Added some files for the face landmarker implementation
This commit is contained in:
parent
131be2169a
commit
89be4c7b64
|
@ -73,6 +73,15 @@ py_library(
|
|||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "matrix_data",
|
||||
srcs = ["matrix_data.py"],
|
||||
deps = [
|
||||
"//mediapipe/framework/formats:matrix_data_py_pb2",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "detections",
|
||||
srcs = ["detections.py"],
|
||||
|
|
79
mediapipe/tasks/python/components/containers/matrix_data.py
Normal file
79
mediapipe/tasks/python/components/containers/matrix_data.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Matrix data data class."""
|
||||
|
||||
import dataclasses
|
||||
import enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from mediapipe.framework.formats import matrix_data_pb2
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
_MatrixDataProto = matrix_data_pb2.MatrixData
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class MatrixData:
|
||||
"""This stores the Matrix data.
|
||||
|
||||
Here the data is stored in column-major order by default.
|
||||
|
||||
Attributes:
|
||||
rows: The number of rows in the matrix.
|
||||
cols: The number of columns in the matrix.
|
||||
data: The data stored in the matrix.
|
||||
layout: The order in which the data are stored. Defaults to COLUMN_MAJOR.
|
||||
"""
|
||||
|
||||
class Layout(enum.Enum):
|
||||
COLUMN_MAJOR = 0
|
||||
ROW_MAJOR = 1
|
||||
|
||||
rows: Optional[int] = None
|
||||
cols: Optional[int] = None
|
||||
data: Optional[float] = None
|
||||
layout: Optional[Layout] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _MatrixDataProto:
|
||||
"""Generates a MatrixData protobuf object."""
|
||||
return _MatrixDataProto(
|
||||
rows=self.rows,
|
||||
cols=self.cols,
|
||||
data=self.data,
|
||||
layout=self.layout)
|
||||
|
||||
@classmethod
|
||||
@doc_controls.do_not_generate_docs
|
||||
def create_from_pb2(cls, pb2_obj: _MatrixDataProto) -> 'MatrixData':
|
||||
"""Creates a `MatrixData` object from the given protobuf object."""
|
||||
return MatrixData(
|
||||
rows=pb2_obj.rows,
|
||||
cols=pb2_obj.cols,
|
||||
data=pb2_obj.data,
|
||||
layout=pb2_obj.layout)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Checks if this object is equal to the given object.
|
||||
|
||||
Args:
|
||||
other: The object to be compared with.
|
||||
|
||||
Returns:
|
||||
True if the objects are equal.
|
||||
"""
|
||||
if not isinstance(other, MatrixData):
|
||||
return False
|
||||
|
||||
return self.to_pb2().__eq__(other.to_pb2())
|
|
@ -114,3 +114,28 @@ py_test(
|
|||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "face_landmarker_test",
|
||||
srcs = ["face_landmarker_test.py"],
|
||||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
"//mediapipe/tasks/testdata/vision:test_protos",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/framework/formats:landmark_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:category",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/components/containers:classification_result",
|
||||
"//mediapipe/tasks/python/components/containers:matrix_data",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:face_landmarker",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
|
182
mediapipe/tasks/python/test/vision/face_landmarker_test.py
Normal file
182
mediapipe/tasks/python/test/vision/face_landmarker_test.py
Normal file
|
@ -0,0 +1,182 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for face landmarker."""
|
||||
|
||||
import enum
|
||||
from unittest import mock
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from google.protobuf import text_format
|
||||
from mediapipe.framework.formats import landmark_pb2
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.python.components.containers import category as category_module
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||
from mediapipe.tasks.python.components.containers import classification_result as classification_result_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import face_landmarker
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
FaceLandmarkerResult = face_landmarker.FaceLandmarkerResult
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Category = category_module.Category
|
||||
_Rect = rect_module.Rect
|
||||
_Landmark = landmark_module.Landmark
|
||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
|
||||
_Image = image_module.Image
|
||||
_FaceLandmarker = face_landmarker.FaceLandmarker
|
||||
_FaceLandmarkerOptions = face_landmarker.FaceLandmarkerOptions
|
||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
|
||||
_FACE_LANDMARKER_BUNDLE_ASSET_FILE = 'face_landmarker.task'
|
||||
_FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE = 'face_landmarker_with_blendshapes.task'
|
||||
_PORTRAIT_IMAGE = 'portrait.jpg'
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS = 'portrait_expected_face_landmarks.pbtxt'
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION = 'portrait_expected_face_landmarks_with_attention.pbtxt'
|
||||
_PORTRAIT_EXPECTED_BLENDSHAPES = 'portrait_expected_blendshapes_with_attention.pbtxt'
|
||||
_LANDMARKS_DIFF_MARGIN = 0.03
|
||||
_BLENDSHAPES_DIFF_MARGIN = 0.1
|
||||
_FACIAL_TRANSFORMATION_MATRIX_DIFF_MARGIN = 0.02
|
||||
|
||||
|
||||
def _get_expected_face_landmarks(file_path: str):
|
||||
proto_file_path = test_utils.get_test_data_path(file_path)
|
||||
with open(proto_file_path, 'rb') as f:
|
||||
proto = landmark_pb2.NormalizedLandmarkList()
|
||||
text_format.Parse(f.read(), proto)
|
||||
landmarks = []
|
||||
for landmark in proto.landmark:
|
||||
landmarks.append(_NormalizedLandmark.create_from_pb2(landmark))
|
||||
return landmarks
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
FILE_CONTENT = 1
|
||||
FILE_NAME = 2
|
||||
|
||||
|
||||
class HandLandmarkerTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(_PORTRAIT_IMAGE))
|
||||
self.model_path = test_utils.get_test_data_path(
|
||||
_FACE_LANDMARKER_BUNDLE_ASSET_FILE)
|
||||
|
||||
def _expect_landmarks_correct(self, actual_landmarks, expected_landmarks):
|
||||
# Expects to have the same number of faces detected.
|
||||
self.assertLen(actual_landmarks, len(expected_landmarks))
|
||||
|
||||
for i, rename_me in enumerate(actual_landmarks):
|
||||
self.assertAlmostEqual(
|
||||
rename_me.x,
|
||||
expected_landmarks[i].x,
|
||||
delta=_LANDMARKS_DIFF_MARGIN)
|
||||
self.assertAlmostEqual(
|
||||
rename_me.y,
|
||||
expected_landmarks[i].y,
|
||||
delta=_LANDMARKS_DIFF_MARGIN)
|
||||
|
||||
def _expect_blendshapes_correct(self, actual_blendshapes, expected_blendshapes):
|
||||
# Expects to have the same number of blendshapes.
|
||||
self.assertLen(actual_blendshapes, len(expected_blendshapes))
|
||||
|
||||
for i, rename_me in enumerate(actual_blendshapes):
|
||||
self.assertEqual(rename_me.index, expected_blendshapes[i].index)
|
||||
self.assertAlmostEqual(
|
||||
rename_me.score,
|
||||
expected_blendshapes[i].score,
|
||||
delta=_BLENDSHAPES_DIFF_MARGIN)
|
||||
|
||||
def _expect_facial_transformation_matrix_correct(self, actual_matrix_list,
|
||||
expected_matrix_list):
|
||||
self.assertLen(actual_matrix_list, len(expected_matrix_list))
|
||||
|
||||
for i, rename_me in enumerate(actual_matrix_list):
|
||||
self.assertEqual(rename_me.rows, expected_matrix_list[i].rows)
|
||||
self.assertEqual(rename_me.cols, expected_matrix_list[i].cols)
|
||||
self.assertAlmostEqual(
|
||||
rename_me.data,
|
||||
expected_matrix_list[i].data,
|
||||
delta=_FACIAL_TRANSFORMATION_MATRIX_DIFF_MARGIN)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
with _FaceLandmarker.create_from_model_path(self.model_path) as landmarker:
|
||||
self.assertIsInstance(landmarker, _FaceLandmarker)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||
# Creates with options containing model file successfully.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _FaceLandmarkerOptions(base_options=base_options)
|
||||
with _FaceLandmarker.create_from_options(options) as landmarker:
|
||||
self.assertIsInstance(landmarker, _FaceLandmarker)
|
||||
|
||||
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||
# Invalid empty model path.
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
|
||||
base_options = _BaseOptions(
|
||||
model_asset_path='/path/to/invalid/model.tflite')
|
||||
options = _FaceLandmarkerOptions(base_options=base_options)
|
||||
_FaceLandmarker.create_from_options(options)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||
# Creates with options containing model content successfully.
|
||||
with open(self.model_path, 'rb') as f:
|
||||
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||
options = _FaceLandmarkerOptions(base_options=base_options)
|
||||
landmarker = _FaceLandmarker.create_from_options(options)
|
||||
self.assertIsInstance(landmarker, _FaceLandmarker)
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME,
|
||||
_get_expected_face_landmarks(_PORTRAIT_EXPECTED_FACE_LANDMARKS)),
|
||||
(ModelFileType.FILE_CONTENT,
|
||||
_get_expected_face_landmarks(_PORTRAIT_EXPECTED_FACE_LANDMARKS)))
|
||||
def test_detect(self, model_file_type, expected_result):
|
||||
# Creates face landmarker.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _FaceLandmarkerOptions(base_options=base_options,
|
||||
output_face_blendshapes=True)
|
||||
landmarker = _FaceLandmarker.create_from_options(options)
|
||||
|
||||
# Performs face landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
# Comparing results.
|
||||
self._expect_landmarks_correct(detection_result.face_landmarks,
|
||||
expected_result.face_landmarks)
|
||||
# Closes the face landmarker explicitly when the face landmarker is not used
|
||||
# in a context.
|
||||
landmarker.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
|
@ -152,3 +152,28 @@ py_library(
|
|||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "face_landmarker",
|
||||
srcs = [
|
||||
"face_landmarker.py",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/framework/formats:classification_py_pb2",
|
||||
"//mediapipe/framework/formats:landmark_py_pb2",
|
||||
"//mediapipe/framework/formats:matrix_data_py_pb2",
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/python:packet_creator",
|
||||
"//mediapipe/python:packet_getter",
|
||||
"//mediapipe/tasks/cc/vision/face_landmarker/proto:face_landmarker_graph_options_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:category",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/components/containers:matrix_data",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
"//mediapipe/tasks/python/core:task_info",
|
||||
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
|
449
mediapipe/tasks/python/vision/face_landmarker.py
Normal file
449
mediapipe/tasks/python/vision/face_landmarker.py
Normal file
|
@ -0,0 +1,449 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MediaPipe face landmarker task."""
|
||||
|
||||
import dataclasses
|
||||
import enum
|
||||
from typing import Callable, Mapping, Optional, List
|
||||
|
||||
from mediapipe.framework.formats import classification_pb2
|
||||
from mediapipe.framework.formats import landmark_pb2
|
||||
from mediapipe.framework.formats import matrix_data_pb2
|
||||
from mediapipe.python import packet_creator
|
||||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet as packet_module
|
||||
from mediapipe.tasks.cc.vision.face_landmarker.proto import face_landmarker_graph_options_pb2
|
||||
from mediapipe.tasks.python.components.containers import category as category_module
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.components.containers import matrix_data as matrix_data_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_FaceLandmarkerGraphOptionsProto = face_landmarker_graph_options_pb2.FaceLandmarkerGraphOptions
|
||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
|
||||
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||
_IMAGE_TAG = 'IMAGE'
|
||||
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||
_NORM_RECT_TAG = 'NORM_RECT'
|
||||
_NORM_LANDMARKS_STREAM_NAME = 'norm_landmarks'
|
||||
_NORM_LANDMARKS_TAG = 'NORM_LANDMARKS'
|
||||
_BLENDSHAPES_STREAM_NAME = 'blendshapes'
|
||||
_BLENDSHAPES_TAG = 'BLENDSHAPES'
|
||||
_FACE_GEOMETRY_STREAM_NAME = 'face_geometry'
|
||||
_FACE_GEOMETRY_TAG = 'FACE_GEOMETRY'
|
||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.face_landmarker.FaceLandmarkerGraph'
|
||||
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||
|
||||
|
||||
class Blendshapes(enum.IntEnum):
|
||||
"""The 52 blendshape coefficients."""
|
||||
NEUTRAL = 0
|
||||
BROW_DOWN_LEFT = 1
|
||||
BROW_DOWN_RIGHT = 2
|
||||
BROW_INNER_UP = 3
|
||||
BROW_OUTER_UP_LEFT = 4
|
||||
BROW_OUTER_UP_RIGHT = 5
|
||||
CHEEK_PUFF = 6
|
||||
CHEEK_SQUINT_LEFT = 7
|
||||
CHEEK_SQUINT_RIGHT = 8
|
||||
EYE_BLINK_LEFT = 9
|
||||
EYE_BLINK_RIGHT = 10
|
||||
EYE_LOOK_DOWN_LEFT = 11
|
||||
EYE_LOOK_DOWN_RIGHT = 12
|
||||
EYE_LOOK_IN_LEFT = 13
|
||||
EYE_LOOK_IN_RIGHT = 14
|
||||
EYE_LOOK_OUT_LEFT = 15
|
||||
EYE_LOOK_OUT_RIGHT = 16
|
||||
EYE_LOOK_UP_LEFT = 17
|
||||
EYE_LOOK_UP_RIGHT = 18
|
||||
EYE_SQUINT_LEFT = 19
|
||||
EYE_SQUINT_RIGHT = 20
|
||||
EYE_WIDE_LEFT = 21
|
||||
EYE_WIDE_RIGHT = 22
|
||||
JAW_FORWARD = 23
|
||||
JAW_LEFT = 24
|
||||
JAW_OPEN = 25
|
||||
JAW_RIGHT = 26
|
||||
MOUTH_CLOSE = 27
|
||||
MOUTH_DIMPLE_LEFT = 28
|
||||
MOUTH_DIMPLE_RIGHT = 29
|
||||
MOUTH_FROWN_LEFT = 30
|
||||
MOUTH_FROWN_RIGHT = 31
|
||||
MOUTH_FUNNEL = 32
|
||||
MOUTH_LEFT = 33
|
||||
MOUTH_LOWER_DOWN_LEFT = 34
|
||||
MOUTH_LOWER_DOWN_RIGHT = 35
|
||||
MOUTH_PRESS_LEFT = 36
|
||||
MOUTH_PRESS_RIGHT = 37
|
||||
MOUTH_PUCKER = 38
|
||||
MOUTH_RIGHT = 39
|
||||
MOUTH_ROLL_LOWER = 40
|
||||
MOUTH_ROLL_UPPER = 41
|
||||
MOUTH_SHRUG_LOWER = 42
|
||||
MOUTH_SHRUG_UPPER = 43
|
||||
MOUTH_SMILE_LEFT = 44
|
||||
MOUTH_SMILE_RIGHT = 45
|
||||
MOUTH_STRETCH_LEFT = 46
|
||||
MOUTH_STRETCH_RIGHT = 47
|
||||
MOUTH_UPPER_UP_LEFT = 48
|
||||
MOUTH_UPPER_UP_RIGHT = 49
|
||||
NOSE_SNEER_LEFT = 50
|
||||
NOSE_SNEER_RIGHT = 51
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class FaceLandmarkerResult:
|
||||
"""The face landmarks detection result from FaceLandmarker, where each vector element represents a single face detected in the image.
|
||||
|
||||
Attributes:
|
||||
face_landmarks: Detected face landmarks in normalized image coordinates.
|
||||
face_blendshapes: Optional face blendshapes results.
|
||||
facial_transformation_matrixes: Optional facial transformation matrix.
|
||||
"""
|
||||
|
||||
face_landmarks: List[List[landmark_module.NormalizedLandmark]]
|
||||
face_blendshapes: List[List[category_module.Category]]
|
||||
facial_transformation_matrixes: List[matrix_data_module.MatrixData]
|
||||
|
||||
|
||||
def _build_landmarker_result(
|
||||
output_packets: Mapping[str, packet_module.Packet]) -> FaceLandmarkerResult:
|
||||
"""Constructs a `FaceLandmarkerResult` from output packets."""
|
||||
face_landmarks_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_NORM_LANDMARKS_STREAM_NAME])
|
||||
face_blendshapes_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_BLENDSHAPES_STREAM_NAME])
|
||||
facial_transformation_matrixes_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_FACE_GEOMETRY_STREAM_NAME])
|
||||
|
||||
face_landmarks_results = []
|
||||
for proto in face_landmarks_proto_list:
|
||||
face_landmarks = landmark_pb2.NormalizedLandmarkList()
|
||||
face_landmarks.MergeFrom(proto)
|
||||
face_landmarks_list = []
|
||||
for face_landmark in face_landmarks.landmark:
|
||||
face_landmarks.append(
|
||||
landmark_module.NormalizedLandmark.create_from_pb2(face_landmark))
|
||||
face_landmarks_results.append(face_landmarks_list)
|
||||
|
||||
face_blendshapes_results = []
|
||||
for proto in face_blendshapes_proto_list:
|
||||
face_blendshapes_categories = []
|
||||
face_blendshapes_classifications = classification_pb2.ClassificationList()
|
||||
face_blendshapes_classifications.MergeFrom(proto)
|
||||
for face_blendshapes in face_blendshapes_classifications.classification:
|
||||
face_blendshapes_categories.append(
|
||||
category_module.Category(
|
||||
index=face_blendshapes.index,
|
||||
score=face_blendshapes.score,
|
||||
display_name=face_blendshapes.display_name,
|
||||
category_name=face_blendshapes.label))
|
||||
face_blendshapes_results.append(face_blendshapes_categories)
|
||||
|
||||
facial_transformation_matrixes_results = []
|
||||
for proto in facial_transformation_matrixes_proto_list:
|
||||
matrix_data = matrix_data_pb2.MatrixData()
|
||||
matrix_data.MergeFrom(proto)
|
||||
matrix = matrix_data_module.MatrixData.create_from_pb2(matrix_data)
|
||||
facial_transformation_matrixes_results.append(matrix)
|
||||
|
||||
return FaceLandmarkerResult(face_landmarks_results, face_blendshapes_results,
|
||||
facial_transformation_matrixes_results)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class FaceLandmarkerOptions:
|
||||
"""Options for the face landmarker task.
|
||||
|
||||
Attributes:
|
||||
base_options: Base options for the face landmarker task.
|
||||
running_mode: The running mode of the task. Default to the image mode.
|
||||
HandLandmarker has three running modes: 1) The image mode for detecting
|
||||
face landmarks on single image inputs. 2) The video mode for detecting
|
||||
face landmarks on the decoded frames of a video. 3) The live stream mode
|
||||
for detecting face landmarks on the live stream of input data, such as
|
||||
from camera. In this mode, the "result_callback" below must be specified
|
||||
to receive the detection results asynchronously.
|
||||
num_faces: The maximum number of faces that can be detected by the
|
||||
FaceLandmarker.
|
||||
min_face_detection_confidence: The minimum confidence score for the face
|
||||
detection to be considered successful.
|
||||
min_face_presence_confidence: The minimum confidence score of face presence
|
||||
score in the face landmark detection.
|
||||
min_tracking_confidence: The minimum confidence score for the face tracking
|
||||
to be considered successful.
|
||||
output_face_blendshapes: Whether FaceLandmarker outputs face blendshapes
|
||||
classification. Face blendshapes are used for rendering the 3D face model.
|
||||
output_facial_transformation_matrixes: Whether FaceLandmarker outputs facial
|
||||
transformation_matrix. Facial transformation matrix is used to transform
|
||||
the face landmarks in canonical face to the detected face, so that users
|
||||
can apply face effects on the detected landmarks.
|
||||
result_callback: The user-defined result callback for processing live stream
|
||||
data. The result callback should only be specified when the running mode
|
||||
is set to the live stream mode.
|
||||
"""
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
num_faces: Optional[int] = 1
|
||||
min_face_detection_confidence: Optional[float] = 0.5
|
||||
min_face_presence_confidence: Optional[float] = 0.5
|
||||
min_tracking_confidence: Optional[float] = 0.5
|
||||
output_face_blendshapes: Optional[bool] = False
|
||||
output_facial_transformation_matrixes: Optional[bool] = False
|
||||
result_callback: Optional[Callable[
|
||||
[FaceLandmarkerResult, image_module.Image, int], None]] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _FaceLandmarkerGraphOptionsProto:
|
||||
"""Generates an FaceLandmarkerGraphOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||
|
||||
# Initialize the face landmarker options from base options.
|
||||
face_landmarker_options_proto = _FaceLandmarkerGraphOptionsProto(
|
||||
base_options=base_options_proto)
|
||||
|
||||
# Configure face detector options.
|
||||
face_landmarker_options_proto.face_detector_graph_options.num_faces = self.num_faces
|
||||
face_landmarker_options_proto.face_detector_graph_options.min_detection_confidence = self.min_face_detection_confidence
|
||||
|
||||
# Configure face landmark detector options.
|
||||
face_landmarker_options_proto.min_tracking_confidence = self.min_tracking_confidence
|
||||
face_landmarker_options_proto.face_landmarks_detector_graph_options.min_detection_confidence = self.min_face_detection_confidence
|
||||
return face_landmarker_options_proto
|
||||
|
||||
|
||||
class FaceLandmarker(base_vision_task_api.BaseVisionTaskApi):
|
||||
"""Class that performs face landmarks detection on images."""
|
||||
|
||||
@classmethod
|
||||
def create_from_model_path(cls, model_path: str) -> 'FaceLandmarker':
|
||||
"""Creates an `FaceLandmarker` object from a TensorFlow Lite model and the default `FaceLandmarkerOptions`.
|
||||
|
||||
Note that the created `FaceLandmarker` instance is in image mode, for
|
||||
detecting face landmarks on single image inputs.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model.
|
||||
|
||||
Returns:
|
||||
`FaceLandmarker` object that's created from the model file and the
|
||||
default `FaceLandmarkerOptions`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceLandmarker` object from the
|
||||
provided file such as invalid file path.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
options = FaceLandmarkerOptions(
|
||||
base_options=base_options, running_mode=_RunningMode.IMAGE)
|
||||
return cls.create_from_options(options)
|
||||
|
||||
@classmethod
|
||||
def create_from_options(cls,
|
||||
options: FaceLandmarkerOptions) -> 'FaceLandmarker':
|
||||
"""Creates the `FaceLandmarker` object from face landmarker options.
|
||||
|
||||
Args:
|
||||
options: Options for the face landmarker task.
|
||||
|
||||
Returns:
|
||||
`FaceLandmarker` object that's created from `options`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceLandmarker` object from
|
||||
`FaceLandmarkerOptions` such as missing the model.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
|
||||
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
||||
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||
return
|
||||
|
||||
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
||||
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||
return
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
empty_packet = output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
||||
options.result_callback(
|
||||
FaceLandmarkerResult([], [], []), image,
|
||||
empty_packet.timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
|
||||
return
|
||||
|
||||
face_landmarks_result = _build_landmarker_result(output_packets)
|
||||
timestamp = output_packets[_NORM_LANDMARKS_STREAM_NAME].timestamp
|
||||
options.result_callback(face_landmarks_result, image,
|
||||
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
|
||||
|
||||
task_info = _TaskInfo(
|
||||
task_graph=_TASK_GRAPH_NAME,
|
||||
input_streams=[
|
||||
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||
],
|
||||
output_streams=[
|
||||
':'.join([_NORM_LANDMARKS_TAG, _NORM_LANDMARKS_STREAM_NAME]),
|
||||
':'.join([_BLENDSHAPES_TAG, _BLENDSHAPES_STREAM_NAME]),
|
||||
':'.join([
|
||||
_FACE_GEOMETRY_TAG, _FACE_GEOMETRY_STREAM_NAME
|
||||
]), ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME])
|
||||
],
|
||||
task_options=options)
|
||||
return cls(
|
||||
task_info.generate_graph_config(
|
||||
enable_flow_limiting=options.running_mode ==
|
||||
_RunningMode.LIVE_STREAM), options.running_mode,
|
||||
packets_callback if options.result_callback else None)
|
||||
|
||||
def detect(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> FaceLandmarkerResult:
|
||||
"""Performs face landmarks detection on the given image.
|
||||
|
||||
Only use this method when the FaceLandmarker is created with the image
|
||||
running mode.
|
||||
|
||||
The image can be of any size with format RGB or RGBA.
|
||||
TODO: Describes how the input image will be preprocessed after the yuv
|
||||
support is implemented.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The face landmarks detection results.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If face landmarker detection failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, roi_allowed=False)
|
||||
output_packets = self._process_image_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2())
|
||||
})
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
return FaceLandmarkerResult([], [], [])
|
||||
|
||||
return _build_landmarker_result(output_packets)
|
||||
|
||||
def detect_for_video(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> FaceLandmarkerResult:
|
||||
"""Performs face landmarks detection on the provided video frame.
|
||||
|
||||
Only use this method when the FaceLandmarker is created with the video
|
||||
running mode.
|
||||
|
||||
Only use this method when the FaceLandmarker is created with the video
|
||||
running mode. It's required to provide the video frame's timestamp (in
|
||||
milliseconds) along with the video frame. The input timestamps should be
|
||||
monotonically increasing for adjacent calls of this method.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The face landmarks detection results.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If face landmarker detection failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, roi_allowed=False)
|
||||
output_packets = self._process_video_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||
})
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
return FaceLandmarkerResult([], [], [])
|
||||
|
||||
return _build_landmarker_result(output_packets)
|
||||
|
||||
def detect_async(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> None:
|
||||
"""Sends live image data to perform face landmarks detection.
|
||||
|
||||
The results will be available via the "result_callback" provided in the
|
||||
FaceLandmarkerOptions. Only use this method when the FaceLandmarker is
|
||||
created with the live stream running mode.
|
||||
|
||||
Only use this method when the FaceLandmarker is created with the live
|
||||
stream running mode. The input timestamps should be monotonically increasing
|
||||
for adjacent calls of this method. This method will return immediately after
|
||||
the input image is accepted. The results will be available via the
|
||||
`result_callback` provided in the `FaceLandmarkerOptions`. The
|
||||
`detect_async` method is designed to process live stream data such as
|
||||
camera input. To lower the overall latency, face landmarker may drop the
|
||||
input images if needed. In other words, it's not guaranteed to have output
|
||||
per input image.
|
||||
|
||||
The `result_callback` provides:
|
||||
- The face landmarks detection results.
|
||||
- The input image that the face landmarker runs on.
|
||||
- The input timestamp in milliseconds.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Raises:
|
||||
ValueError: If the current input timestamp is smaller than what the
|
||||
face landmarker has already processed.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, roi_allowed=False)
|
||||
self._send_live_stream_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||
})
|
Loading…
Reference in New Issue
Block a user