Added remaining tests for the GestureRecognizer Python MediaPipe Tasks API
This commit is contained in:
parent
18eb089d39
commit
8762d15c81
|
@ -11,7 +11,7 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Landmark Detection Result data class."""
|
"""Landmarks Detection Result data class."""
|
||||||
|
|
||||||
import dataclasses
|
import dataclasses
|
||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
|
@ -56,6 +56,7 @@ py_test(
|
||||||
"//mediapipe/tasks/python/test:test_utils",
|
"//mediapipe/tasks/python/test:test_utils",
|
||||||
"//mediapipe/tasks/python/vision:gesture_recognizer",
|
"//mediapipe/tasks/python/vision:gesture_recognizer",
|
||||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||||
|
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||||
"@com_google_protobuf//:protobuf_python"
|
"@com_google_protobuf//:protobuf_python"
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
|
@ -14,7 +14,9 @@
|
||||||
"""Tests for gesture recognizer."""
|
"""Tests for gesture recognizer."""
|
||||||
|
|
||||||
import enum
|
import enum
|
||||||
|
from unittest import mock
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from google.protobuf import text_format
|
from google.protobuf import text_format
|
||||||
from absl.testing import absltest
|
from absl.testing import absltest
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
|
@ -29,10 +31,11 @@ from mediapipe.tasks.python.core import base_options as base_options_module
|
||||||
from mediapipe.tasks.python.test import test_utils
|
from mediapipe.tasks.python.test import test_utils
|
||||||
from mediapipe.tasks.python.vision import gesture_recognizer
|
from mediapipe.tasks.python.vision import gesture_recognizer
|
||||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
|
||||||
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
|
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
|
||||||
_BaseOptions = base_options_module.BaseOptions
|
_BaseOptions = base_options_module.BaseOptions
|
||||||
_NormalizedRect = rect_module.NormalizedRect
|
_Rect = rect_module.Rect
|
||||||
_Classification = classification_module.Classification
|
_Classification = classification_module.Classification
|
||||||
_ClassificationList = classification_module.ClassificationList
|
_ClassificationList = classification_module.ClassificationList
|
||||||
_Landmark = landmark_module.Landmark
|
_Landmark = landmark_module.Landmark
|
||||||
|
@ -45,12 +48,19 @@ _GestureRecognizer = gesture_recognizer.GestureRecognizer
|
||||||
_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
|
_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
|
||||||
_GestureRecognitionResult = gesture_recognizer.GestureRecognitionResult
|
_GestureRecognitionResult = gesture_recognizer.GestureRecognitionResult
|
||||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
|
|
||||||
_GESTURE_RECOGNIZER_MODEL_FILE = 'gesture_recognizer.task'
|
_GESTURE_RECOGNIZER_MODEL_FILE = 'gesture_recognizer.task'
|
||||||
|
_NO_HANDS_IMAGE = 'cats_and_dogs.jpg'
|
||||||
|
_TWO_HANDS_IMAGE = 'right_hands.jpg'
|
||||||
_THUMB_UP_IMAGE = 'thumb_up.jpg'
|
_THUMB_UP_IMAGE = 'thumb_up.jpg'
|
||||||
_THUMB_UP_LANDMARKS = "thumb_up_landmarks.pbtxt"
|
_THUMB_UP_LANDMARKS = 'thumb_up_landmarks.pbtxt'
|
||||||
_THUMB_UP_LABEL = "Thumb_Up"
|
_THUMB_UP_LABEL = 'Thumb_Up'
|
||||||
_THUMB_UP_INDEX = 5
|
_THUMB_UP_INDEX = 5
|
||||||
|
_POINTING_UP_ROTATED_IMAGE = 'pointing_up_rotated.jpg'
|
||||||
|
_POINTING_UP_LANDMARKS = 'pointing_up_rotated_landmarks.pbtxt'
|
||||||
|
_POINTING_UP_LABEL = 'Pointing_Up'
|
||||||
|
_POINTING_UP_INDEX = 3
|
||||||
_LANDMARKS_ERROR_TOLERANCE = 0.03
|
_LANDMARKS_ERROR_TOLERANCE = 0.03
|
||||||
|
|
||||||
|
|
||||||
|
@ -89,7 +99,7 @@ class GestureRecognizerTest(parameterized.TestCase):
|
||||||
super().setUp()
|
super().setUp()
|
||||||
self.test_image = _Image.create_from_file(
|
self.test_image = _Image.create_from_file(
|
||||||
test_utils.get_test_data_path(_THUMB_UP_IMAGE))
|
test_utils.get_test_data_path(_THUMB_UP_IMAGE))
|
||||||
self.gesture_recognizer_model_path = test_utils.get_test_data_path(
|
self.model_path = test_utils.get_test_data_path(
|
||||||
_GESTURE_RECOGNIZER_MODEL_FILE)
|
_GESTURE_RECOGNIZER_MODEL_FILE)
|
||||||
|
|
||||||
def _assert_actual_result_approximately_matches_expected_result(
|
def _assert_actual_result_approximately_matches_expected_result(
|
||||||
|
@ -105,8 +115,15 @@ class GestureRecognizerTest(parameterized.TestCase):
|
||||||
self.assertLen(actual_result.handedness, len(expected_result.handedness))
|
self.assertLen(actual_result.handedness, len(expected_result.handedness))
|
||||||
self.assertLen(actual_result.gestures, len(expected_result.gestures))
|
self.assertLen(actual_result.gestures, len(expected_result.gestures))
|
||||||
# Actual landmarks match expected landmarks.
|
# Actual landmarks match expected landmarks.
|
||||||
self.assertEqual(actual_result.hand_landmarks,
|
self.assertLen(actual_result.hand_landmarks[0].landmarks,
|
||||||
expected_result.hand_landmarks)
|
len(expected_result.hand_landmarks[0].landmarks))
|
||||||
|
actual_landmarks = actual_result.hand_landmarks[0].landmarks
|
||||||
|
expected_landmarks = expected_result.hand_landmarks[0].landmarks
|
||||||
|
for i in range(len(actual_landmarks)):
|
||||||
|
self.assertAlmostEqual(actual_landmarks[i].x, expected_landmarks[i].x,
|
||||||
|
delta=_LANDMARKS_ERROR_TOLERANCE)
|
||||||
|
self.assertAlmostEqual(actual_landmarks[i].y, expected_landmarks[i].y,
|
||||||
|
delta=_LANDMARKS_ERROR_TOLERANCE)
|
||||||
# Actual handedness matches expected handedness.
|
# Actual handedness matches expected handedness.
|
||||||
actual_top_handedness = actual_result.handedness[0].classifications[0]
|
actual_top_handedness = actual_result.handedness[0].classifications[0]
|
||||||
expected_top_handedness = expected_result.handedness[0].classifications[0]
|
expected_top_handedness = expected_result.handedness[0].classifications[0]
|
||||||
|
@ -118,32 +135,56 @@ class GestureRecognizerTest(parameterized.TestCase):
|
||||||
self.assertEqual(actual_top_gesture.index, expected_top_gesture.index)
|
self.assertEqual(actual_top_gesture.index, expected_top_gesture.index)
|
||||||
self.assertEqual(actual_top_gesture.label, expected_top_gesture.label)
|
self.assertEqual(actual_top_gesture.label, expected_top_gesture.label)
|
||||||
|
|
||||||
|
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||||
|
# Creates with default option and valid model file successfully.
|
||||||
|
with _GestureRecognizer.create_from_model_path(self.model_path) as recognizer:
|
||||||
|
self.assertIsInstance(recognizer, _GestureRecognizer)
|
||||||
|
|
||||||
|
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||||
|
# Creates with options containing model file successfully.
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
self.assertIsInstance(recognizer, _GestureRecognizer)
|
||||||
|
|
||||||
|
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||||
|
# Invalid empty model path.
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError,
|
||||||
|
r"ExternalFile must specify at least one of 'file_content', "
|
||||||
|
r"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."):
|
||||||
|
base_options = _BaseOptions(model_asset_path='')
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options)
|
||||||
|
_GestureRecognizer.create_from_options(options)
|
||||||
|
|
||||||
|
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||||
|
# Creates with options containing model content successfully.
|
||||||
|
with open(self.model_path, 'rb') as f:
|
||||||
|
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options)
|
||||||
|
recognizer = _GestureRecognizer.create_from_options(options)
|
||||||
|
self.assertIsInstance(recognizer, _GestureRecognizer)
|
||||||
|
|
||||||
@parameterized.parameters(
|
@parameterized.parameters(
|
||||||
(ModelFileType.FILE_NAME, 0.3, _get_expected_gesture_recognition_result(
|
(ModelFileType.FILE_NAME, _get_expected_gesture_recognition_result(
|
||||||
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||||
)),
|
)),
|
||||||
(ModelFileType.FILE_CONTENT, 0.3, _get_expected_gesture_recognition_result(
|
(ModelFileType.FILE_CONTENT, _get_expected_gesture_recognition_result(
|
||||||
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||||
)))
|
)))
|
||||||
def test_recognize(self, model_file_type, min_gesture_confidence,
|
def test_recognize(self, model_file_type, expected_recognition_result):
|
||||||
expected_recognition_result):
|
|
||||||
# Creates gesture recognizer.
|
# Creates gesture recognizer.
|
||||||
if model_file_type is ModelFileType.FILE_NAME:
|
if model_file_type is ModelFileType.FILE_NAME:
|
||||||
gesture_recognizer_base_options = _BaseOptions(
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
model_asset_path=self.gesture_recognizer_model_path)
|
|
||||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||||
with open(self.gesture_recognizer_model_path, 'rb') as f:
|
with open(self.model_path, 'rb') as f:
|
||||||
model_content = f.read()
|
model_content = f.read()
|
||||||
gesture_recognizer_base_options = _BaseOptions(
|
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||||
model_asset_buffer=model_content)
|
|
||||||
else:
|
else:
|
||||||
# Should never happen
|
# Should never happen
|
||||||
raise ValueError('model_file_type is invalid.')
|
raise ValueError('model_file_type is invalid.')
|
||||||
|
|
||||||
options = _GestureRecognizerOptions(
|
options = _GestureRecognizerOptions(base_options=base_options)
|
||||||
base_options=gesture_recognizer_base_options,
|
|
||||||
min_gesture_confidence=min_gesture_confidence
|
|
||||||
)
|
|
||||||
recognizer = _GestureRecognizer.create_from_options(options)
|
recognizer = _GestureRecognizer.create_from_options(options)
|
||||||
|
|
||||||
# Performs hand gesture recognition on the input.
|
# Performs hand gesture recognition on the input.
|
||||||
|
@ -151,10 +192,238 @@ class GestureRecognizerTest(parameterized.TestCase):
|
||||||
# Comparing results.
|
# Comparing results.
|
||||||
self._assert_actual_result_approximately_matches_expected_result(
|
self._assert_actual_result_approximately_matches_expected_result(
|
||||||
recognition_result, expected_recognition_result)
|
recognition_result, expected_recognition_result)
|
||||||
# Closes the gesture recognizer explicitly when the detector is not used in
|
# Closes the gesture recognizer explicitly when the gesture recognizer is
|
||||||
# a context.
|
# not used in a context.
|
||||||
recognizer.close()
|
recognizer.close()
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
(ModelFileType.FILE_NAME, _get_expected_gesture_recognition_result(
|
||||||
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||||
|
)),
|
||||||
|
(ModelFileType.FILE_CONTENT, _get_expected_gesture_recognition_result(
|
||||||
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||||
|
)))
|
||||||
|
def test_recognize_in_context(self, model_file_type,
|
||||||
|
expected_recognition_result):
|
||||||
|
# Creates gesture recognizer.
|
||||||
|
if model_file_type is ModelFileType.FILE_NAME:
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||||
|
with open(self.model_path, 'rb') as f:
|
||||||
|
model_content = f.read()
|
||||||
|
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||||
|
else:
|
||||||
|
# Should never happen
|
||||||
|
raise ValueError('model_file_type is invalid.')
|
||||||
|
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
# Performs hand gesture recognition on the input.
|
||||||
|
recognition_result = recognizer.recognize(self.test_image)
|
||||||
|
# Comparing results.
|
||||||
|
self._assert_actual_result_approximately_matches_expected_result(
|
||||||
|
recognition_result, expected_recognition_result)
|
||||||
|
|
||||||
|
def test_recognize_succeeds_with_num_hands(self):
|
||||||
|
# Creates gesture recognizer.
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options, num_hands=2)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
# Load the pointing up rotated image.
|
||||||
|
test_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(_TWO_HANDS_IMAGE))
|
||||||
|
# Performs hand gesture recognition on the input.
|
||||||
|
recognition_result = recognizer.recognize(test_image)
|
||||||
|
# Comparing results.
|
||||||
|
self.assertLen(recognition_result.handedness, 2)
|
||||||
|
|
||||||
|
def test_recognize_succeeds_with_rotation(self):
|
||||||
|
# Creates gesture recognizer.
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
# Load the pointing up rotated image.
|
||||||
|
test_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(_POINTING_UP_ROTATED_IMAGE))
|
||||||
|
# Set rotation parameters using ImageProcessingOptions.
|
||||||
|
image_processing_options = _ImageProcessingOptions(rotation_degrees=-90)
|
||||||
|
# Performs hand gesture recognition on the input.
|
||||||
|
recognition_result = recognizer.recognize(test_image,
|
||||||
|
image_processing_options)
|
||||||
|
expected_recognition_result = _get_expected_gesture_recognition_result(
|
||||||
|
_POINTING_UP_LANDMARKS, _POINTING_UP_LABEL, _POINTING_UP_INDEX)
|
||||||
|
# Comparing results.
|
||||||
|
self._assert_actual_result_approximately_matches_expected_result(
|
||||||
|
recognition_result, expected_recognition_result)
|
||||||
|
|
||||||
|
def test_recognize_fails_with_region_of_interest(self):
|
||||||
|
# Creates gesture recognizer.
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError, "This task doesn't support region-of-interest."):
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
# Set the `region_of_interest` parameter using `ImageProcessingOptions`.
|
||||||
|
image_processing_options = _ImageProcessingOptions(
|
||||||
|
region_of_interest=_Rect(0, 0, 1, 1))
|
||||||
|
# Attempt to perform hand gesture recognition on the cropped input.
|
||||||
|
recognizer.recognize(self.test_image, image_processing_options)
|
||||||
|
|
||||||
|
def test_empty_recognition_outputs(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path))
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
# Load the image with no hands.
|
||||||
|
no_hands_test_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(_NO_HANDS_IMAGE))
|
||||||
|
# Performs gesture recognition on the input.
|
||||||
|
recognition_result = recognizer.recognize(no_hands_test_image)
|
||||||
|
self.assertEmpty(recognition_result.hand_landmarks)
|
||||||
|
self.assertEmpty(recognition_result.hand_world_landmarks)
|
||||||
|
self.assertEmpty(recognition_result.handedness)
|
||||||
|
self.assertEmpty(recognition_result.gestures)
|
||||||
|
|
||||||
|
def test_missing_result_callback(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM)
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'result callback must be provided'):
|
||||||
|
with _GestureRecognizer.create_from_options(options) as unused_recognizer:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
|
||||||
|
def test_illegal_result_callback(self, running_mode):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=running_mode,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'result callback should not be provided'):
|
||||||
|
with _GestureRecognizer.create_from_options(options) as unused_recognizer:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def test_calling_recognize_for_video_in_image_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the video mode'):
|
||||||
|
recognizer.recognize_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_calling_recognize_async_in_image_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the live stream mode'):
|
||||||
|
recognizer.recognize_async(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_calling_recognize_in_video_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the image mode'):
|
||||||
|
recognizer.recognize(self.test_image)
|
||||||
|
|
||||||
|
def test_calling_recognize_async_in_video_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the live stream mode'):
|
||||||
|
recognizer.recognize_async(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_recognize_for_video_with_out_of_order_timestamp(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
unused_result = recognizer.recognize_for_video(self.test_image, 1)
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError, r'Input timestamp must be monotonically increasing'):
|
||||||
|
recognizer.recognize_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_recognize_for_video(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
recognition_result = recognizer.recognize_for_video(self.test_image,
|
||||||
|
timestamp)
|
||||||
|
expected_recognition_result = _get_expected_gesture_recognition_result(
|
||||||
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX)
|
||||||
|
self._assert_actual_result_approximately_matches_expected_result(
|
||||||
|
recognition_result, expected_recognition_result)
|
||||||
|
|
||||||
|
def test_calling_recognize_in_live_stream_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the image mode'):
|
||||||
|
recognizer.recognize(self.test_image)
|
||||||
|
|
||||||
|
def test_calling_recognize_for_video_in_live_stream_mode(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the video mode'):
|
||||||
|
recognizer.recognize_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_recognize_async_calls_with_illegal_timestamp(self):
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
recognizer.recognize_async(self.test_image, 100)
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError, r'Input timestamp must be monotonically increasing'):
|
||||||
|
recognizer.recognize_async(self.test_image, 0)
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
(_THUMB_UP_IMAGE, _get_expected_gesture_recognition_result(
|
||||||
|
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX)),
|
||||||
|
(_NO_HANDS_IMAGE, _GestureRecognitionResult([], [], [], [])))
|
||||||
|
def test_recognize_async_calls(self, image_path, expected_result):
|
||||||
|
test_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(image_path))
|
||||||
|
observed_timestamp_ms = -1
|
||||||
|
|
||||||
|
def check_result(result: _GestureRecognitionResult, output_image: _Image,
|
||||||
|
timestamp_ms: int):
|
||||||
|
if result.hand_landmarks and result.hand_world_landmarks and \
|
||||||
|
result.handedness and result.gestures:
|
||||||
|
self._assert_actual_result_approximately_matches_expected_result(
|
||||||
|
result, expected_result)
|
||||||
|
else:
|
||||||
|
self.assertEqual(result, expected_result)
|
||||||
|
self.assertTrue(
|
||||||
|
np.array_equal(output_image.numpy_view(),
|
||||||
|
test_image.numpy_view()))
|
||||||
|
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
||||||
|
self.observed_timestamp_ms = timestamp_ms
|
||||||
|
|
||||||
|
options = _GestureRecognizerOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=check_result)
|
||||||
|
with _GestureRecognizer.create_from_options(options) as recognizer:
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
recognizer.recognize_async(test_image, timestamp)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
absltest.main()
|
absltest.main()
|
||||||
|
|
|
@ -52,7 +52,6 @@ py_library(
|
||||||
"//mediapipe/tasks/cc/vision/hand_detector/proto:hand_detector_graph_options_py_pb2",
|
"//mediapipe/tasks/cc/vision/hand_detector/proto:hand_detector_graph_options_py_pb2",
|
||||||
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarker_graph_options_py_pb2",
|
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarker_graph_options_py_pb2",
|
||||||
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarks_detector_graph_options_py_pb2",
|
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarks_detector_graph_options_py_pb2",
|
||||||
"//mediapipe/tasks/python/components/containers:rect",
|
|
||||||
"//mediapipe/tasks/python/components/containers:classification",
|
"//mediapipe/tasks/python/components/containers:classification",
|
||||||
"//mediapipe/tasks/python/components/containers:landmark",
|
"//mediapipe/tasks/python/components/containers:landmark",
|
||||||
"//mediapipe/tasks/python/components/processors:classifier_options",
|
"//mediapipe/tasks/python/components/processors:classifier_options",
|
||||||
|
|
|
@ -23,6 +23,14 @@ py_library(
|
||||||
srcs = ["vision_task_running_mode.py"],
|
srcs = ["vision_task_running_mode.py"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "image_processing_options",
|
||||||
|
srcs = ["image_processing_options.py"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/tasks/python/components/containers:rect",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
py_library(
|
py_library(
|
||||||
name = "base_vision_task_api",
|
name = "base_vision_task_api",
|
||||||
srcs = [
|
srcs = [
|
||||||
|
@ -30,6 +38,7 @@ py_library(
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
":vision_task_running_mode",
|
":vision_task_running_mode",
|
||||||
|
":image_processing_options",
|
||||||
"//mediapipe/framework:calculator_py_pb2",
|
"//mediapipe/framework:calculator_py_pb2",
|
||||||
"//mediapipe/python:_framework_bindings",
|
"//mediapipe/python:_framework_bindings",
|
||||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
|
|
|
@ -13,17 +13,22 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""MediaPipe vision task base api."""
|
"""MediaPipe vision task base api."""
|
||||||
|
|
||||||
|
import math
|
||||||
from typing import Callable, Mapping, Optional
|
from typing import Callable, Mapping, Optional
|
||||||
|
|
||||||
from mediapipe.framework import calculator_pb2
|
from mediapipe.framework import calculator_pb2
|
||||||
from mediapipe.python._framework_bindings import packet as packet_module
|
from mediapipe.python._framework_bindings import packet as packet_module
|
||||||
from mediapipe.python._framework_bindings import task_runner as task_runner_module
|
from mediapipe.python._framework_bindings import task_runner as task_runner_module
|
||||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
|
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
|
||||||
_TaskRunner = task_runner_module.TaskRunner
|
_TaskRunner = task_runner_module.TaskRunner
|
||||||
_Packet = packet_module.Packet
|
_Packet = packet_module.Packet
|
||||||
|
_NormalizedRect = rect_module.NormalizedRect
|
||||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
|
|
||||||
|
|
||||||
class BaseVisionTaskApi(object):
|
class BaseVisionTaskApi(object):
|
||||||
|
@ -122,6 +127,50 @@ class BaseVisionTaskApi(object):
|
||||||
+ self._running_mode.name)
|
+ self._running_mode.name)
|
||||||
self._runner.send(inputs)
|
self._runner.send(inputs)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def convert_to_normalized_rect(
|
||||||
|
options: _ImageProcessingOptions,
|
||||||
|
roi_allowed: bool = True
|
||||||
|
) -> _NormalizedRect:
|
||||||
|
"""
|
||||||
|
Convert from ImageProcessingOptions to NormalizedRect, performing sanity
|
||||||
|
checks on-the-fly. If the input ImageProcessingOptions is not present,
|
||||||
|
returns a default NormalizedRect covering the whole image with rotation set
|
||||||
|
to 0. If 'roi_allowed' is false, an error will be returned if the input
|
||||||
|
ImageProcessingOptions has its 'region_of_interest' field set.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
options: Options for image processing.
|
||||||
|
roi_allowed: Indicates if the `region_of_interest` field is allowed to be
|
||||||
|
set. By default, it's set to True.
|
||||||
|
|
||||||
|
"""
|
||||||
|
normalized_rect = _NormalizedRect(rotation=0, x_center=0.5, y_center=0.5,
|
||||||
|
width=1, height=1)
|
||||||
|
if options is None:
|
||||||
|
return normalized_rect
|
||||||
|
|
||||||
|
if options.rotation_degrees % 90 != 0:
|
||||||
|
raise ValueError("Expected rotation to be a multiple of 90°.")
|
||||||
|
|
||||||
|
# Convert to radians counter-clockwise.
|
||||||
|
normalized_rect.rotation = -options.rotation_degrees * math.pi / 180.0
|
||||||
|
|
||||||
|
if options.region_of_interest:
|
||||||
|
if not roi_allowed:
|
||||||
|
raise ValueError("This task doesn't support region-of-interest.")
|
||||||
|
roi = options.region_of_interest
|
||||||
|
if roi.x_center >= roi.width or roi.y_center >= roi.height:
|
||||||
|
raise ValueError(
|
||||||
|
"Expected Rect with x_center < width and y_center < height.")
|
||||||
|
if roi.x_center < 0 or roi.y_center < 0 or roi.width > 1 or roi.height > 1:
|
||||||
|
raise ValueError("Expected Rect values to be in [0,1].")
|
||||||
|
normalized_rect.x_center = roi.x_center + roi.width / 2.0
|
||||||
|
normalized_rect.y_center = roi.y_center + roi.height / 2.0
|
||||||
|
normalized_rect.width = roi.width - roi.x_center
|
||||||
|
normalized_rect.height = roi.height - roi.y_center
|
||||||
|
return normalized_rect
|
||||||
|
|
||||||
def close(self) -> None:
|
def close(self) -> None:
|
||||||
"""Shuts down the mediapipe vision task instance.
|
"""Shuts down the mediapipe vision task instance.
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,39 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""MediaPipe vision options for image processing."""
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class ImageProcessingOptions:
|
||||||
|
"""Options for image processing.
|
||||||
|
|
||||||
|
If both region-of-interest and rotation are specified, the crop around the
|
||||||
|
region-of-interest is extracted first, then the specified rotation is applied
|
||||||
|
to the crop.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
region_of_interest: The optional region-of-interest to crop from the image.
|
||||||
|
If not specified, the full image is used. Coordinates must be in [0,1]
|
||||||
|
with 'left' < 'right' and 'top' < bottom.
|
||||||
|
rotation_degress: The rotation to apply to the image (or cropped
|
||||||
|
region-of-interest), in degrees clockwise. The rotation must be a
|
||||||
|
multiple (positive or negative) of 90°.
|
||||||
|
"""
|
||||||
|
region_of_interest: Optional[rect_module.Rect] = None
|
||||||
|
rotation_degrees: int = 0
|
|
@ -27,7 +27,6 @@ from mediapipe.tasks.cc.vision.gesture_recognizer.proto import hand_gesture_reco
|
||||||
from mediapipe.tasks.cc.vision.hand_detector.proto import hand_detector_graph_options_pb2
|
from mediapipe.tasks.cc.vision.hand_detector.proto import hand_detector_graph_options_pb2
|
||||||
from mediapipe.tasks.cc.vision.hand_landmarker.proto import hand_landmarker_graph_options_pb2
|
from mediapipe.tasks.cc.vision.hand_landmarker.proto import hand_landmarker_graph_options_pb2
|
||||||
from mediapipe.tasks.cc.vision.hand_landmarker.proto import hand_landmarks_detector_graph_options_pb2
|
from mediapipe.tasks.cc.vision.hand_landmarker.proto import hand_landmarks_detector_graph_options_pb2
|
||||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
|
||||||
from mediapipe.tasks.python.components.containers import classification as classification_module
|
from mediapipe.tasks.python.components.containers import classification as classification_module
|
||||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||||
from mediapipe.tasks.python.components.processors import classifier_options
|
from mediapipe.tasks.python.components.processors import classifier_options
|
||||||
|
@ -36,8 +35,8 @@ from mediapipe.tasks.python.core import task_info as task_info_module
|
||||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
|
||||||
_NormalizedRect = rect_module.NormalizedRect
|
|
||||||
_BaseOptions = base_options_module.BaseOptions
|
_BaseOptions = base_options_module.BaseOptions
|
||||||
_GestureClassifierGraphOptionsProto = gesture_classifier_graph_options_pb2.GestureClassifierGraphOptions
|
_GestureClassifierGraphOptionsProto = gesture_classifier_graph_options_pb2.GestureClassifierGraphOptions
|
||||||
_GestureRecognizerGraphOptionsProto = gesture_recognizer_graph_options_pb2.GestureRecognizerGraphOptions
|
_GestureRecognizerGraphOptionsProto = gesture_recognizer_graph_options_pb2.GestureRecognizerGraphOptions
|
||||||
|
@ -47,6 +46,7 @@ _HandLandmarkerGraphOptionsProto = hand_landmarker_graph_options_pb2.HandLandmar
|
||||||
_HandLandmarksDetectorGraphOptionsProto = hand_landmarks_detector_graph_options_pb2.HandLandmarksDetectorGraphOptions
|
_HandLandmarksDetectorGraphOptionsProto = hand_landmarks_detector_graph_options_pb2.HandLandmarksDetectorGraphOptions
|
||||||
_ClassifierOptions = classifier_options.ClassifierOptions
|
_ClassifierOptions = classifier_options.ClassifierOptions
|
||||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
_TaskInfo = task_info_module.TaskInfo
|
_TaskInfo = task_info_module.TaskInfo
|
||||||
_TaskRunner = task_runner_module.TaskRunner
|
_TaskRunner = task_runner_module.TaskRunner
|
||||||
|
|
||||||
|
@ -67,11 +67,6 @@ _TASK_GRAPH_NAME = 'mediapipe.tasks.vision.gesture_recognizer.GestureRecognizerG
|
||||||
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||||
|
|
||||||
|
|
||||||
def _build_full_image_norm_rect() -> _NormalizedRect:
|
|
||||||
# Builds a NormalizedRect covering the entire image.
|
|
||||||
return _NormalizedRect(x_center=0.5, y_center=0.5, width=1, height=1)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclasses.dataclass
|
@dataclasses.dataclass
|
||||||
class GestureRecognitionResult:
|
class GestureRecognitionResult:
|
||||||
"""The gesture recognition result from GestureRecognizer, where each vector
|
"""The gesture recognition result from GestureRecognizer, where each vector
|
||||||
|
@ -278,7 +273,7 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
def recognize(
|
def recognize(
|
||||||
self,
|
self,
|
||||||
image: image_module.Image,
|
image: image_module.Image,
|
||||||
roi: Optional[_NormalizedRect] = None
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
) -> GestureRecognitionResult:
|
) -> GestureRecognitionResult:
|
||||||
"""Performs hand gesture recognition on the given image. Only use this
|
"""Performs hand gesture recognition on the given image. Only use this
|
||||||
method when the GestureRecognizer is created with the image running mode.
|
method when the GestureRecognizer is created with the image running mode.
|
||||||
|
@ -289,7 +284,7 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
image: MediaPipe Image.
|
image: MediaPipe Image.
|
||||||
roi: The region of interest.
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The hand gesture recognition results.
|
The hand gesture recognition results.
|
||||||
|
@ -298,11 +293,16 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
ValueError: If any of the input arguments is invalid.
|
ValueError: If any of the input arguments is invalid.
|
||||||
RuntimeError: If gesture recognition failed to run.
|
RuntimeError: If gesture recognition failed to run.
|
||||||
"""
|
"""
|
||||||
norm_rect = roi if roi is not None else _build_full_image_norm_rect()
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options,
|
||||||
|
roi_allowed=False)
|
||||||
output_packets = self._process_image_data({
|
output_packets = self._process_image_data({
|
||||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
||||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
norm_rect.to_pb2())})
|
normalized_rect.to_pb2())})
|
||||||
|
|
||||||
|
if output_packets[_HAND_GESTURE_STREAM_NAME].is_empty():
|
||||||
|
return GestureRecognitionResult([], [], [], [])
|
||||||
|
|
||||||
gestures_proto_list = packet_getter.get_proto_list(
|
gestures_proto_list = packet_getter.get_proto_list(
|
||||||
output_packets[_HAND_GESTURE_STREAM_NAME])
|
output_packets[_HAND_GESTURE_STREAM_NAME])
|
||||||
handedness_proto_list = packet_getter.get_proto_list(
|
handedness_proto_list = packet_getter.get_proto_list(
|
||||||
|
@ -331,7 +331,7 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
def recognize_for_video(
|
def recognize_for_video(
|
||||||
self, image: image_module.Image,
|
self, image: image_module.Image,
|
||||||
timestamp_ms: int,
|
timestamp_ms: int,
|
||||||
roi: Optional[_NormalizedRect] = None
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
) -> GestureRecognitionResult:
|
) -> GestureRecognitionResult:
|
||||||
"""Performs gesture recognition on the provided video frame. Only use this
|
"""Performs gesture recognition on the provided video frame. Only use this
|
||||||
method when the GestureRecognizer is created with the video running mode.
|
method when the GestureRecognizer is created with the video running mode.
|
||||||
|
@ -344,7 +344,7 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
Args:
|
Args:
|
||||||
image: MediaPipe Image.
|
image: MediaPipe Image.
|
||||||
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||||
roi: The region of interest.
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The hand gesture recognition results.
|
The hand gesture recognition results.
|
||||||
|
@ -353,14 +353,19 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
ValueError: If any of the input arguments is invalid.
|
ValueError: If any of the input arguments is invalid.
|
||||||
RuntimeError: If gesture recognition failed to run.
|
RuntimeError: If gesture recognition failed to run.
|
||||||
"""
|
"""
|
||||||
norm_rect = roi if roi is not None else _build_full_image_norm_rect()
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options,
|
||||||
|
roi_allowed=False)
|
||||||
output_packets = self._process_video_data({
|
output_packets = self._process_video_data({
|
||||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
norm_rect.to_pb2()).at(
|
normalized_rect.to_pb2()).at(
|
||||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
if output_packets[_HAND_GESTURE_STREAM_NAME].is_empty():
|
||||||
|
return GestureRecognitionResult([], [], [], [])
|
||||||
|
|
||||||
gestures_proto_list = packet_getter.get_proto_list(
|
gestures_proto_list = packet_getter.get_proto_list(
|
||||||
output_packets[_HAND_GESTURE_STREAM_NAME])
|
output_packets[_HAND_GESTURE_STREAM_NAME])
|
||||||
handedness_proto_list = packet_getter.get_proto_list(
|
handedness_proto_list = packet_getter.get_proto_list(
|
||||||
|
@ -390,7 +395,7 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
self,
|
self,
|
||||||
image: image_module.Image,
|
image: image_module.Image,
|
||||||
timestamp_ms: int,
|
timestamp_ms: int,
|
||||||
roi: Optional[_NormalizedRect] = None
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Sends live image data to perform gesture recognition, and the results
|
"""Sends live image data to perform gesture recognition, and the results
|
||||||
will be available via the "result_callback" provided in the
|
will be available via the "result_callback" provided in the
|
||||||
|
@ -415,17 +420,18 @@ class GestureRecognizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
Args:
|
Args:
|
||||||
image: MediaPipe Image.
|
image: MediaPipe Image.
|
||||||
timestamp_ms: The timestamp of the input image in milliseconds.
|
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||||
roi: The region of interest.
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError: If the current input timestamp is smaller than what the
|
ValueError: If the current input timestamp is smaller than what the
|
||||||
gesture recognizer has already processed.
|
gesture recognizer has already processed.
|
||||||
"""
|
"""
|
||||||
norm_rect = roi if roi is not None else _build_full_image_norm_rect()
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options,
|
||||||
|
roi_allowed=False)
|
||||||
self._send_live_stream_data({
|
self._send_live_stream_data({
|
||||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
norm_rect.to_pb2()).at(
|
normalized_rect.to_pb2()).at(
|
||||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||||
})
|
})
|
||||||
|
|
Loading…
Reference in New Issue
Block a user