Merge pull request #1 from maletsden/face_mesh_dll_example
Face mesh Windows DLL desktop example
This commit is contained in:
commit
901543a837
|
@ -18,6 +18,20 @@ licenses(["notice"])
|
|||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
cc_library(
|
||||
name = "counting_vector_size_calculator",
|
||||
srcs = ["counting_vector_size_calculator.cc"],
|
||||
hdrs = ["counting_vector_size_calculator.h"],
|
||||
visibility = [
|
||||
"//visibility:public",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "alignment_points_to_rects_calculator",
|
||||
srcs = ["alignment_points_to_rects_calculator.cc"],
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
// Copyright 2020 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/calculators/util/counting_vector_size_calculator.h"
|
||||
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
typedef CountingVectorSizeCalculator<
|
||||
std::vector<::mediapipe::NormalizedLandmarkList>>
|
||||
CountingNormalizedLandmarkListVectorSizeCalculator;
|
||||
|
||||
REGISTER_CALCULATOR(CountingNormalizedLandmarkListVectorSizeCalculator);
|
||||
} // namespace mediapipe
|
79
mediapipe/calculators/util/counting_vector_size_calculator.h
Normal file
79
mediapipe/calculators/util/counting_vector_size_calculator.h
Normal file
|
@ -0,0 +1,79 @@
|
|||
// Copyright 2020 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H
|
||||
#define MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H
|
||||
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// A calculator that counts the size of the input vector. It was created to
|
||||
// aid in polling packets in the output stream synchronously. If there is
|
||||
// a clock stream, it will output a value of 0 even if the input vector stream
|
||||
// is empty. If not, it will output some value only if there is an input vector.
|
||||
// The clock stream must have the same time stamp as the vector stream, and
|
||||
// it must be the stream where packets are transmitted while the graph is
|
||||
// running. (e.g. Any input stream of graph)
|
||||
//
|
||||
// It is designed to be used like:
|
||||
//
|
||||
// Example config:
|
||||
// node {
|
||||
// calculator: "CountingWithVectorSizeCalculator"
|
||||
// input_stream: "CLOCK:triger_signal"
|
||||
// input_stream: "VECTOR:input_vector"
|
||||
// output_stream: "COUNT:vector_count"
|
||||
// }
|
||||
//
|
||||
// node {
|
||||
// calculator: "CountingWithVectorSizeCalculator"
|
||||
// input_stream: "VECTOR:input_vector"
|
||||
// output_stream: "COUNT:vector_count"
|
||||
// }
|
||||
|
||||
template <typename VectorT>
|
||||
class CountingVectorSizeCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract *cc) {
|
||||
if (cc->Inputs().HasTag("CLOCK")) {
|
||||
cc->Inputs().Tag("CLOCK").SetAny();
|
||||
}
|
||||
|
||||
RET_CHECK(cc->Inputs().HasTag("VECTOR"));
|
||||
cc->Inputs().Tag("VECTOR").Set<VectorT>();
|
||||
RET_CHECK(cc->Outputs().HasTag("COUNT"));
|
||||
cc->Outputs().Tag("COUNT").Set<int>();
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext *cc) {
|
||||
std::unique_ptr<int> face_count;
|
||||
if (!cc->Inputs().Tag("VECTOR").IsEmpty()) {
|
||||
const auto &landmarks = cc->Inputs().Tag("VECTOR").Get<VectorT>();
|
||||
face_count = absl::make_unique<int>(landmarks.size());
|
||||
} else {
|
||||
face_count = absl::make_unique<int>(0);
|
||||
}
|
||||
cc->Outputs().Tag("COUNT").Add(face_count.release(), cc->InputTimestamp());
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace mediapipe
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H
|
66
mediapipe/examples/desktop/face_mesh_dll/BUILD
Normal file
66
mediapipe/examples/desktop/face_mesh_dll/BUILD
Normal file
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
load("windows_dll_library.bzl", "windows_dll_library")
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
filegroup(
|
||||
name = "srcs",
|
||||
srcs = glob(["**"]),
|
||||
visibility = ["//examples:__pkg__"],
|
||||
)
|
||||
|
||||
package(default_visibility = ["//mediapipe/examples:__subpackages__"])
|
||||
|
||||
# Define the shared library
|
||||
windows_dll_library(
|
||||
name = "face_mesh_lib",
|
||||
srcs = ["face_mesh_lib.cpp"],
|
||||
hdrs = ["face_mesh_lib.h"],
|
||||
# Define COMPILING_DLL to export symbols during compiling the DLL.
|
||||
copts = ["-DCOMPILING_DLL"],
|
||||
deps = [
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/formats:image_frame_opencv",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:file_helpers",
|
||||
"//mediapipe/framework/port:opencv_highgui",
|
||||
"//mediapipe/framework/port:opencv_imgproc",
|
||||
"//mediapipe/framework/port:opencv_video",
|
||||
"//mediapipe/framework/port:parse_text_proto",
|
||||
"//mediapipe/framework/port:status",
|
||||
"@com_google_absl//absl/flags:flag",
|
||||
"@com_google_absl//absl/flags:parse",
|
||||
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/tflite:tflite_model_calculator",
|
||||
"//mediapipe/calculators/util:local_file_contents_calculator",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_front_side_model_cpu_with_face_counter",
|
||||
]
|
||||
)
|
||||
|
||||
# **Implicitly link to face_mesh_lib.dll**
|
||||
|
||||
## Link to face_mesh_lib.dll through its import library.
|
||||
cc_binary(
|
||||
name = "face_mesh_cpu",
|
||||
srcs = ["face_mesh_cpu.cpp"],
|
||||
deps = [
|
||||
":face_mesh_lib",
|
||||
],
|
||||
)
|
96
mediapipe/examples/desktop/face_mesh_dll/face_mesh_cpu.cpp
Normal file
96
mediapipe/examples/desktop/face_mesh_dll/face_mesh_cpu.cpp
Normal file
|
@ -0,0 +1,96 @@
|
|||
#include "face_mesh_lib.h"
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
google::InitGoogleLogging(argv[0]);
|
||||
absl::ParseCommandLine(argc, argv);
|
||||
|
||||
cv::VideoCapture capture;
|
||||
capture.open(0);
|
||||
if (!capture.isOpened()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
constexpr char kWindowName[] = "MediaPipe";
|
||||
|
||||
cv::namedWindow(kWindowName, /*flags=WINDOW_AUTOSIZE*/ 1);
|
||||
#if (CV_MAJOR_VERSION >= 3) && (CV_MINOR_VERSION >= 2)
|
||||
capture.set(cv::CAP_PROP_FRAME_WIDTH, 640);
|
||||
capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
|
||||
capture.set(cv::CAP_PROP_FPS, 30);
|
||||
#endif
|
||||
|
||||
LOG(INFO) << "VideoCapture initialized.";
|
||||
|
||||
// Maximum number of faces that can be detected
|
||||
constexpr int maxNumFaces = 1;
|
||||
constexpr char face_detection_model_path[] =
|
||||
"mediapipe/modules/face_detection/face_detection_short_range.tflite";
|
||||
constexpr char face_landmark_model_path[] =
|
||||
"mediapipe/modules/face_landmark/face_landmark.tflite";
|
||||
|
||||
MPFaceMeshDetector *faceMeshDetector = MPFaceMeshDetectorConstruct(
|
||||
maxNumFaces, face_detection_model_path, face_landmark_model_path);
|
||||
|
||||
// Allocate memory for face landmarks.
|
||||
auto multiFaceLandmarks = new cv::Point2f *[maxNumFaces];
|
||||
for (int i = 0; i < maxNumFaces; ++i) {
|
||||
multiFaceLandmarks[i] = new cv::Point2f[MPFaceMeshDetectorLandmarksNum];
|
||||
}
|
||||
|
||||
std::vector<cv::Rect> multiFaceBoundingBoxes(maxNumFaces);
|
||||
|
||||
LOG(INFO) << "FaceMeshDetector constructed.";
|
||||
|
||||
LOG(INFO) << "Start grabbing and processing frames.";
|
||||
bool grab_frames = true;
|
||||
|
||||
while (grab_frames) {
|
||||
// Capture opencv camera.
|
||||
cv::Mat camera_frame_raw;
|
||||
capture >> camera_frame_raw;
|
||||
if (camera_frame_raw.empty()) {
|
||||
LOG(INFO) << "Ignore empty frames from camera.";
|
||||
continue;
|
||||
}
|
||||
|
||||
cv::Mat camera_frame;
|
||||
cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGB);
|
||||
|
||||
int faceCount = 0;
|
||||
|
||||
MPFaceMeshDetectorDetectFaces(faceMeshDetector, camera_frame,
|
||||
multiFaceBoundingBoxes.data(), &faceCount);
|
||||
|
||||
if (faceCount > 0) {
|
||||
auto &face_bounding_box = multiFaceBoundingBoxes[0];
|
||||
|
||||
cv::rectangle(camera_frame_raw, face_bounding_box, cv::Scalar(0, 255, 0),
|
||||
3);
|
||||
|
||||
int landmarksNum = 0;
|
||||
MPFaceMeshDetectorDetect2DLandmarks(faceMeshDetector, multiFaceLandmarks,
|
||||
&landmarksNum);
|
||||
auto &face_landmarks = multiFaceLandmarks[0];
|
||||
auto &landmark = face_landmarks[0];
|
||||
|
||||
LOG(INFO) << "First landmark: x - " << landmark.x << ", y - "
|
||||
<< landmark.y;
|
||||
}
|
||||
|
||||
const int pressed_key = cv::waitKey(5);
|
||||
if (pressed_key >= 0 && pressed_key != 255)
|
||||
grab_frames = false;
|
||||
|
||||
cv::imshow(kWindowName, camera_frame_raw);
|
||||
}
|
||||
|
||||
LOG(INFO) << "Shutting down.";
|
||||
|
||||
// Deallocate memory for face landmarks.
|
||||
for (int i = 0; i < maxNumFaces; ++i) {
|
||||
delete[] multiFaceLandmarks[i];
|
||||
}
|
||||
delete[] multiFaceLandmarks;
|
||||
|
||||
MPFaceMeshDetectorDestruct(faceMeshDetector);
|
||||
}
|
398
mediapipe/examples/desktop/face_mesh_dll/face_mesh_lib.cpp
Normal file
398
mediapipe/examples/desktop/face_mesh_dll/face_mesh_lib.cpp
Normal file
|
@ -0,0 +1,398 @@
|
|||
#include "face_mesh_lib.h"
|
||||
|
||||
MPFaceMeshDetector::MPFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
const auto status = InitFaceMeshDetector(numFaces, face_detection_model_path,
|
||||
face_landmark_model_path);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "Failed constructing FaceMeshDetector.";
|
||||
LOG(INFO) << status.message();
|
||||
}
|
||||
}
|
||||
|
||||
absl::Status
|
||||
MPFaceMeshDetector::InitFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
numFaces = std::max(numFaces, 1);
|
||||
|
||||
if (face_detection_model_path == nullptr) {
|
||||
face_detection_model_path =
|
||||
"mediapipe/modules/face_detection/face_detection_short_range.tflite";
|
||||
}
|
||||
|
||||
if (face_landmark_model_path == nullptr) {
|
||||
face_landmark_model_path =
|
||||
"mediapipe/modules/face_landmark/face_landmark.tflite";
|
||||
}
|
||||
|
||||
// Prepare graph config.
|
||||
auto preparedGraphConfig = absl::StrReplaceAll(
|
||||
graphConfig, {{"$numFaces", std::to_string(numFaces)}});
|
||||
preparedGraphConfig = absl::StrReplaceAll(
|
||||
preparedGraphConfig,
|
||||
{{"$faceDetectionModelPath", face_detection_model_path}});
|
||||
preparedGraphConfig = absl::StrReplaceAll(
|
||||
preparedGraphConfig,
|
||||
{{"$faceLandmarkModelPath", face_landmark_model_path}});
|
||||
|
||||
LOG(INFO) << "Get calculator graph config contents: " << preparedGraphConfig;
|
||||
|
||||
mediapipe::CalculatorGraphConfig config =
|
||||
mediapipe::ParseTextProtoOrDie<mediapipe::CalculatorGraphConfig>(
|
||||
preparedGraphConfig);
|
||||
LOG(INFO) << "Initialize the calculator graph.";
|
||||
|
||||
MP_RETURN_IF_ERROR(graph.Initialize(config));
|
||||
|
||||
LOG(INFO) << "Start running the calculator graph.";
|
||||
|
||||
ASSIGN_OR_RETURN(mediapipe::OutputStreamPoller landmarks_poller,
|
||||
graph.AddOutputStreamPoller(kOutputStream_landmarks));
|
||||
ASSIGN_OR_RETURN(mediapipe::OutputStreamPoller face_count_poller,
|
||||
graph.AddOutputStreamPoller(kOutputStream_faceCount));
|
||||
ASSIGN_OR_RETURN(
|
||||
mediapipe::OutputStreamPoller face_rects_from_landmarks_poller,
|
||||
graph.AddOutputStreamPoller(kOutputStream_face_rects_from_landmarks));
|
||||
|
||||
landmarks_poller_ptr = std::make_unique<mediapipe::OutputStreamPoller>(
|
||||
std::move(landmarks_poller));
|
||||
face_count_poller_ptr = std::make_unique<mediapipe::OutputStreamPoller>(
|
||||
std::move(face_count_poller));
|
||||
face_rects_from_landmarks_poller_ptr =
|
||||
std::make_unique<mediapipe::OutputStreamPoller>(
|
||||
std::move(face_rects_from_landmarks_poller));
|
||||
|
||||
MP_RETURN_IF_ERROR(graph.StartRun({}));
|
||||
|
||||
LOG(INFO) << "MPFaceMeshDetector constructed successfully.";
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
absl::Status
|
||||
MPFaceMeshDetector::DetectFacesWithStatus(const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes,
|
||||
int *numFaces) {
|
||||
if (!numFaces || !multi_face_bounding_boxes) {
|
||||
return absl::InvalidArgumentError(
|
||||
"MPFaceMeshDetector::DetectFacesWithStatus requires notnull pointer to "
|
||||
"save results data.");
|
||||
}
|
||||
|
||||
// Reset face counts.
|
||||
*numFaces = 0;
|
||||
face_count = 0;
|
||||
|
||||
// Wrap Mat into an ImageFrame.
|
||||
auto input_frame = absl::make_unique<mediapipe::ImageFrame>(
|
||||
mediapipe::ImageFormat::SRGB, camera_frame.cols, camera_frame.rows,
|
||||
mediapipe::ImageFrame::kDefaultAlignmentBoundary);
|
||||
cv::Mat input_frame_mat = mediapipe::formats::MatView(input_frame.get());
|
||||
camera_frame.copyTo(input_frame_mat);
|
||||
|
||||
// Send image packet into the graph.
|
||||
size_t frame_timestamp_us = static_cast<double>(cv::getTickCount()) /
|
||||
static_cast<double>(cv::getTickFrequency()) * 1e6;
|
||||
MP_RETURN_IF_ERROR(graph.AddPacketToInputStream(
|
||||
kInputStream, mediapipe::Adopt(input_frame.release())
|
||||
.At(mediapipe::Timestamp(frame_timestamp_us))));
|
||||
|
||||
// Get face count.
|
||||
mediapipe::Packet face_count_packet;
|
||||
if (!face_count_poller_ptr ||
|
||||
!face_count_poller_ptr->Next(&face_count_packet)) {
|
||||
return absl::CancelledError(
|
||||
"Failed during getting next face_count_packet.");
|
||||
}
|
||||
|
||||
auto &face_count_val = face_count_packet.Get<int>();
|
||||
|
||||
if (face_count_val <= 0) {
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
// Get face bounding boxes.
|
||||
mediapipe::Packet face_rects_from_landmarks_packet;
|
||||
if (!face_rects_from_landmarks_poller_ptr ||
|
||||
!face_rects_from_landmarks_poller_ptr->Next(
|
||||
&face_rects_from_landmarks_packet)) {
|
||||
return absl::CancelledError(
|
||||
"Failed during getting next face_rects_from_landmarks_packet.");
|
||||
}
|
||||
|
||||
auto &face_bounding_boxes =
|
||||
face_rects_from_landmarks_packet
|
||||
.Get<::std::vector<::mediapipe::NormalizedRect>>();
|
||||
|
||||
image_width = camera_frame.cols;
|
||||
image_height = camera_frame.rows;
|
||||
const auto image_width_f = static_cast<float>(image_width);
|
||||
const auto image_height_f = static_cast<float>(image_height);
|
||||
|
||||
// Convert vector<NormalizedRect> (center based Rects) to cv::Rect*
|
||||
// (leftTop based Rects).
|
||||
for (int i = 0; i < face_count_val; ++i) {
|
||||
const auto &normalized_bounding_box = face_bounding_boxes[i];
|
||||
auto &bounding_box = multi_face_bounding_boxes[i];
|
||||
|
||||
const auto width =
|
||||
static_cast<int>(normalized_bounding_box.width() * image_width_f);
|
||||
const auto height =
|
||||
static_cast<int>(normalized_bounding_box.height() * image_height_f);
|
||||
|
||||
bounding_box.x =
|
||||
static_cast<int>(normalized_bounding_box.x_center() * image_width_f) -
|
||||
(width >> 1);
|
||||
bounding_box.y =
|
||||
static_cast<int>(normalized_bounding_box.y_center() * image_height_f) -
|
||||
(height >> 1);
|
||||
bounding_box.width = width;
|
||||
bounding_box.height = height;
|
||||
}
|
||||
|
||||
// Get face landmarks.
|
||||
if (!landmarks_poller_ptr ||
|
||||
!landmarks_poller_ptr->Next(&face_landmarks_packet)) {
|
||||
return absl::CancelledError("Failed during getting next landmarks_packet.");
|
||||
}
|
||||
|
||||
*numFaces = face_count_val;
|
||||
face_count = face_count_val;
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
void MPFaceMeshDetector::DetectFaces(const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes,
|
||||
int *numFaces) {
|
||||
const auto status =
|
||||
DetectFacesWithStatus(camera_frame, multi_face_bounding_boxes, numFaces);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "MPFaceMeshDetector::DetectFaces failed: " << status.message();
|
||||
}
|
||||
}
|
||||
absl::Status MPFaceMeshDetector::DetectLandmarksWithStatus(
|
||||
cv::Point2f **multi_face_landmarks) {
|
||||
|
||||
if (face_landmarks_packet.IsEmpty()) {
|
||||
return absl::CancelledError("Face landmarks packet is empty.");
|
||||
}
|
||||
|
||||
auto &face_landmarks =
|
||||
face_landmarks_packet
|
||||
.Get<::std::vector<::mediapipe::NormalizedLandmarkList>>();
|
||||
|
||||
const auto image_width_f = static_cast<float>(image_width);
|
||||
const auto image_height_f = static_cast<float>(image_height);
|
||||
|
||||
// Convert landmarks to cv::Point2f**.
|
||||
for (int i = 0; i < face_count; ++i) {
|
||||
const auto &normalizedLandmarkList = face_landmarks[i];
|
||||
const auto landmarks_num = normalizedLandmarkList.landmark_size();
|
||||
|
||||
if (landmarks_num != kLandmarksNum) {
|
||||
return absl::CancelledError("Detected unexpected landmarks number.");
|
||||
}
|
||||
|
||||
auto &face_landmarks = multi_face_landmarks[i];
|
||||
|
||||
for (int j = 0; j < landmarks_num; ++j) {
|
||||
const auto &landmark = normalizedLandmarkList.landmark(j);
|
||||
face_landmarks[j].x = landmark.x() * image_width_f;
|
||||
face_landmarks[j].y = landmark.y() * image_height_f;
|
||||
}
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
absl::Status MPFaceMeshDetector::DetectLandmarksWithStatus(
|
||||
cv::Point3f **multi_face_landmarks) {
|
||||
|
||||
if (face_landmarks_packet.IsEmpty()) {
|
||||
return absl::CancelledError("Face landmarks packet is empty.");
|
||||
}
|
||||
|
||||
auto &face_landmarks =
|
||||
face_landmarks_packet
|
||||
.Get<::std::vector<::mediapipe::NormalizedLandmarkList>>();
|
||||
|
||||
const auto image_width_f = static_cast<float>(image_width);
|
||||
const auto image_height_f = static_cast<float>(image_height);
|
||||
|
||||
// Convert landmarks to cv::Point3f**.
|
||||
for (int i = 0; i < face_count; ++i) {
|
||||
const auto &normalized_landmark_list = face_landmarks[i];
|
||||
const auto landmarks_num = normalized_landmark_list.landmark_size();
|
||||
|
||||
if (landmarks_num != kLandmarksNum) {
|
||||
return absl::CancelledError("Detected unexpected landmarks number.");
|
||||
}
|
||||
|
||||
auto &face_landmarks = multi_face_landmarks[i];
|
||||
|
||||
for (int j = 0; j < landmarks_num; ++j) {
|
||||
const auto &landmark = normalized_landmark_list.landmark(j);
|
||||
face_landmarks[j].x = landmark.x() * image_width_f;
|
||||
face_landmarks[j].y = landmark.y() * image_height_f;
|
||||
face_landmarks[j].z = landmark.z();
|
||||
}
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
void MPFaceMeshDetector::DetectLandmarks(cv::Point2f **multi_face_landmarks,
|
||||
int *numFaces) {
|
||||
*numFaces = 0;
|
||||
const auto status = DetectLandmarksWithStatus(multi_face_landmarks);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "MPFaceMeshDetector::DetectLandmarks failed: "
|
||||
<< status.message();
|
||||
}
|
||||
*numFaces = face_count;
|
||||
}
|
||||
|
||||
void MPFaceMeshDetector::DetectLandmarks(cv::Point3f **multi_face_landmarks,
|
||||
int *numFaces) {
|
||||
*numFaces = 0;
|
||||
const auto status = DetectLandmarksWithStatus(multi_face_landmarks);
|
||||
if (!status.ok()) {
|
||||
LOG(INFO) << "MPFaceMeshDetector::DetectLandmarks failed: "
|
||||
<< status.message();
|
||||
}
|
||||
*numFaces = face_count;
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
DLLEXPORT MPFaceMeshDetector *
|
||||
MPFaceMeshDetectorConstruct(int numFaces, const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path) {
|
||||
return new MPFaceMeshDetector(numFaces, face_detection_model_path,
|
||||
face_landmark_model_path);
|
||||
}
|
||||
|
||||
DLLEXPORT void MPFaceMeshDetectorDestruct(MPFaceMeshDetector *detector) {
|
||||
delete detector;
|
||||
}
|
||||
|
||||
DLLEXPORT void MPFaceMeshDetectorDetectFaces(
|
||||
MPFaceMeshDetector *detector, const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes, int *numFaces) {
|
||||
detector->DetectFaces(camera_frame, multi_face_bounding_boxes, numFaces);
|
||||
}
|
||||
DLLEXPORT void
|
||||
MPFaceMeshDetectorDetect2DLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point2f **multi_face_landmarks,
|
||||
int *numFaces) {
|
||||
detector->DetectLandmarks(multi_face_landmarks, numFaces);
|
||||
}
|
||||
DLLEXPORT void
|
||||
MPFaceMeshDetectorDetect3DLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point3f **multi_face_landmarks,
|
||||
int *numFaces) {
|
||||
detector->DetectLandmarks(multi_face_landmarks, numFaces);
|
||||
}
|
||||
|
||||
DLLEXPORT const int MPFaceMeshDetectorLandmarksNum =
|
||||
MPFaceMeshDetector::kLandmarksNum;
|
||||
}
|
||||
|
||||
const std::string MPFaceMeshDetector::graphConfig = R"pb(
|
||||
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU.
|
||||
|
||||
# Input image. (ImageFrame)
|
||||
input_stream: "input_video"
|
||||
|
||||
# Collection of detected/processed faces, each represented as a list of
|
||||
# landmarks. (std::vector<NormalizedLandmarkList>)
|
||||
output_stream: "multi_face_landmarks"
|
||||
|
||||
# Detected faces count. (int)
|
||||
output_stream: "face_count"
|
||||
|
||||
# Regions of interest calculated based on landmarks.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "face_rects_from_landmarks"
|
||||
|
||||
node {
|
||||
calculator: "FlowLimiterCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "FINISHED:face_count"
|
||||
input_stream_info: {
|
||||
tag_index: "FINISHED"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "throttled_input_video"
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:num_faces"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { int_value: $numFaces }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:face_detection_model_path"
|
||||
options: {
|
||||
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
|
||||
packet { string_value: "$faceDetectionModelPath" }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:face_landmark_model_path"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { string_value: "$faceLandmarkModelPath" }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "LocalFileContentsCalculator"
|
||||
input_side_packet: "FILE_PATH:0:face_detection_model_path"
|
||||
input_side_packet: "FILE_PATH:1:face_landmark_model_path"
|
||||
output_side_packet: "CONTENTS:0:face_detection_model_blob"
|
||||
output_side_packet: "CONTENTS:1:face_landmark_model_blob"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TfLiteModelCalculator"
|
||||
input_side_packet: "MODEL_BLOB:face_detection_model_blob"
|
||||
output_side_packet: "MODEL:face_detection_model"
|
||||
}
|
||||
node {
|
||||
calculator: "TfLiteModelCalculator"
|
||||
input_side_packet: "MODEL_BLOB:face_landmark_model_blob"
|
||||
output_side_packet: "MODEL:face_landmark_model"
|
||||
}
|
||||
|
||||
|
||||
# Subgraph that detects faces and corresponding landmarks.
|
||||
node {
|
||||
calculator: "FaceLandmarkFrontSideModelCpuWithFaceCounter"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
input_side_packet: "MODEL:0:face_detection_model"
|
||||
input_side_packet: "MODEL:1:face_landmark_model"
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
|
||||
output_stream: "DETECTIONS:face_detections"
|
||||
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
|
||||
output_stream: "FACE_COUNT_FROM_LANDMARKS:face_count"
|
||||
}
|
||||
|
||||
)pb";
|
105
mediapipe/examples/desktop/face_mesh_dll/face_mesh_lib.h
Normal file
105
mediapipe/examples/desktop/face_mesh_dll/face_mesh_lib.h
Normal file
|
@ -0,0 +1,105 @@
|
|||
#ifndef FACE_MESH_LIBRARY_H
|
||||
#define FACE_MESH_LIBRARY_H
|
||||
|
||||
#ifdef COMPILING_DLL
|
||||
#define DLLEXPORT __declspec(dllexport)
|
||||
#else
|
||||
#define DLLEXPORT __declspec(dllimport)
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <windows.h>
|
||||
|
||||
#include "absl/flags/flag.h"
|
||||
#include "absl/flags/parse.h"
|
||||
#include "absl/strings/str_replace.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/calculator_graph.h"
|
||||
#include "mediapipe/framework/formats/image_frame.h"
|
||||
#include "mediapipe/framework/formats/image_frame_opencv.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
#include "mediapipe/framework/output_stream_poller.h"
|
||||
#include "mediapipe/framework/port/file_helpers.h"
|
||||
#include "mediapipe/framework/port/opencv_highgui_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_video_inc.h"
|
||||
#include "mediapipe/framework/port/parse_text_proto.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
|
||||
class MPFaceMeshDetector {
|
||||
public:
|
||||
MPFaceMeshDetector(int numFaces, const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path);
|
||||
|
||||
void DetectFaces(const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes, int *numFaces);
|
||||
|
||||
void DetectLandmarks(cv::Point2f **multi_face_landmarks, int *numFaces);
|
||||
void DetectLandmarks(cv::Point3f **multi_face_landmarks, int *numFaces);
|
||||
|
||||
static constexpr auto kLandmarksNum = 468;
|
||||
|
||||
private:
|
||||
absl::Status InitFaceMeshDetector(int numFaces,
|
||||
const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path);
|
||||
absl::Status DetectFacesWithStatus(const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes,
|
||||
int *numFaces);
|
||||
|
||||
absl::Status DetectLandmarksWithStatus(cv::Point2f **multi_face_landmarks);
|
||||
absl::Status DetectLandmarksWithStatus(cv::Point3f **multi_face_landmarks);
|
||||
|
||||
static constexpr auto kInputStream = "input_video";
|
||||
static constexpr auto kOutputStream_landmarks = "multi_face_landmarks";
|
||||
static constexpr auto kOutputStream_faceCount = "face_count";
|
||||
static constexpr auto kOutputStream_face_rects_from_landmarks =
|
||||
"face_rects_from_landmarks";
|
||||
|
||||
static const std::string graphConfig;
|
||||
|
||||
mediapipe::CalculatorGraph graph;
|
||||
|
||||
std::unique_ptr<mediapipe::OutputStreamPoller> landmarks_poller_ptr;
|
||||
std::unique_ptr<mediapipe::OutputStreamPoller> face_count_poller_ptr;
|
||||
std::unique_ptr<mediapipe::OutputStreamPoller>
|
||||
face_rects_from_landmarks_poller_ptr;
|
||||
|
||||
int face_count;
|
||||
int image_width;
|
||||
int image_height;
|
||||
mediapipe::Packet face_landmarks_packet;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
DLLEXPORT MPFaceMeshDetector *
|
||||
MPFaceMeshDetectorConstruct(int numFaces, const char *face_detection_model_path,
|
||||
const char *face_landmark_model_path);
|
||||
|
||||
DLLEXPORT void MPFaceMeshDetectorDestruct(MPFaceMeshDetector *detector);
|
||||
|
||||
DLLEXPORT void MPFaceMeshDetectorDetectFaces(
|
||||
MPFaceMeshDetector *detector, const cv::Mat &camera_frame,
|
||||
cv::Rect *multi_face_bounding_boxes, int *numFaces);
|
||||
|
||||
DLLEXPORT void
|
||||
MPFaceMeshDetectorDetect2DLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point2f **multi_face_landmarks,
|
||||
int *numFaces);
|
||||
DLLEXPORT void
|
||||
MPFaceMeshDetectorDetect3DLandmarks(MPFaceMeshDetector *detector,
|
||||
cv::Point3f **multi_face_landmarks,
|
||||
int *numFaces);
|
||||
|
||||
DLLEXPORT extern const int MPFaceMeshDetectorLandmarksNum;
|
||||
|
||||
#ifdef __cplusplus
|
||||
};
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,62 @@
|
|||
"""
|
||||
This is a simple windows_dll_library rule for builing a DLL Windows
|
||||
that can be depended on by other cc rules.
|
||||
Example useage:
|
||||
windows_dll_library(
|
||||
name = "hellolib",
|
||||
srcs = [
|
||||
"hello-library.cpp",
|
||||
],
|
||||
hdrs = ["hello-library.h"],
|
||||
# Define COMPILING_DLL to export symbols during compiling the DLL.
|
||||
copts = ["/DCOMPILING_DLL"],
|
||||
)
|
||||
"""
|
||||
|
||||
load("@rules_cc//cc:defs.bzl", "cc_binary", "cc_import", "cc_library")
|
||||
|
||||
def windows_dll_library(
|
||||
name,
|
||||
srcs = [],
|
||||
deps = [],
|
||||
hdrs = [],
|
||||
visibility = None,
|
||||
**kwargs):
|
||||
"""A simple windows_dll_library rule for builing a DLL Windows."""
|
||||
dll_name = name + ".dll"
|
||||
import_lib_name = name + "_import_lib"
|
||||
import_target_name = name + "_dll_import"
|
||||
|
||||
# Build the shared library
|
||||
cc_binary(
|
||||
name = dll_name,
|
||||
srcs = srcs + hdrs,
|
||||
deps = deps,
|
||||
linkshared = 1,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
# Get the import library for the dll
|
||||
native.filegroup(
|
||||
name = import_lib_name,
|
||||
srcs = [":" + dll_name],
|
||||
output_group = "interface_library",
|
||||
)
|
||||
|
||||
# Because we cannot directly depend on cc_binary from other cc rules in deps attribute,
|
||||
# we use cc_import as a bridge to depend on the dll.
|
||||
cc_import(
|
||||
name = import_target_name,
|
||||
interface_library = ":" + import_lib_name,
|
||||
shared_library = ":" + dll_name,
|
||||
)
|
||||
|
||||
# Create a new cc_library to also include the headers needed for the shared library
|
||||
cc_library(
|
||||
name = name,
|
||||
hdrs = hdrs,
|
||||
visibility = visibility,
|
||||
deps = deps + [
|
||||
":" + import_target_name,
|
||||
],
|
||||
)
|
|
@ -57,6 +57,18 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_detection_short_range_side_model_cpu",
|
||||
graph = "face_detection_short_range_side_model_cpu.pbtxt",
|
||||
register_as = "FaceDetectionShortRangeSideModelCpu",
|
||||
deps = [
|
||||
":face_detection_short_range_common",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/util:to_image_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_detection_short_range_gpu",
|
||||
graph = "face_detection_short_range_gpu.pbtxt",
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
# MediaPipe graph to detect faces. (CPU input, and inference is executed on
|
||||
# CPU.)
|
||||
#
|
||||
# It is required that "face_detection_short_range.tflite" is available at
|
||||
# "mediapipe/modules/face_detection/face_detection_short_range.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceDetectionShortRangeCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_side_packet: "MODEL:face_detection_model"
|
||||
# output_stream: "DETECTIONS:face_detections"
|
||||
# }
|
||||
|
||||
type: "FaceDetectionShortRangeCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
|
||||
# TfLite model to detect faces.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_detection/face_detection_short_range.tflite
|
||||
# model only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
|
||||
# Detected faces. (std::vector<Detection>)
|
||||
# NOTE: there will not be an output packet in the DETECTIONS stream for this
|
||||
# particular timestamp if none of faces detected. However, the MediaPipe
|
||||
# framework will internally inform the downstream calculators of the absence of
|
||||
# this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "DETECTIONS:detections"
|
||||
|
||||
# Converts the input CPU image (ImageFrame) to the multi-backend image type
|
||||
# (Image).
|
||||
node: {
|
||||
calculator: "ToImageCalculator"
|
||||
input_stream: "IMAGE_CPU:image"
|
||||
output_stream: "IMAGE:multi_backend_image"
|
||||
}
|
||||
|
||||
# Transforms the input image into a 128x128 tensor while keeping the aspect
|
||||
# ratio (what is expected by the corresponding face detection model), resulting
|
||||
# in potential letterboxing in the transformed image.
|
||||
node: {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
input_stream: "IMAGE:multi_backend_image"
|
||||
output_stream: "TENSORS:input_tensors"
|
||||
output_stream: "MATRIX:transform_matrix"
|
||||
options: {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 128
|
||||
output_tensor_height: 128
|
||||
keep_aspect_ratio: true
|
||||
output_tensor_float_range {
|
||||
min: -1.0
|
||||
max: 1.0
|
||||
}
|
||||
border_mode: BORDER_ZERO
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
||||
# vector of tensors representing, for instance, detection boxes/keypoints and
|
||||
# scores.
|
||||
node {
|
||||
calculator: "InferenceCalculator"
|
||||
input_stream: "TENSORS:input_tensors"
|
||||
output_stream: "TENSORS:detection_tensors"
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
options {
|
||||
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||
delegate { tflite {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Performs tensor post processing to generate face detections.
|
||||
node {
|
||||
calculator: "FaceDetectionShortRangeCommon"
|
||||
input_stream: "TENSORS:detection_tensors"
|
||||
input_stream: "MATRIX:transform_matrix"
|
||||
output_stream: "DETECTIONS:detections"
|
||||
}
|
|
@ -37,6 +37,22 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_side_model_cpu",
|
||||
graph = "face_landmark_side_model_cpu.pbtxt",
|
||||
register_as = "FaceLandmarkSideModelCpu",
|
||||
deps = [
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:split_vector_calculator",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_floats_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_landmarks_calculator",
|
||||
"//mediapipe/calculators/util:landmark_projection_calculator",
|
||||
"//mediapipe/calculators/util:thresholding_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_gpu",
|
||||
graph = "face_landmark_gpu.pbtxt",
|
||||
|
@ -74,6 +90,50 @@ mediapipe_simple_subgraph(
|
|||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_front_cpu_with_face_counter",
|
||||
graph = "face_landmark_front_cpu_with_face_counter.pbtxt",
|
||||
register_as = "FaceLandmarkFrontCpuWithFaceCounter",
|
||||
deps = [
|
||||
":face_detection_front_detection_to_roi",
|
||||
":face_landmark_cpu",
|
||||
":face_landmark_landmarks_to_roi",
|
||||
"//mediapipe/calculators/core:begin_loop_calculator",
|
||||
"//mediapipe/calculators/core:clip_vector_size_calculator",
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
"//mediapipe/calculators/core:end_loop_calculator",
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:previous_loopback_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/util:association_norm_rect_calculator",
|
||||
"//mediapipe/calculators/util:collection_has_min_size_calculator",
|
||||
"//mediapipe/calculators/util:counting_vector_size_calculator",
|
||||
"//mediapipe/modules/face_detection:face_detection_short_range_cpu",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_front_side_model_cpu_with_face_counter",
|
||||
graph = "face_landmark_front_side_model_cpu_with_face_counter.pbtxt",
|
||||
register_as = "FaceLandmarkFrontSideModelCpuWithFaceCounter",
|
||||
deps = [
|
||||
":face_detection_front_detection_to_roi",
|
||||
":face_landmark_side_model_cpu",
|
||||
":face_landmark_landmarks_to_roi",
|
||||
"//mediapipe/calculators/core:begin_loop_calculator",
|
||||
"//mediapipe/calculators/core:clip_vector_size_calculator",
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
"//mediapipe/calculators/core:end_loop_calculator",
|
||||
"//mediapipe/calculators/core:gate_calculator",
|
||||
"//mediapipe/calculators/core:previous_loopback_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/util:association_norm_rect_calculator",
|
||||
"//mediapipe/calculators/util:collection_has_min_size_calculator",
|
||||
"//mediapipe/calculators/util:counting_vector_size_calculator",
|
||||
"//mediapipe/modules/face_detection:face_detection_short_range_side_model_cpu",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_simple_subgraph(
|
||||
name = "face_landmark_front_gpu",
|
||||
graph = "face_landmark_front_gpu.pbtxt",
|
||||
|
|
|
@ -0,0 +1,249 @@
|
|||
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
|
||||
# executed on CPU.) This graph tries to skip face detection as much as possible
|
||||
# by using previously detected/predicted landmarks for new images.
|
||||
#
|
||||
# It is required that "face_detection_short_range.tflite" is available at
|
||||
# "mediapipe/modules/face_detection/face_detection_short_range.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# It is required that "face_landmark.tflite" is available at
|
||||
# "mediapipe/modules/face_landmark/face_landmark.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceLandmarkFrontCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_side_packet: "NUM_FACES:num_faces"
|
||||
# output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
# }
|
||||
|
||||
type: "FaceLandmarkFrontCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
|
||||
# Max number of faces to detect/track. (int)
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
|
||||
# Collection of detected/predicted faces, each represented as a list of 468 face
|
||||
# landmarks. (std::vector<NormalizedLandmarkList>)
|
||||
# NOTE: there will not be an output packet in the LANDMARKS stream for this
|
||||
# particular timestamp if none of faces detected. However, the MediaPipe
|
||||
# framework will internally inform the downstream calculators of the absence of
|
||||
# this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
|
||||
# Extra outputs (for debugging, for instance).
|
||||
# Detected faces. (std::vector<Detection>)
|
||||
output_stream: "DETECTIONS:face_detections"
|
||||
# Regions of interest calculated based on landmarks.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
|
||||
# Regions of interest calculated based on face detections.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
|
||||
|
||||
# (int)
|
||||
output_stream: "FACE_COUNT_FROM_LANDMARKS:face_count"
|
||||
|
||||
|
||||
# Defines whether landmarks on the previous image should be used to help
|
||||
# localize landmarks on the current image.
|
||||
node {
|
||||
name: "ConstantSidePacketCalculator"
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:use_prev_landmarks"
|
||||
options: {
|
||||
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
|
||||
packet { bool_value: true }
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_side_packet: "ALLOW:use_prev_landmarks"
|
||||
input_stream: "prev_face_rects_from_landmarks"
|
||||
output_stream: "gated_prev_face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided num_faces.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:gated_prev_face_rects_from_landmarks"
|
||||
input_side_packet: "num_faces"
|
||||
output_stream: "prev_has_enough_faces"
|
||||
}
|
||||
|
||||
# Drops the incoming image if enough faces have already been identified from the
|
||||
# previous image. Otherwise, passes the incoming image through to trigger a new
|
||||
# round of face detection.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "image"
|
||||
input_stream: "DISALLOW:prev_has_enough_faces"
|
||||
output_stream: "gated_image"
|
||||
options: {
|
||||
[mediapipe.GateCalculatorOptions.ext] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Detects faces.
|
||||
node {
|
||||
calculator: "FaceDetectionShortRangeCpu"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
output_stream: "DETECTIONS:all_face_detections"
|
||||
}
|
||||
|
||||
# Makes sure there are no more detections than the provided num_faces.
|
||||
node {
|
||||
calculator: "ClipDetectionVectorSizeCalculator"
|
||||
input_stream: "all_face_detections"
|
||||
output_stream: "face_detections"
|
||||
input_side_packet: "num_faces"
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
output_stream: "SIZE:gated_image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_detections at a fake timestamp for the rest of
|
||||
# the graph to process. Clones the image size packet for each face_detection at
|
||||
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
|
||||
# for downstream calculators to inform them that all elements in the vector have
|
||||
# been processed.
|
||||
node {
|
||||
calculator: "BeginLoopDetectionCalculator"
|
||||
input_stream: "ITERABLE:face_detections"
|
||||
input_stream: "CLONE:gated_image_size"
|
||||
output_stream: "ITEM:face_detection"
|
||||
output_stream: "CLONE:detections_loop_image_size"
|
||||
output_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face detections, so that can be used
|
||||
# to detect landmarks.
|
||||
node {
|
||||
calculator: "FaceDetectionFrontDetectionToRoi"
|
||||
input_stream: "DETECTION:face_detection"
|
||||
input_stream: "IMAGE_SIZE:detections_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_detection"
|
||||
}
|
||||
|
||||
# Counting a multi_faceLandmarks vector size. The image stream is only used to
|
||||
# make the calculator work even when there is no input vector.
|
||||
node {
|
||||
calculator: "CountingNormalizedLandmarkListVectorSizeCalculator"
|
||||
input_stream: "CLOCK:image"
|
||||
input_stream: "VECTOR:multi_face_landmarks"
|
||||
output_stream: "COUNT:face_count"
|
||||
}
|
||||
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_detection"
|
||||
input_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_detections"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# image and rects based on face detections from the current image. This
|
||||
# calculator ensures that the output face_rects vector doesn't contain
|
||||
# overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "face_rects_from_detections"
|
||||
input_stream: "gated_prev_face_rects_from_landmarks"
|
||||
output_stream: "face_rects"
|
||||
options: {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:image"
|
||||
output_stream: "SIZE:image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_rects at a fake timestamp for the rest of the
|
||||
# graph to process. Clones image and image size packets for each
|
||||
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
|
||||
# BATCH_END timestamp for downstream calculators to inform them that all
|
||||
# elements in the vector have been processed.
|
||||
node {
|
||||
calculator: "BeginLoopNormalizedRectCalculator"
|
||||
input_stream: "ITERABLE:face_rects"
|
||||
input_stream: "CLONE:0:image"
|
||||
input_stream: "CLONE:1:image_size"
|
||||
output_stream: "ITEM:face_rect"
|
||||
output_stream: "CLONE:0:landmarks_loop_image"
|
||||
output_stream: "CLONE:1:landmarks_loop_image_size"
|
||||
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Detects face landmarks within specified region of interest of the image.
|
||||
node {
|
||||
calculator: "FaceLandmarkCpu"
|
||||
input_stream: "IMAGE:landmarks_loop_image"
|
||||
input_stream: "ROI:face_rect"
|
||||
output_stream: "LANDMARKS:face_landmarks"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face landmarks, so that can be reused
|
||||
# for subsequent image.
|
||||
node {
|
||||
calculator: "FaceLandmarkLandmarksToRoi"
|
||||
input_stream: "LANDMARKS:face_landmarks"
|
||||
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_landmarks"
|
||||
}
|
||||
|
||||
# Collects a set of landmarks for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
|
||||
input_stream: "ITEM:face_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:multi_face_landmarks"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches face rects calculated from landmarks, and upon the arrival of the next
|
||||
# input image, sends out the cached rects with timestamps replaced by that of
|
||||
# the input image, essentially generating a packet that carries the previous
|
||||
# face rects. Note that upon the arrival of the very first input image, a
|
||||
# timestamp bound update occurs to jump start the feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:image"
|
||||
input_stream: "LOOP:face_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
|
||||
}
|
|
@ -0,0 +1,256 @@
|
|||
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
|
||||
# executed on CPU.) This graph tries to skip face detection as much as possible
|
||||
# by using previously detected/predicted landmarks for new images.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceLandmarkFrontSideModelCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_side_packet: "NUM_FACES:num_faces"
|
||||
# input_side_packet: "MODEL:0:face_detection_model"
|
||||
# input_side_packet: "MODEL:1:face_landmark_model"
|
||||
# output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
# }
|
||||
|
||||
type: "FaceLandmarkFrontSideModelCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
|
||||
# Max number of faces to detect/track. (int)
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
# TfLite model to detect faces.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_detection/face_detection_short_range.tflite
|
||||
# model only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:0:face_detection_model"
|
||||
# TfLite model to detect face landmarks.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_landmark/face_landmark.tflite model
|
||||
# only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:1:face_landmark_model"
|
||||
|
||||
# Collection of detected/predicted faces, each represented as a list of 468 face
|
||||
# landmarks. (std::vector<NormalizedLandmarkList>)
|
||||
# NOTE: there will not be an output packet in the LANDMARKS stream for this
|
||||
# particular timestamp if none of faces detected. However, the MediaPipe
|
||||
# framework will internally inform the downstream calculators of the absence of
|
||||
# this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
|
||||
# Extra outputs (for debugging, for instance).
|
||||
# Detected faces. (std::vector<Detection>)
|
||||
output_stream: "DETECTIONS:face_detections"
|
||||
# Regions of interest calculated based on landmarks.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
|
||||
# Regions of interest calculated based on face detections.
|
||||
# (std::vector<NormalizedRect>)
|
||||
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
|
||||
|
||||
# (int)
|
||||
output_stream: "FACE_COUNT_FROM_LANDMARKS:face_count"
|
||||
|
||||
|
||||
# Defines whether landmarks on the previous image should be used to help
|
||||
# localize landmarks on the current image.
|
||||
node {
|
||||
name: "ConstantSidePacketCalculator"
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:use_prev_landmarks"
|
||||
options: {
|
||||
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
|
||||
packet { bool_value: true }
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_side_packet: "ALLOW:use_prev_landmarks"
|
||||
input_stream: "prev_face_rects_from_landmarks"
|
||||
output_stream: "gated_prev_face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Determines if an input vector of NormalizedRect has a size greater than or
|
||||
# equal to the provided num_faces.
|
||||
node {
|
||||
calculator: "NormalizedRectVectorHasMinSizeCalculator"
|
||||
input_stream: "ITERABLE:prev_face_rects_from_landmarks"
|
||||
input_side_packet: "num_faces"
|
||||
output_stream: "prev_has_enough_faces"
|
||||
}
|
||||
|
||||
# Drops the incoming image if FaceLandmarkCpu was able to identify face presence
|
||||
# in the previous image. Otherwise, passes the incoming image through to trigger
|
||||
# a new round of face detection in FaceDetectionShortRangeCpu.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "image"
|
||||
input_stream: "DISALLOW:prev_has_enough_faces"
|
||||
output_stream: "gated_image"
|
||||
options: {
|
||||
[mediapipe.GateCalculatorOptions.ext] {
|
||||
empty_packets_as_allow: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Detects faces.
|
||||
node {
|
||||
calculator: "FaceDetectionShortRangeSideModelCpu"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
input_side_packet: "MODEL:face_detection_model"
|
||||
output_stream: "DETECTIONS:all_face_detections"
|
||||
}
|
||||
|
||||
# Makes sure there are no more detections than the provided num_faces.
|
||||
node {
|
||||
calculator: "ClipDetectionVectorSizeCalculator"
|
||||
input_stream: "all_face_detections"
|
||||
output_stream: "face_detections"
|
||||
input_side_packet: "num_faces"
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:gated_image"
|
||||
output_stream: "SIZE:gated_image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_detections at a fake timestamp for the rest of
|
||||
# the graph to process. Clones the image size packet for each face_detection at
|
||||
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
|
||||
# for downstream calculators to inform them that all elements in the vector have
|
||||
# been processed.
|
||||
node {
|
||||
calculator: "BeginLoopDetectionCalculator"
|
||||
input_stream: "ITERABLE:face_detections"
|
||||
input_stream: "CLONE:gated_image_size"
|
||||
output_stream: "ITEM:face_detection"
|
||||
output_stream: "CLONE:detections_loop_image_size"
|
||||
output_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face detections, so that can be used
|
||||
# to detect landmarks.
|
||||
node {
|
||||
calculator: "FaceDetectionFrontDetectionToRoi"
|
||||
input_stream: "DETECTION:face_detection"
|
||||
input_stream: "IMAGE_SIZE:detections_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_detection"
|
||||
}
|
||||
|
||||
# Counting a multi_faceLandmarks vector size. The image stream is only used to
|
||||
# make the calculator work even when there is no input vector.
|
||||
node {
|
||||
calculator: "CountingNormalizedLandmarkListVectorSizeCalculator"
|
||||
input_stream: "CLOCK:image"
|
||||
input_stream: "VECTOR:multi_face_landmarks"
|
||||
output_stream: "COUNT:face_count"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_detection"
|
||||
input_stream: "BATCH_END:detections_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_detections"
|
||||
}
|
||||
|
||||
# Performs association between NormalizedRect vector elements from previous
|
||||
# image and rects based on face detections from the current image. This
|
||||
# calculator ensures that the output face_rects vector doesn't contain
|
||||
# overlapping regions based on the specified min_similarity_threshold.
|
||||
node {
|
||||
calculator: "AssociationNormRectCalculator"
|
||||
input_stream: "face_rects_from_detections"
|
||||
input_stream: "prev_face_rects_from_landmarks"
|
||||
output_stream: "face_rects"
|
||||
options: {
|
||||
[mediapipe.AssociationCalculatorOptions.ext] {
|
||||
min_similarity_threshold: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate size of the image.
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:image"
|
||||
output_stream: "SIZE:image_size"
|
||||
}
|
||||
|
||||
# Outputs each element of face_rects at a fake timestamp for the rest of the
|
||||
# graph to process. Clones image and image size packets for each
|
||||
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
|
||||
# BATCH_END timestamp for downstream calculators to inform them that all
|
||||
# elements in the vector have been processed.
|
||||
node {
|
||||
calculator: "BeginLoopNormalizedRectCalculator"
|
||||
input_stream: "ITERABLE:face_rects"
|
||||
input_stream: "CLONE:0:image"
|
||||
input_stream: "CLONE:1:image_size"
|
||||
output_stream: "ITEM:face_rect"
|
||||
output_stream: "CLONE:0:landmarks_loop_image"
|
||||
output_stream: "CLONE:1:landmarks_loop_image_size"
|
||||
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
}
|
||||
|
||||
# Detects face landmarks within specified region of interest of the image.
|
||||
node {
|
||||
calculator: "FaceLandmarkSideModelCpu"
|
||||
input_stream: "IMAGE:landmarks_loop_image"
|
||||
input_stream: "ROI:face_rect"
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
output_stream: "LANDMARKS:face_landmarks"
|
||||
}
|
||||
|
||||
# Calculates region of interest based on face landmarks, so that can be reused
|
||||
# for subsequent image.
|
||||
node {
|
||||
calculator: "FaceLandmarkLandmarksToRoi"
|
||||
input_stream: "LANDMARKS:face_landmarks"
|
||||
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
|
||||
output_stream: "ROI:face_rect_from_landmarks"
|
||||
}
|
||||
|
||||
# Collects a set of landmarks for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
|
||||
input_stream: "ITEM:face_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:multi_face_landmarks"
|
||||
}
|
||||
|
||||
# Collects a NormalizedRect for each face into a vector. Upon receiving the
|
||||
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
|
||||
# timestamp.
|
||||
node {
|
||||
calculator: "EndLoopNormalizedRectCalculator"
|
||||
input_stream: "ITEM:face_rect_from_landmarks"
|
||||
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
|
||||
output_stream: "ITERABLE:face_rects_from_landmarks"
|
||||
}
|
||||
|
||||
# Caches face rects calculated from landmarks, and upon the arrival of the next
|
||||
# input image, sends out the cached rects with timestamps replaced by that of
|
||||
# the input image, essentially generating a packet that carries the previous
|
||||
# face rects. Note that upon the arrival of the very first input image, a
|
||||
# timestamp bound update occurs to jump start the feedback loop.
|
||||
node {
|
||||
calculator: "PreviousLoopbackCalculator"
|
||||
input_stream: "MAIN:image"
|
||||
input_stream: "LOOP:face_rects_from_landmarks"
|
||||
input_stream_info: {
|
||||
tag_index: "LOOP"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
|
||||
}
|
|
@ -0,0 +1,143 @@
|
|||
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
|
||||
# executed on CPU.)
|
||||
#
|
||||
# It is required that "face_landmark.tflite" is available at
|
||||
# "mediapipe/modules/face_landmark/face_landmark.tflite"
|
||||
# path during execution.
|
||||
#
|
||||
# EXAMPLE:
|
||||
# node {
|
||||
# calculator: "FaceLandmarkCpu"
|
||||
# input_stream: "IMAGE:image"
|
||||
# input_stream: "ROI:face_roi"
|
||||
# input_side_packet: "MODEL:face_landmark_model"
|
||||
# output_stream: "LANDMARKS:face_landmarks"
|
||||
# }
|
||||
|
||||
type: "FaceLandmarkCpu"
|
||||
|
||||
# CPU image. (ImageFrame)
|
||||
input_stream: "IMAGE:image"
|
||||
# ROI (region of interest) within the given image where a face is located.
|
||||
# (NormalizedRect)
|
||||
input_stream: "ROI:roi"
|
||||
|
||||
# TfLite model to detect face landmarks.
|
||||
# (std::unique_ptr<tflite::FlatBufferModel,
|
||||
# std::function<void(tflite::FlatBufferModel*)>>)
|
||||
# NOTE: mediapipe/modules/face_landmark/face_landmark.tflite model
|
||||
# only, can be passed here, otherwise - results are undefined.
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
|
||||
|
||||
# 468 face landmarks within the given ROI. (NormalizedLandmarkList)
|
||||
# NOTE: if a face is not present within the given ROI, for this particular
|
||||
# timestamp there will not be an output packet in the LANDMARKS stream. However,
|
||||
# the MediaPipe framework will internally inform the downstream calculators of
|
||||
# the absence of this packet so that they don't wait for it unnecessarily.
|
||||
output_stream: "LANDMARKS:face_landmarks"
|
||||
|
||||
# Transforms the input image into a 192x192 tensor.
|
||||
node: {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
input_stream: "IMAGE:image"
|
||||
input_stream: "NORM_RECT:roi"
|
||||
output_stream: "TENSORS:input_tensors"
|
||||
options: {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 192
|
||||
output_tensor_height: 192
|
||||
output_tensor_float_range {
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
||||
# vector of tensors representing, for instance, detection boxes/keypoints and
|
||||
# scores.
|
||||
node {
|
||||
calculator: "InferenceCalculator"
|
||||
input_stream: "TENSORS:input_tensors"
|
||||
output_stream: "TENSORS:output_tensors"
|
||||
input_side_packet: "MODEL:face_landmark_model"
|
||||
options {
|
||||
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||
delegate { tflite {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Splits a vector of tensors into multiple vectors.
|
||||
node {
|
||||
calculator: "SplitTensorVectorCalculator"
|
||||
input_stream: "output_tensors"
|
||||
output_stream: "landmark_tensors"
|
||||
output_stream: "face_flag_tensor"
|
||||
options: {
|
||||
[mediapipe.SplitVectorCalculatorOptions.ext] {
|
||||
ranges: { begin: 0 end: 1 }
|
||||
ranges: { begin: 1 end: 2 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Converts the face-flag tensor into a float that represents the confidence
|
||||
# score of face presence.
|
||||
node {
|
||||
calculator: "TensorsToFloatsCalculator"
|
||||
input_stream: "TENSORS:face_flag_tensor"
|
||||
output_stream: "FLOAT:face_presence_score"
|
||||
options {
|
||||
[mediapipe.TensorsToFloatsCalculatorOptions.ext] {
|
||||
activation: SIGMOID
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Applies a threshold to the confidence score to determine whether a face is
|
||||
# present.
|
||||
node {
|
||||
calculator: "ThresholdingCalculator"
|
||||
input_stream: "FLOAT:face_presence_score"
|
||||
output_stream: "FLAG:face_presence"
|
||||
options: {
|
||||
[mediapipe.ThresholdingCalculatorOptions.ext] {
|
||||
threshold: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Drop landmarks tensors if face is not present.
|
||||
node {
|
||||
calculator: "GateCalculator"
|
||||
input_stream: "landmark_tensors"
|
||||
input_stream: "ALLOW:face_presence"
|
||||
output_stream: "ensured_landmark_tensors"
|
||||
}
|
||||
|
||||
# Decodes the landmark tensors into a vector of landmarks, where the landmark
|
||||
# coordinates are normalized by the size of the input image to the model.
|
||||
node {
|
||||
calculator: "TensorsToLandmarksCalculator"
|
||||
input_stream: "TENSORS:ensured_landmark_tensors"
|
||||
output_stream: "NORM_LANDMARKS:landmarks"
|
||||
options: {
|
||||
[mediapipe.TensorsToLandmarksCalculatorOptions.ext] {
|
||||
num_landmarks: 468
|
||||
input_image_width: 192
|
||||
input_image_height: 192
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Projects the landmarks from the cropped face image to the corresponding
|
||||
# locations on the full image before cropping (input to the graph).
|
||||
node {
|
||||
calculator: "LandmarkProjectionCalculator"
|
||||
input_stream: "NORM_LANDMARKS:landmarks"
|
||||
input_stream: "NORM_RECT:roi"
|
||||
output_stream: "NORM_LANDMARKS:face_landmarks"
|
||||
}
|
Loading…
Reference in New Issue
Block a user