IMAGE_STREAM, NORM_RECT_STREAM);
protected override process(): void {}
this.fakeGraphRunner =
this.graphRunner as unknown as jasmine.SpyObj<VisionGraphRunner>;
(this.graphRunner.addProtoToStream as jasmine.Spy)
.and.callFake((serializedData, type, streamName, timestamp) => {
expect(type).toBe('mediapipe.NormalizedRect');
expect(streamName).toBe(NORM_RECT_STREAM);
expect(timestamp).toBe(TIMESTAMP);
const actualNormalizedRect =
NormalizedRect.deserializeBinary(serializedData);
expect(actualNormalizedRect.toObject())
.toEqual(this.expectedNormalizedRect!.toObject());
});
(this.graphRunner.addGpuBufferAsImageToStream as jasmine.Spy)
.and.callFake((imageSource, streamName, timestamp) => {
expect(streamName).toBe(IMAGE_STREAM);
expect(timestamp).toBe(TIMESTAMP);
expect(imageSource).toBe(this.expectedImageSource!);
});
}
protected override refreshGraph(): void {}
@ -38,12 +79,31 @@ class VisionTaskRunnerFake extends VisionTaskRunner<void> {
return this.applyOptions(options);
}
override processImageData(image: ImageSource): void {
super.processImageData(image);
override processImageData(
image: ImageSource,
imageProcessingOptions: ImageProcessingOptions|undefined): void {
super.processImageData(image, imageProcessingOptions);
}
override processVideoData(imageFrame: ImageSource, timestamp: number): void {
super.processVideoData(imageFrame, timestamp);
override processVideoData(
imageFrame: ImageSource,
imageProcessingOptions: ImageProcessingOptions|undefined,
timestamp: number): void {
super.processVideoData(imageFrame, imageProcessingOptions, timestamp);
}
expectNormalizedRect(
xCenter: number, yCenter: number, width: number, height: number): void {
const rect = new NormalizedRect();
rect.setXCenter(xCenter);
rect.setYCenter(yCenter);
rect.setWidth(width);
rect.setHeight(height);
this.expectedNormalizedRect = rect;
}
expectImage(imageSource: ImageSource): void {
this.expectedImageSource = imageSource;
}
}
@ -51,6 +111,7 @@ describe('VisionTaskRunner', () => {
let visionTaskRunner: VisionTaskRunnerFake;
beforeEach(async () => {
addJasmineCustomFloatEqualityTester();
visionTaskRunner = new VisionTaskRunnerFake();
await visionTaskRunner.setOptions(
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
@ -72,7 +133,8 @@ describe('VisionTaskRunner', () => {
await visionTaskRunner.setOptions({runningMode: 'video'});
// Clear running mode
await visionTaskRunner.setOptions({runningMode: undefined});
await visionTaskRunner.setOptions(
{runningMode: /* imageProcessingOptions= */ undefined});
expect(visionTaskRunner.baseOptions.toObject())
.toEqual(jasmine.objectContaining({useStreamMode: false}));
});
@ -80,20 +142,90 @@ describe('VisionTaskRunner', () => {
it('cannot process images with video mode', async () => {
await visionTaskRunner.setOptions({runningMode: 'video'});
expect(() => {
visionTaskRunner.processImageData({} as HTMLImageElement);
visionTaskRunner.processImageData(
IMAGE, /* imageProcessingOptions= */ undefined);
}).toThrowError(/Task is not initialized with image mode./);
});
it('cannot process video with image mode', async () => {
// Use default for `useStreamMode`
expect(() => {
visionTaskRunner.processVideoData({} as HTMLImageElement, 42);
visionTaskRunner.processVideoData(
IMAGE, /* imageProcessingOptions= */ undefined, TIMESTAMP);
}).toThrowError(/Task is not initialized with video mode./);
// Explicitly set to image mode
await visionTaskRunner.setOptions({runningMode: 'image'});
expect(() => {
visionTaskRunner.processVideoData({} as HTMLImageElement, 42);
visionTaskRunner.processVideoData(
IMAGE, /* imageProcessingOptions= */ undefined, TIMESTAMP);
}).toThrowError(/Task is not initialized with video mode./);
});
it('sends packets to graph', async () => {
await visionTaskRunner.setOptions({runningMode: 'video'});
visionTaskRunner.expectImage(IMAGE);
visionTaskRunner.expectNormalizedRect(0.5, 0.5, 1, 1);
visionTaskRunner.processVideoData(
IMAGE, /* imageProcessingOptions= */ undefined, TIMESTAMP);
});
it('sends packets to graph with image processing options', async () => {
await visionTaskRunner.setOptions({runningMode: 'video'});
visionTaskRunner.expectImage(IMAGE);
visionTaskRunner.expectNormalizedRect(0.3, 0.6, 0.2, 0.4);
visionTaskRunner.processVideoData(
IMAGE,
{regionOfInterest: {left: 0.2, right: 0.4, top: 0.4, bottom: 0.8}},
TIMESTAMP);
});
describe('validates processing options', () => {
it('with left > right', () => {
expect(() => {
visionTaskRunner.processImageData(IMAGE, {
regionOfInterest: {
left: 0.2,
right: 0.1,
top: 0.1,
bottom: 0.2,
}
});
}).toThrowError('Expected RectF with left < right and top < bottom.');
});
it('with top > bottom', () => {
expect(() => {
visionTaskRunner.processImageData(IMAGE, {
regionOfInterest: {
left: 0.1,
right: 0.2,
top: 0.2,
bottom: 0.1,
}
});
}).toThrowError('Expected RectF with left < right and top < bottom.');
});
it('with out of range values', () => {
expect(() => {
visionTaskRunner.processImageData(IMAGE, {
regionOfInterest: {
left: 0.1,
right: 1.1,
top: 0.1,
bottom: 0.2,
}
});
}).toThrowError('Expected RectF values to be in [0,1].');
});
it('with non-90 degree rotation', () => {
expect(() => {
visionTaskRunner.processImageData(IMAGE, {rotationDegrees: 42});
}).toThrowError('Expected rotation to be a multiple of 90°.');
});
});
});

View File

@ -14,7 +14,9 @@
* limitations under the License.
*/
import {NormalizedRect} from '../../../../framework/formats/rect_pb';
import {TaskRunner} from '../../../../tasks/web/core/task_runner';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {GraphRunner, ImageSource} from '../../../../web/graph_runner/graph_runner';
import {SupportImage} from '../../../../web/graph_runner/graph_runner_image_lib';
import {SupportModelResourcesGraphService} from '../../../../web/graph_runner/register_model_resources_graph_service';
@ -27,10 +29,26 @@ const GraphRunnerVisionType =
/** An implementation of the GraphRunner that supports image operations */
export class VisionGraphRunner extends GraphRunnerVisionType {}
// The OSS JS API does not support the builder pattern.
// tslint:disable:jspb-use-builder-pattern
/** Base class for all MediaPipe Vision Tasks. */
export abstract class VisionTaskRunner<T> extends TaskRunner {
/** @hideconstructor protected */
constructor(protected override readonly graphRunner: VisionGraphRunner) {
export abstract class VisionTaskRunner extends TaskRunner {
/**
* Constructor to initialize a `VisionTaskRunner`.
*
* @param graphRunner the graph runner for this task.
* @param imageStreamName the name of the input image stream.
* @param normRectStreamName the name of the input normalized rect image
* stream used to provide (mandatory) rotation and (optional)
* region-of-interest.
*
* @hideconstructor protected
*/
constructor(
protected override readonly graphRunner: VisionGraphRunner,
private readonly imageStreamName: string,
private readonly normRectStreamName: string) {
super(graphRunner);
}
@ -44,27 +62,84 @@ export abstract class VisionTaskRunner<T> extends TaskRunner {
return super.applyOptions(options);
}
/** Sends an image packet to the graph and awaits results. */
protected abstract process(input: ImageSource, timestamp: number): T;
/** Sends a single image to the graph and awaits results. */
protected processImageData(image: ImageSource): T {
protected processImageData(
image: ImageSource,
imageProcessingOptions: ImageProcessingOptions|undefined): void {
if (!!this.baseOptions?.getUseStreamMode()) {
throw new Error(
'Task is not initialized with image mode. ' +
'\'runningMode\' must be set to \'image\'.');
}
return this.process(image, performance.now());
this.process(image, imageProcessingOptions, performance.now());
}
/** Sends a single video frame to the graph and awaits results. */
protected processVideoData(imageFrame: ImageSource, timestamp: number): T {
protected processVideoData(
imageFrame: ImageSource,
imageProcessingOptions: ImageProcessingOptions|undefined,
timestamp: number): void {
if (!this.baseOptions?.getUseStreamMode()) {
throw new Error(
'Task is not initialized with video mode. ' +
'\'runningMode\' must be set to \'video\'.');
}
return this.process(imageFrame, timestamp);
this.process(imageFrame, imageProcessingOptions, timestamp);
}
private convertToNormalizedRect(imageProcessingOptions?:
ImageProcessingOptions): NormalizedRect {
const normalizedRect = new NormalizedRect();
if (imageProcessingOptions?.regionOfInterest) {
const roi = imageProcessingOptions.regionOfInterest;
if (roi.left >= roi.right || roi.top >= roi.bottom) {
throw new Error('Expected RectF with left < right and top < bottom.');
}
if (roi.left < 0 || roi.top < 0 || roi.right > 1 || roi.bottom > 1) {
throw new Error('Expected RectF values to be in [0,1].');
}
normalizedRect.setXCenter((roi.left + roi.right) / 2.0);
normalizedRect.setYCenter((roi.top + roi.bottom) / 2.0);
normalizedRect.setWidth(roi.right - roi.left);
normalizedRect.setHeight(roi.bottom - roi.top);
return normalizedRect;
} else {
normalizedRect.setXCenter(0.5);
normalizedRect.setYCenter(0.5);
normalizedRect.setWidth(1);
normalizedRect.setHeight(1);
}
if (imageProcessingOptions?.rotationDegrees) {
if (imageProcessingOptions?.rotationDegrees % 90 !== 0) {
throw new Error(
'Expected rotation to be a multiple of 90°.',
);
}
// Convert to radians anti-clockwise.
normalizedRect.setRotation(
-Math.PI * imageProcessingOptions.rotationDegrees / 180.0);
}
return normalizedRect;
}
/** Runs the graph and blocks on the response. */
private process(
imageSource: ImageSource,
imageProcessingOptions: ImageProcessingOptions|undefined,
timestamp: number): void {
const normalizedRect = this.convertToNormalizedRect(imageProcessingOptions);
this.graphRunner.addProtoToStream(
normalizedRect.serializeBinary(), 'mediapipe.NormalizedRect',
this.normRectStreamName, timestamp);
this.graphRunner.addGpuBufferAsImageToStream(
imageSource, this.imageStreamName, timestamp ?? performance.now());
this.finishProcessing();
}
}

View File

@ -20,7 +20,6 @@ mediapipe_ts_library(
"//mediapipe/framework:calculator_options_jspb_proto",
"//mediapipe/framework/formats:classification_jspb_proto",
"//mediapipe/framework/formats:landmark_jspb_proto",
"//mediapipe/framework/formats:rect_jspb_proto",
"//mediapipe/tasks/cc/core/proto:base_options_jspb_proto",
"//mediapipe/tasks/cc/vision/gesture_recognizer/proto:gesture_classifier_graph_options_jspb_proto",
"//mediapipe/tasks/cc/vision/gesture_recognizer/proto:gesture_recognizer_graph_options_jspb_proto",
@ -33,6 +32,7 @@ mediapipe_ts_library(
"//mediapipe/tasks/web/components/processors:classifier_options",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/core:classifier_options",
"//mediapipe/tasks/web/vision/core:image_processing_options",
"//mediapipe/tasks/web/vision/core:vision_task_runner",
"//mediapipe/web/graph_runner:graph_runner_ts",
],

View File

@ -18,7 +18,6 @@ import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
import {CalculatorOptions} from '../../../../framework/calculator_options_pb';
import {ClassificationList} from '../../../../framework/formats/classification_pb';
import {LandmarkList, NormalizedLandmarkList} from '../../../../framework/formats/landmark_pb';
import {NormalizedRect} from '../../../../framework/formats/rect_pb';
import {BaseOptions as BaseOptionsProto} from '../../../../tasks/cc/core/proto/base_options_pb';
import {GestureClassifierGraphOptions} from '../../../../tasks/cc/vision/gesture_recognizer/proto/gesture_classifier_graph_options_pb';
import {GestureRecognizerGraphOptions} from '../../../../tasks/cc/vision/gesture_recognizer/proto/gesture_recognizer_graph_options_pb';
@ -30,6 +29,7 @@ import {Category} from '../../../../tasks/web/components/containers/category';
import {Landmark, NormalizedLandmark} from '../../../../tasks/web/components/containers/landmark';
import {convertClassifierOptionsToProto} from '../../../../tasks/web/components/processors/classifier_options';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
@ -57,15 +57,8 @@ const DEFAULT_NUM_HANDS = 1;
const DEFAULT_SCORE_THRESHOLD = 0.5;
const DEFAULT_CATEGORY_INDEX = -1;
const FULL_IMAGE_RECT = new NormalizedRect();
FULL_IMAGE_RECT.setXCenter(0.5);
FULL_IMAGE_RECT.setYCenter(0.5);
FULL_IMAGE_RECT.setWidth(1);
FULL_IMAGE_RECT.setHeight(1);
/** Performs hand gesture recognition on images. */
export class GestureRecognizer extends
VisionTaskRunner<GestureRecognizerResult> {
export class GestureRecognizer extends VisionTaskRunner {
private gestures: Category[][] = [];
private landmarks: NormalizedLandmark[][] = [];
private worldLandmarks: Landmark[][] = [];
@ -131,7 +124,9 @@ export class GestureRecognizer extends
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(new VisionGraphRunner(wasmModule, glCanvas));
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_STREAM,
NORM_RECT_STREAM);
this.options = new GestureRecognizerGraphOptions();
this.options.setBaseOptions(new BaseOptionsProto());
@ -228,10 +223,16 @@ export class GestureRecognizer extends
* GestureRecognizer is created with running mode `image`.
*
* @param image A single image to process.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The detected gestures.
*/
recognize(image: ImageSource): GestureRecognizerResult {
return this.processImageData(image);
recognize(
image: ImageSource, imageProcessingOptions?: ImageProcessingOptions):
GestureRecognizerResult {
this.resetResults();
this.processImageData(image, imageProcessingOptions);
return this.processResults();
}
/**
@ -241,28 +242,27 @@ export class GestureRecognizer extends
*
* @param videoFrame A video frame to process.
* @param timestamp The timestamp of the current frame, in ms.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The detected gestures.
*/
recognizeForVideo(videoFrame: ImageSource, timestamp: number):
recognizeForVideo(
videoFrame: ImageSource, timestamp: number,
imageProcessingOptions?: ImageProcessingOptions):
GestureRecognizerResult {
return this.processVideoData(videoFrame, timestamp);
this.resetResults();
this.processVideoData(videoFrame, imageProcessingOptions, timestamp);
return this.processResults();
}
/** Runs the gesture recognition and blocks on the response. */
protected override process(imageSource: ImageSource, timestamp: number):
GestureRecognizerResult {
private resetResults(): void {
this.gestures = [];
this.landmarks = [];
this.worldLandmarks = [];
this.handednesses = [];
}
this.graphRunner.addGpuBufferAsImageToStream(
imageSource, IMAGE_STREAM, timestamp);
this.graphRunner.addProtoToStream(
FULL_IMAGE_RECT.serializeBinary(), 'mediapipe.NormalizedRect',
NORM_RECT_STREAM, timestamp);
this.finishProcessing();
private processResults(): GestureRecognizerResult {
if (this.gestures.length === 0) {
// If no gestures are detected in the image, just return an empty list
return {

View File

@ -20,7 +20,6 @@ mediapipe_ts_library(
"//mediapipe/framework:calculator_options_jspb_proto",
"//mediapipe/framework/formats:classification_jspb_proto",
"//mediapipe/framework/formats:landmark_jspb_proto",
"//mediapipe/framework/formats:rect_jspb_proto",
"//mediapipe/tasks/cc/core/proto:base_options_jspb_proto",
"//mediapipe/tasks/cc/vision/hand_detector/proto:hand_detector_graph_options_jspb_proto",
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarker_graph_options_jspb_proto",
@ -28,6 +27,7 @@ mediapipe_ts_library(
"//mediapipe/tasks/web/components/containers:category",
"//mediapipe/tasks/web/components/containers:landmark",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/vision/core:image_processing_options",
"//mediapipe/tasks/web/vision/core:vision_task_runner",
"//mediapipe/web/graph_runner:graph_runner_ts",
],

View File

@ -18,7 +18,6 @@ import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
import {CalculatorOptions} from '../../../../framework/calculator_options_pb';
import {ClassificationList} from '../../../../framework/formats/classification_pb';
import {LandmarkList, NormalizedLandmarkList} from '../../../../framework/formats/landmark_pb';
import {NormalizedRect} from '../../../../framework/formats/rect_pb';
import {BaseOptions as BaseOptionsProto} from '../../../../tasks/cc/core/proto/base_options_pb';
import {HandDetectorGraphOptions} from '../../../../tasks/cc/vision/hand_detector/proto/hand_detector_graph_options_pb';
import {HandLandmarkerGraphOptions} from '../../../../tasks/cc/vision/hand_landmarker/proto/hand_landmarker_graph_options_pb';
@ -26,6 +25,7 @@ import {HandLandmarksDetectorGraphOptions} from '../../../../tasks/cc/vision/han
import {Category} from '../../../../tasks/web/components/containers/category';
import {Landmark, NormalizedLandmark} from '../../../../tasks/web/components/containers/landmark';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
@ -51,14 +51,9 @@ const HAND_LANDMARKER_GRAPH =
const DEFAULT_NUM_HANDS = 1;
const DEFAULT_SCORE_THRESHOLD = 0.5;
const DEFAULT_CATEGORY_INDEX = -1;
const FULL_IMAGE_RECT = new NormalizedRect();
FULL_IMAGE_RECT.setXCenter(0.5);
FULL_IMAGE_RECT.setYCenter(0.5);
FULL_IMAGE_RECT.setWidth(1);
FULL_IMAGE_RECT.setHeight(1);
/** Performs hand landmarks detection on images. */
export class HandLandmarker extends VisionTaskRunner<HandLandmarkerResult> {
export class HandLandmarker extends VisionTaskRunner {
private landmarks: NormalizedLandmark[][] = [];
private worldLandmarks: Landmark[][] = [];
private handednesses: Category[][] = [];
@ -119,7 +114,9 @@ export class HandLandmarker extends VisionTaskRunner<HandLandmarkerResult> {
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(new VisionGraphRunner(wasmModule, glCanvas));
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_STREAM,
NORM_RECT_STREAM);
this.options = new HandLandmarkerGraphOptions();
this.options.setBaseOptions(new BaseOptionsProto());
@ -180,10 +177,15 @@ export class HandLandmarker extends VisionTaskRunner<HandLandmarkerResult> {
* HandLandmarker is created with running mode `image`.
*
* @param image An image to process.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The detected hand landmarks.
*/
detect(image: ImageSource): HandLandmarkerResult {
return this.processImageData(image);
detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions):
HandLandmarkerResult {
this.resetResults();
this.processImageData(image, imageProcessingOptions);
return this.processResults();
}
/**
@ -193,27 +195,25 @@ export class HandLandmarker extends VisionTaskRunner<HandLandmarkerResult> {
*
* @param videoFrame A video frame to process.
* @param timestamp The timestamp of the current frame, in ms.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The detected hand landmarks.
*/
detectForVideo(videoFrame: ImageSource, timestamp: number):
HandLandmarkerResult {
return this.processVideoData(videoFrame, timestamp);
detectForVideo(
videoFrame: ImageSource, timestamp: number,
imageProcessingOptions?: ImageProcessingOptions): HandLandmarkerResult {
this.resetResults();
this.processVideoData(videoFrame, imageProcessingOptions, timestamp);
return this.processResults();
}
/** Runs the hand landmarker graph and blocks on the response. */
protected override process(imageSource: ImageSource, timestamp: number):
HandLandmarkerResult {
private resetResults(): void {
this.landmarks = [];
this.worldLandmarks = [];
this.handednesses = [];
}
this.graphRunner.addGpuBufferAsImageToStream(
imageSource, IMAGE_STREAM, timestamp);
this.graphRunner.addProtoToStream(
FULL_IMAGE_RECT.serializeBinary(), 'mediapipe.NormalizedRect',
NORM_RECT_STREAM, timestamp);
this.finishProcessing();
private processResults(): HandLandmarkerResult {
return {
landmarks: this.landmarks,
worldLandmarks: this.worldLandmarks,

View File

@ -26,6 +26,7 @@ mediapipe_ts_library(
"//mediapipe/tasks/web/components/processors:classifier_result",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/core:classifier_options",
"//mediapipe/tasks/web/vision/core:image_processing_options",
"//mediapipe/tasks/web/vision/core:vision_task_runner",
"//mediapipe/web/graph_runner:graph_runner_ts",
],

View File

@ -22,6 +22,7 @@ import {ImageClassifierGraphOptions} from '../../../../tasks/cc/vision/image_cla
import {convertClassifierOptionsToProto} from '../../../../tasks/web/components/processors/classifier_options';
import {convertFromClassificationResultProto} from '../../../../tasks/web/components/processors/classifier_result';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
@ -31,7 +32,8 @@ import {ImageClassifierResult} from './image_classifier_result';
const IMAGE_CLASSIFIER_GRAPH =
'mediapipe.tasks.vision.image_classifier.ImageClassifierGraph';
const INPUT_STREAM = 'input_image';
const IMAGE_STREAM = 'input_image';
const NORM_RECT_STREAM = 'norm_rect';
const CLASSIFICATIONS_STREAM = 'classifications';
export * from './image_classifier_options';
@ -42,7 +44,7 @@ export {ImageSource}; // Used in the public API
// tslint:disable:jspb-use-builder-pattern
/** Performs classification on images. */
export class ImageClassifier extends VisionTaskRunner<ImageClassifierResult> {
export class ImageClassifier extends VisionTaskRunner {
private classificationResult: ImageClassifierResult = {classifications: []};
private readonly options = new ImageClassifierGraphOptions();
@ -97,7 +99,9 @@ export class ImageClassifier extends VisionTaskRunner<ImageClassifierResult> {
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(new VisionGraphRunner(wasmModule, glCanvas));
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_STREAM,
NORM_RECT_STREAM);
this.options.setBaseOptions(new BaseOptionsProto());
}
@ -130,10 +134,15 @@ export class ImageClassifier extends VisionTaskRunner<ImageClassifierResult> {
* ImageClassifier is created with running mode `image`.
*
* @param image An image to process.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The classification result of the image
*/
classify(image: ImageSource): ImageClassifierResult {
return this.processImageData(image);
classify(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions):
ImageClassifierResult {
this.classificationResult = {classifications: []};
this.processImageData(image, imageProcessingOptions);
return this.classificationResult;
}
/**
@ -143,28 +152,23 @@ export class ImageClassifier extends VisionTaskRunner<ImageClassifierResult> {
*
* @param videoFrame A video frame to process.
* @param timestamp The timestamp of the current frame, in ms.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The classification result of the image
*/
classifyForVideo(videoFrame: ImageSource, timestamp: number):
ImageClassifierResult {
return this.processVideoData(videoFrame, timestamp);
}
/** Runs the image classification graph and blocks on the response. */
protected override process(imageSource: ImageSource, timestamp: number):
ImageClassifierResult {
// Get classification result by running our MediaPipe graph.
classifyForVideo(
videoFrame: ImageSource, timestamp: number,
imageProcessingOptions?: ImageProcessingOptions): ImageClassifierResult {
this.classificationResult = {classifications: []};
this.graphRunner.addGpuBufferAsImageToStream(
imageSource, INPUT_STREAM, timestamp ?? performance.now());
this.finishProcessing();
this.processVideoData(videoFrame, imageProcessingOptions, timestamp);
return this.classificationResult;
}
/** Updates the MediaPipe graph configuration. */
protected override refreshGraph(): void {
const graphConfig = new CalculatorGraphConfig();
graphConfig.addInputStream(INPUT_STREAM);
graphConfig.addInputStream(IMAGE_STREAM);
graphConfig.addInputStream(NORM_RECT_STREAM);
graphConfig.addOutputStream(CLASSIFICATIONS_STREAM);
const calculatorOptions = new CalculatorOptions();
@ -175,7 +179,8 @@ export class ImageClassifier extends VisionTaskRunner<ImageClassifierResult> {
// are built-in.
const classifierNode = new CalculatorGraphConfig.Node();
classifierNode.setCalculator(IMAGE_CLASSIFIER_GRAPH);
classifierNode.addInputStream('IMAGE:' + INPUT_STREAM);
classifierNode.addInputStream('IMAGE:' + IMAGE_STREAM);
classifierNode.addInputStream('NORM_RECT:' + NORM_RECT_STREAM);
classifierNode.addOutputStream('CLASSIFICATIONS:' + CLASSIFICATIONS_STREAM);
classifierNode.setOptions(calculatorOptions);

View File

@ -26,6 +26,7 @@ mediapipe_ts_library(
"//mediapipe/tasks/web/components/utils:cosine_similarity",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/core:embedder_options",
"//mediapipe/tasks/web/vision/core:image_processing_options",
"//mediapipe/tasks/web/vision/core:vision_task_options",
"//mediapipe/tasks/web/vision/core:vision_task_runner",
"//mediapipe/web/graph_runner:graph_runner_ts",

View File

@ -24,6 +24,7 @@ import {convertEmbedderOptionsToProto} from '../../../../tasks/web/components/pr
import {convertFromEmbeddingResultProto} from '../../../../tasks/web/components/processors/embedder_result';
import {computeCosineSimilarity} from '../../../../tasks/web/components/utils/cosine_similarity';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
@ -31,10 +32,12 @@ import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner
import {ImageEmbedderOptions} from './image_embedder_options';
import {ImageEmbedderResult} from './image_embedder_result';
// The OSS JS API does not support the builder pattern.
// tslint:disable:jspb-use-builder-pattern
const INPUT_STREAM = 'image_in';
const IMAGE_STREAM = 'image_in';
const NORM_RECT_STREAM = 'norm_rect';
const EMBEDDINGS_STREAM = 'embeddings_out';
const TEXT_EMBEDDER_CALCULATOR =
'mediapipe.tasks.vision.image_embedder.ImageEmbedderGraph';
@ -44,7 +47,7 @@ export * from './image_embedder_result';
export {ImageSource}; // Used in the public API
/** Performs embedding extraction on images. */
export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
export class ImageEmbedder extends VisionTaskRunner {
private readonly options = new ImageEmbedderGraphOptions();
private embeddings: ImageEmbedderResult = {embeddings: []};
@ -99,7 +102,9 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(new VisionGraphRunner(wasmModule, glCanvas));
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_STREAM,
NORM_RECT_STREAM);
this.options.setBaseOptions(new BaseOptionsProto());
}
@ -132,10 +137,14 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
* ImageEmbedder is created with running mode `image`.
*
* @param image The image to process.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The classification result of the image
*/
embed(image: ImageSource): ImageEmbedderResult {
return this.processImageData(image);
embed(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions):
ImageEmbedderResult {
this.processImageData(image, imageProcessingOptions);
return this.embeddings;
}
/**
@ -145,11 +154,15 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
*
* @param imageFrame The image frame to process.
* @param timestamp The timestamp of the current frame, in ms.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The classification result of the image
*/
embedForVideo(imageFrame: ImageSource, timestamp: number):
ImageEmbedderResult {
return this.processVideoData(imageFrame, timestamp);
embedForVideo(
imageFrame: ImageSource, timestamp: number,
imageProcessingOptions?: ImageProcessingOptions): ImageEmbedderResult {
this.processVideoData(imageFrame, imageProcessingOptions, timestamp);
return this.embeddings;
}
/**
@ -165,16 +178,6 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
return computeCosineSimilarity(u, v);
}
/** Runs the embedding extraction and blocks on the response. */
protected process(image: ImageSource, timestamp: number):
ImageEmbedderResult {
// Get embeddings by running our MediaPipe graph.
this.graphRunner.addGpuBufferAsImageToStream(
image, INPUT_STREAM, timestamp ?? performance.now());
this.finishProcessing();
return this.embeddings;
}
/**
* Internal function for converting raw data into an embedding, and setting it
* as our embeddings result.
@ -187,7 +190,8 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
/** Updates the MediaPipe graph configuration. */
protected override refreshGraph(): void {
const graphConfig = new CalculatorGraphConfig();
graphConfig.addInputStream(INPUT_STREAM);
graphConfig.addInputStream(IMAGE_STREAM);
graphConfig.addInputStream(NORM_RECT_STREAM);
graphConfig.addOutputStream(EMBEDDINGS_STREAM);
const calculatorOptions = new CalculatorOptions();
@ -195,7 +199,8 @@ export class ImageEmbedder extends VisionTaskRunner<ImageEmbedderResult> {
const embedderNode = new CalculatorGraphConfig.Node();
embedderNode.setCalculator(TEXT_EMBEDDER_CALCULATOR);
embedderNode.addInputStream('IMAGE:' + INPUT_STREAM);
embedderNode.addInputStream('IMAGE:' + IMAGE_STREAM);
embedderNode.addInputStream('NORM_RECT:' + NORM_RECT_STREAM);
embedderNode.addOutputStream('EMBEDDINGS:' + EMBEDDINGS_STREAM);
embedderNode.setOptions(calculatorOptions);

View File

@ -23,6 +23,7 @@ mediapipe_ts_library(
"//mediapipe/tasks/cc/vision/object_detector/proto:object_detector_options_jspb_proto",
"//mediapipe/tasks/web/components/containers:category",
"//mediapipe/tasks/web/core",
"//mediapipe/tasks/web/vision/core:image_processing_options",
"//mediapipe/tasks/web/vision/core:vision_task_runner",
"//mediapipe/web/graph_runner:graph_runner_ts",
],

View File

@ -20,6 +20,7 @@ import {Detection as DetectionProto} from '../../../../framework/formats/detecti
import {BaseOptions as BaseOptionsProto} from '../../../../tasks/cc/core/proto/base_options_pb';
import {ObjectDetectorOptions as ObjectDetectorOptionsProto} from '../../../../tasks/cc/vision/object_detector/proto/object_detector_options_pb';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
@ -27,7 +28,8 @@ import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner
import {ObjectDetectorOptions} from './object_detector_options';
import {Detection} from './object_detector_result';
const INPUT_STREAM = 'input_frame_gpu';
const IMAGE_STREAM = 'input_frame_gpu';
const NORM_RECT_STREAM = 'norm_rect';
const DETECTIONS_STREAM = 'detections';
const OBJECT_DETECTOR_GRAPH = 'mediapipe.tasks.vision.ObjectDetectorGraph';
@ -41,7 +43,7 @@ export {ImageSource}; // Used in the public API
// tslint:disable:jspb-use-builder-pattern
/** Performs object detection on images. */
export class ObjectDetector extends VisionTaskRunner<Detection[]> {
export class ObjectDetector extends VisionTaskRunner {
private detections: Detection[] = [];
private readonly options = new ObjectDetectorOptionsProto();
@ -96,7 +98,9 @@ export class ObjectDetector extends VisionTaskRunner<Detection[]> {
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(new VisionGraphRunner(wasmModule, glCanvas));
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_STREAM,
NORM_RECT_STREAM);
this.options.setBaseOptions(new BaseOptionsProto());
}
@ -160,10 +164,15 @@ export class ObjectDetector extends VisionTaskRunner<Detection[]> {
* ObjectDetector is created with running mode `image`.
*
* @param image An image to process.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The list of detected objects
*/
detect(image: ImageSource): Detection[] {
return this.processImageData(image);
detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions):
Detection[] {
this.detections = [];
this.processImageData(image, imageProcessingOptions);
return [...this.detections];
}
/**
@ -173,20 +182,15 @@ export class ObjectDetector extends VisionTaskRunner<Detection[]> {
*
* @param videoFrame A video frame to process.
* @param timestamp The timestamp of the current frame, in ms.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @return The list of detected objects
*/
detectForVideo(videoFrame: ImageSource, timestamp: number): Detection[] {
return this.processVideoData(videoFrame, timestamp);
}
/** Runs the object detector graph and blocks on the response. */
protected override process(imageSource: ImageSource, timestamp: number):
Detection[] {
// Get detections by running our MediaPipe graph.
detectForVideo(
videoFrame: ImageSource, timestamp: number,
imageProcessingOptions?: ImageProcessingOptions): Detection[] {
this.detections = [];
this.graphRunner.addGpuBufferAsImageToStream(
imageSource, INPUT_STREAM, timestamp ?? performance.now());
this.finishProcessing();
this.processVideoData(videoFrame, imageProcessingOptions, timestamp);
return [...this.detections];
}
@ -226,7 +230,8 @@ export class ObjectDetector extends VisionTaskRunner<Detection[]> {
/** Updates the MediaPipe graph configuration. */
protected override refreshGraph(): void {
const graphConfig = new CalculatorGraphConfig();
graphConfig.addInputStream(INPUT_STREAM);
graphConfig.addInputStream(IMAGE_STREAM);
graphConfig.addInputStream(NORM_RECT_STREAM);
graphConfig.addOutputStream(DETECTIONS_STREAM);
const calculatorOptions = new CalculatorOptions();
@ -235,7 +240,8 @@ export class ObjectDetector extends VisionTaskRunner<Detection[]> {
const detectorNode = new CalculatorGraphConfig.Node();
detectorNode.setCalculator(OBJECT_DETECTOR_GRAPH);
detectorNode.addInputStream('IMAGE:' + INPUT_STREAM);
detectorNode.addInputStream('IMAGE:' + IMAGE_STREAM);
detectorNode.addInputStream('NORM_RECT:' + NORM_RECT_STREAM);
detectorNode.addOutputStream('DETECTIONS:' + DETECTIONS_STREAM);
detectorNode.setOptions(calculatorOptions);