Add mediapipe tasks face detector graph

PiperOrigin-RevId: 504078951
This commit is contained in:
MediaPipe Team 2023-01-23 14:13:38 -08:00 committed by Copybara-Service
parent ccd1461add
commit 873d7181bf
8 changed files with 584 additions and 4 deletions

View File

@ -0,0 +1,61 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
package(default_visibility = [
# "//mediapipe/tasks:internal",
"//visibility:public",
])
licenses(["notice"])
cc_library(
name = "face_detector_graph",
srcs = ["face_detector_graph.cc"],
deps = [
"//mediapipe/calculators/core:clip_vector_size_calculator",
"//mediapipe/calculators/core:clip_vector_size_calculator_cc_proto",
"//mediapipe/calculators/tensor:image_to_tensor_calculator_cc_proto",
"//mediapipe/calculators/tensor:inference_calculator",
"//mediapipe/calculators/tensor:tensors_to_detections_calculator",
"//mediapipe/calculators/tensor:tensors_to_detections_calculator_cc_proto",
"//mediapipe/calculators/tflite:ssd_anchors_calculator",
"//mediapipe/calculators/tflite:ssd_anchors_calculator_cc_proto",
"//mediapipe/calculators/util:detection_label_id_to_text_calculator",
"//mediapipe/calculators/util:detection_label_id_to_text_calculator_cc_proto",
"//mediapipe/calculators/util:detection_projection_calculator",
"//mediapipe/calculators/util:detections_to_rects_calculator",
"//mediapipe/calculators/util:detections_to_rects_calculator_cc_proto",
"//mediapipe/calculators/util:non_max_suppression_calculator",
"//mediapipe/calculators/util:non_max_suppression_calculator_cc_proto",
"//mediapipe/calculators/util:rect_transformation_calculator",
"//mediapipe/calculators/util:rect_transformation_calculator_cc_proto",
"//mediapipe/framework/api2:builder",
"//mediapipe/framework/api2:port",
"//mediapipe/framework/formats:detection_cc_proto",
"//mediapipe/framework/formats:image",
"//mediapipe/framework/formats:rect_cc_proto",
"//mediapipe/framework/formats:tensor",
"//mediapipe/tasks/cc:common",
"//mediapipe/tasks/cc/components/processors:image_preprocessing_graph",
"//mediapipe/tasks/cc/core:model_resources",
"//mediapipe/tasks/cc/core:model_task_graph",
"//mediapipe/tasks/cc/core:utils",
"//mediapipe/tasks/cc/core/proto:inference_subgraph_cc_proto",
"//mediapipe/tasks/cc/vision/face_detector/proto:face_detector_graph_options_cc_proto",
"//mediapipe/tasks/cc/vision/utils:image_tensor_specs",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
],
alwayslink = 1,
)

View File

@ -0,0 +1,208 @@
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "mediapipe/calculators/core/clip_vector_size_calculator.pb.h"
#include "mediapipe/calculators/tensor/image_to_tensor_calculator.pb.h"
#include "mediapipe/calculators/tensor/tensors_to_detections_calculator.pb.h"
#include "mediapipe/calculators/tflite/ssd_anchors_calculator.pb.h"
#include "mediapipe/calculators/util/detection_label_id_to_text_calculator.pb.h"
#include "mediapipe/calculators/util/detections_to_rects_calculator.pb.h"
#include "mediapipe/calculators/util/non_max_suppression_calculator.pb.h"
#include "mediapipe/calculators/util/rect_transformation_calculator.pb.h"
#include "mediapipe/framework/api2/builder.h"
#include "mediapipe/framework/api2/port.h"
#include "mediapipe/framework/formats/detection.pb.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/framework/formats/rect.pb.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/tasks/cc/common.h"
#include "mediapipe/tasks/cc/components/processors/image_preprocessing_graph.h"
#include "mediapipe/tasks/cc/core/model_resources.h"
#include "mediapipe/tasks/cc/core/model_task_graph.h"
#include "mediapipe/tasks/cc/core/proto/inference_subgraph.pb.h"
#include "mediapipe/tasks/cc/core/utils.h"
#include "mediapipe/tasks/cc/vision/face_detector/proto/face_detector_graph_options.pb.h"
#include "mediapipe/tasks/cc/vision/utils/image_tensor_specs.h"
namespace mediapipe {
namespace tasks {
namespace vision {
namespace face_detector {
using ::mediapipe::NormalizedRect;
using ::mediapipe::Tensor;
using ::mediapipe::api2::Input;
using ::mediapipe::api2::Output;
using ::mediapipe::api2::builder::Graph;
using ::mediapipe::api2::builder::Source;
using ::mediapipe::tasks::vision::face_detector::proto::
FaceDetectorGraphOptions;
namespace {
constexpr char kImageTag[] = "IMAGE";
constexpr char kNormRectTag[] = "NORM_RECT";
constexpr char kDetectionsTag[] = "DETECTIONS";
void ConfigureSsdAnchorsCalculator(
mediapipe::SsdAnchorsCalculatorOptions* options) {
// TODO config SSD anchors parameters from metadata.
options->set_num_layers(1);
options->set_min_scale(0.1484375);
options->set_max_scale(0.75);
options->set_input_size_height(192);
options->set_input_size_width(192);
options->set_anchor_offset_x(0.5);
options->set_anchor_offset_y(0.5);
options->add_strides(4);
options->add_aspect_ratios(1.0);
options->set_fixed_anchor_size(true);
options->set_interpolated_scale_aspect_ratio(0.0);
}
void ConfigureTensorsToDetectionsCalculator(
const FaceDetectorGraphOptions& tasks_options,
mediapipe::TensorsToDetectionsCalculatorOptions* options) {
// TODO use metadata to configure these fields.
options->set_num_classes(1);
options->set_num_boxes(2304);
options->set_num_coords(16);
options->set_box_coord_offset(0);
options->set_keypoint_coord_offset(4);
options->set_num_keypoints(6);
options->set_num_values_per_keypoint(2);
options->set_sigmoid_score(true);
options->set_score_clipping_thresh(100.0);
options->set_reverse_output_order(true);
options->set_min_score_thresh(tasks_options.min_detection_confidence());
options->set_x_scale(192.0);
options->set_y_scale(192.0);
options->set_w_scale(192.0);
options->set_h_scale(192.0);
}
void ConfigureNonMaxSuppressionCalculator(
const FaceDetectorGraphOptions& tasks_options,
mediapipe::NonMaxSuppressionCalculatorOptions* options) {
options->set_min_suppression_threshold(
tasks_options.min_suppression_threshold());
options->set_overlap_type(
mediapipe::NonMaxSuppressionCalculatorOptions::INTERSECTION_OVER_UNION);
options->set_algorithm(
mediapipe::NonMaxSuppressionCalculatorOptions::WEIGHTED);
}
} // namespace
class FaceDetectorGraph : public core::ModelTaskGraph {
public:
absl::StatusOr<CalculatorGraphConfig> GetConfig(
SubgraphContext* sc) override {
ASSIGN_OR_RETURN(const auto* model_resources,
CreateModelResources<FaceDetectorGraphOptions>(sc));
Graph graph;
ASSIGN_OR_RETURN(auto face_detections,
BuildFaceDetectionSubgraph(
sc->Options<FaceDetectorGraphOptions>(),
*model_resources, graph[Input<Image>(kImageTag)],
graph[Input<NormalizedRect>(kNormRectTag)], graph));
face_detections >> graph[Output<std::vector<Detection>>(kDetectionsTag)];
return graph.GetConfig();
}
private:
absl::StatusOr<Source<std::vector<Detection>>> BuildFaceDetectionSubgraph(
const FaceDetectorGraphOptions& subgraph_options,
const core::ModelResources& model_resources, Source<Image> image_in,
Source<NormalizedRect> norm_rect_in, Graph& graph) {
// Image preprocessing subgraph to convert image to tensor for the tflite
// model.
auto& preprocessing = graph.AddNode(
"mediapipe.tasks.components.processors.ImagePreprocessingGraph");
bool use_gpu =
components::processors::DetermineImagePreprocessingGpuBackend(
subgraph_options.base_options().acceleration());
MP_RETURN_IF_ERROR(components::processors::ConfigureImagePreprocessingGraph(
model_resources, use_gpu,
&preprocessing.GetOptions<
components::processors::proto::ImagePreprocessingGraphOptions>()));
auto& image_to_tensor_options =
*preprocessing
.GetOptions<components::processors::proto::
ImagePreprocessingGraphOptions>()
.mutable_image_to_tensor_options();
image_to_tensor_options.set_keep_aspect_ratio(true);
image_to_tensor_options.set_border_mode(
mediapipe::ImageToTensorCalculatorOptions::BORDER_ZERO);
image_in >> preprocessing.In("IMAGE");
norm_rect_in >> preprocessing.In("NORM_RECT");
auto preprocessed_tensors = preprocessing.Out("TENSORS");
auto matrix = preprocessing.Out("MATRIX");
// Face detection model inferece.
auto& inference = AddInference(
model_resources, subgraph_options.base_options().acceleration(), graph);
preprocessed_tensors >> inference.In("TENSORS");
auto model_output_tensors =
inference.Out("TENSORS").Cast<std::vector<Tensor>>();
// Generates a single side packet containing a vector of SSD anchors.
auto& ssd_anchor = graph.AddNode("SsdAnchorsCalculator");
ConfigureSsdAnchorsCalculator(
&ssd_anchor.GetOptions<mediapipe::SsdAnchorsCalculatorOptions>());
auto anchors = ssd_anchor.SideOut("");
// Converts output tensors to Detections.
auto& tensors_to_detections =
graph.AddNode("TensorsToDetectionsCalculator");
ConfigureTensorsToDetectionsCalculator(
subgraph_options,
&tensors_to_detections
.GetOptions<mediapipe::TensorsToDetectionsCalculatorOptions>());
model_output_tensors >> tensors_to_detections.In("TENSORS");
anchors >> tensors_to_detections.SideIn("ANCHORS");
auto detections = tensors_to_detections.Out("DETECTIONS");
// Non maximum suppression removes redundant face detections.
auto& non_maximum_suppression =
graph.AddNode("NonMaxSuppressionCalculator");
ConfigureNonMaxSuppressionCalculator(
subgraph_options,
&non_maximum_suppression
.GetOptions<mediapipe::NonMaxSuppressionCalculatorOptions>());
detections >> non_maximum_suppression.In("");
auto nms_detections = non_maximum_suppression.Out("");
// Projects detections back into the input image coordinates system.
auto& detection_projection = graph.AddNode("DetectionProjectionCalculator");
nms_detections >> detection_projection.In("DETECTIONS");
matrix >> detection_projection.In("PROJECTION_MATRIX");
auto face_detections =
detection_projection[Output<std::vector<Detection>>("DETECTIONS")];
return {face_detections};
}
};
REGISTER_MEDIAPIPE_GRAPH(
::mediapipe::tasks::vision::face_detector::FaceDetectorGraph);
} // namespace face_detector
} // namespace vision
} // namespace tasks
} // namespace mediapipe

View File

@ -0,0 +1,183 @@
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cmath>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/flags/flag.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "mediapipe/framework/api2/builder.h"
#include "mediapipe/framework/api2/port.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/deps/file_path.h"
#include "mediapipe/framework/formats/detection.pb.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/framework/formats/rect.pb.h"
#include "mediapipe/framework/packet.h"
#include "mediapipe/framework/port/file_helpers.h"
#include "mediapipe/framework/port/gmock.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/tasks/cc/core/mediapipe_builtin_op_resolver.h"
#include "mediapipe/tasks/cc/core/model_resources.h"
#include "mediapipe/tasks/cc/core/proto/base_options.pb.h"
#include "mediapipe/tasks/cc/core/proto/external_file.pb.h"
#include "mediapipe/tasks/cc/core/task_runner.h"
#include "mediapipe/tasks/cc/vision/face_detector/proto/face_detector_graph_options.pb.h"
#include "mediapipe/tasks/cc/vision/utils/image_utils.h"
namespace mediapipe {
namespace tasks {
namespace vision {
namespace face_detector {
namespace {
using ::file::Defaults;
using ::file::GetTextProto;
using ::mediapipe::NormalizedRect;
using ::mediapipe::api2::Input;
using ::mediapipe::api2::Output;
using ::mediapipe::api2::builder::Graph;
using ::mediapipe::api2::builder::Source;
using ::mediapipe::file::JoinPath;
using ::mediapipe::tasks::core::TaskRunner;
using ::mediapipe::tasks::vision::DecodeImageFromFile;
using ::mediapipe::tasks::vision::face_detector::proto::
FaceDetectorGraphOptions;
using ::testing::EqualsProto;
using ::testing::Pointwise;
using ::testing::TestParamInfo;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::proto::Approximately;
using ::testing::proto::Partially;
constexpr char kTestDataDirectory[] = "/mediapipe/tasks/testdata/vision/";
constexpr char kFullRangeBlazeFaceModel[] = "face_detection_full_range.tflite";
constexpr char kFullRangeSparseBlazeFaceModel[] =
"face_detection_full_range_sparse.tflite";
constexpr char kPortraitImage[] = "portrait.jpg";
constexpr char kPortraitExpectedDetection[] =
"portrait_expected_detection.pbtxt";
constexpr char kImageTag[] = "IMAGE";
constexpr char kImageName[] = "image";
constexpr char kNormRectTag[] = "NORM_RECT";
constexpr char kNormRectName[] = "norm_rect";
constexpr char kDetectionsTag[] = "DETECTIONS";
constexpr char kDetectionsName[] = "detections";
constexpr float kFaceDetectionMaxDiff = 0.01;
// Helper function to create a TaskRunner.
absl::StatusOr<std::unique_ptr<TaskRunner>> CreateTaskRunner(
absl::string_view model_name) {
Graph graph;
auto& face_detector_graph =
graph.AddNode("mediapipe.tasks.vision.face_detector.FaceDetectorGraph");
auto options = std::make_unique<FaceDetectorGraphOptions>();
options->mutable_base_options()->mutable_model_asset()->set_file_name(
JoinPath("./", kTestDataDirectory, model_name));
options->set_min_detection_confidence(0.6);
options->set_min_suppression_threshold(0.3);
face_detector_graph.GetOptions<FaceDetectorGraphOptions>().Swap(
options.get());
graph[Input<Image>(kImageTag)].SetName(kImageName) >>
face_detector_graph.In(kImageTag);
graph[Input<NormalizedRect>(kNormRectTag)].SetName(kNormRectName) >>
face_detector_graph.In(kNormRectTag);
face_detector_graph.Out(kDetectionsTag).SetName(kDetectionsName) >>
graph[Output<std::vector<Detection>>(kDetectionsTag)];
return TaskRunner::Create(
graph.GetConfig(), std::make_unique<core::MediaPipeBuiltinOpResolver>());
}
Detection GetExpectedFaceDetectionResult(absl::string_view file_name) {
Detection detection;
CHECK_OK(GetTextProto(file::JoinPath("./", kTestDataDirectory, file_name),
&detection, Defaults()))
<< "Expected face detection result does not exist.";
return detection;
}
struct TestParams {
// The name of this test, for convenience when displaying test results.
std::string test_name;
// The filename of face landmark detection model.
std::string face_detection_model_name;
// The filename of test image.
std::string test_image_name;
// Expected face detection results.
std::vector<Detection> expected_result;
};
class FaceDetectorGraphTest : public testing::TestWithParam<TestParams> {};
TEST_P(FaceDetectorGraphTest, Succeed) {
MP_ASSERT_OK_AND_ASSIGN(
Image image, DecodeImageFromFile(JoinPath("./", kTestDataDirectory,
GetParam().test_image_name)));
NormalizedRect input_norm_rect;
input_norm_rect.set_x_center(0.5);
input_norm_rect.set_y_center(0.5);
input_norm_rect.set_width(1.0);
input_norm_rect.set_height(1.0);
MP_ASSERT_OK_AND_ASSIGN(
auto task_runner, CreateTaskRunner(GetParam().face_detection_model_name));
auto output_packets = task_runner->Process(
{{kImageName, MakePacket<Image>(std::move(image))},
{kNormRectName,
MakePacket<NormalizedRect>(std::move(input_norm_rect))}});
MP_ASSERT_OK(output_packets);
const std::vector<Detection>& face_detections =
(*output_packets)[kDetectionsName].Get<std::vector<Detection>>();
EXPECT_THAT(face_detections, Pointwise(Approximately(Partially(EqualsProto()),
kFaceDetectionMaxDiff),
GetParam().expected_result));
}
INSTANTIATE_TEST_SUITE_P(
FaceDetectorGraphTest, FaceDetectorGraphTest,
Values(TestParams{.test_name = "FullRange",
.face_detection_model_name = kFullRangeBlazeFaceModel,
.test_image_name = kPortraitImage,
.expected_result = {GetExpectedFaceDetectionResult(
kPortraitExpectedDetection)}},
TestParams{
.test_name = "FullRangeSparse",
.face_detection_model_name = kFullRangeSparseBlazeFaceModel,
.test_image_name = kPortraitImage,
.expected_result = {GetExpectedFaceDetectionResult(
kPortraitExpectedDetection)}}),
[](const TestParamInfo<FaceDetectorGraphTest::ParamType>& info) {
return info.param.test_name;
});
} // namespace
} // namespace face_detector
} // namespace vision
} // namespace tasks
} // namespace mediapipe

View File

@ -0,0 +1,31 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
package(default_visibility = [
"//mediapipe/tasks:internal",
])
licenses(["notice"])
mediapipe_proto_library(
name = "face_detector_graph_options_proto",
srcs = ["face_detector_graph_options.proto"],
deps = [
"//mediapipe/framework:calculator_options_proto",
"//mediapipe/framework:calculator_proto",
"//mediapipe/tasks/cc/core/proto:base_options_proto",
],
)

View File

@ -0,0 +1,42 @@
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
syntax = "proto2";
package mediapipe.tasks.vision.face_detector.proto;
import "mediapipe/framework/calculator.proto";
import "mediapipe/framework/calculator_options.proto";
import "mediapipe/tasks/cc/core/proto/base_options.proto";
option java_package = "com.google.mediapipe.tasks.vision.facedetector.proto";
option java_outer_classname = "FaceDetectorGraphOptionsProto";
message FaceDetectorGraphOptions {
extend mediapipe.CalculatorOptions {
optional FaceDetectorGraphOptions ext = 502141897;
}
// Base options for configuring Task library, such as specifying the TfLite
// model file with metadata, accelerator options, etc.
optional core.proto.BaseOptions base_options = 1;
// Minimum confidence value ([0.0, 1.0]) for confidence score to be considered
// successfully detecting a face in the image.
optional float min_detection_confidence = 2 [default = 0.5];
// IoU threshold ([0,0, 1.0]) for non-maximu-suppression to be considered
// duplicate detetions.
optional float min_suppression_threshold = 3 [default = 0.5];
}

View File

@ -37,6 +37,8 @@ mediapipe_files(srcs = [
"coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite", "coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite",
"coco_ssd_mobilenet_v1_1.0_quant_2018_06_29_with_dummy_score_calibration.tflite", "coco_ssd_mobilenet_v1_1.0_quant_2018_06_29_with_dummy_score_calibration.tflite",
"deeplabv3.tflite", "deeplabv3.tflite",
"face_detection_full_range.tflite",
"face_detection_full_range_sparse.tflite",
"fist.jpg", "fist.jpg",
"fist.png", "fist.png",
"hand_landmark_full.tflite", "hand_landmark_full.tflite",
@ -58,6 +60,7 @@ mediapipe_files(srcs = [
"palm_detection_full.tflite", "palm_detection_full.tflite",
"pointing_up.jpg", "pointing_up.jpg",
"pointing_up_rotated.jpg", "pointing_up_rotated.jpg",
"portrait.jpg",
"right_hands.jpg", "right_hands.jpg",
"right_hands_rotated.jpg", "right_hands_rotated.jpg",
"segmentation_golden_rotation0.png", "segmentation_golden_rotation0.png",
@ -79,6 +82,7 @@ exports_files(
"expected_right_down_hand_landmarks.prototxt", "expected_right_down_hand_landmarks.prototxt",
"expected_right_up_hand_landmarks.prototxt", "expected_right_up_hand_landmarks.prototxt",
"gesture_recognizer.task", "gesture_recognizer.task",
"portrait_expected_detection.pbtxt",
], ],
) )
@ -106,6 +110,7 @@ filegroup(
"multi_objects_rotated.jpg", "multi_objects_rotated.jpg",
"pointing_up.jpg", "pointing_up.jpg",
"pointing_up_rotated.jpg", "pointing_up_rotated.jpg",
"portrait.jpg",
"right_hands.jpg", "right_hands.jpg",
"right_hands_rotated.jpg", "right_hands_rotated.jpg",
"segmentation_golden_rotation0.png", "segmentation_golden_rotation0.png",
@ -129,6 +134,8 @@ filegroup(
"coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite", "coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite",
"coco_ssd_mobilenet_v1_1.0_quant_2018_06_29_with_dummy_score_calibration.tflite", "coco_ssd_mobilenet_v1_1.0_quant_2018_06_29_with_dummy_score_calibration.tflite",
"deeplabv3.tflite", "deeplabv3.tflite",
"face_detection_full_range.tflite",
"face_detection_full_range_sparse.tflite",
"hand_landmark_full.tflite", "hand_landmark_full.tflite",
"hand_landmark_lite.tflite", "hand_landmark_lite.tflite",
"hand_landmarker.task", "hand_landmarker.task",
@ -161,6 +168,7 @@ filegroup(
"hand_detector_result_two_hands.pbtxt", "hand_detector_result_two_hands.pbtxt",
"pointing_up_landmarks.pbtxt", "pointing_up_landmarks.pbtxt",
"pointing_up_rotated_landmarks.pbtxt", "pointing_up_rotated_landmarks.pbtxt",
"portrait_expected_detection.pbtxt",
"thumb_up_landmarks.pbtxt", "thumb_up_landmarks.pbtxt",
"thumb_up_rotated_landmarks.pbtxt", "thumb_up_rotated_landmarks.pbtxt",
"victory_landmarks.pbtxt", "victory_landmarks.pbtxt",

View File

@ -0,0 +1,35 @@
# proto-file: mediapipe/framework/formats/detection.proto
# proto-message: Detection
location_data {
format: RELATIVE_BOUNDING_BOX
relative_bounding_box {
xmin: 0.35494408
ymin: 0.1059662
width: 0.28768203
height: 0.23037356
}
relative_keypoints {
x: 0.44416338
y: 0.17643969
}
relative_keypoints {
x: 0.55514044
y: 0.17731678
}
relative_keypoints {
x: 0.5046702
y: 0.2265771
}
relative_keypoints {
x: 0.50227845
y: 0.2719954
}
relative_keypoints {
x: 0.37245658
y: 0.20143759
}
relative_keypoints {
x: 0.6084143
y: 0.20409837
}
}

View File

@ -240,14 +240,14 @@ def external_files():
http_file( http_file(
name = "com_google_mediapipe_face_detection_full_range_sparse_tflite", name = "com_google_mediapipe_face_detection_full_range_sparse_tflite",
sha256 = "671dd2f9ed11a78436fc21cc42357a803dfc6f73e9fb86541be942d5716c2dce", sha256 = "2c3728e6da56f21e21a320433396fb06d40d9088f2247c05e5635a688d45dfe1",
urls = ["https://storage.googleapis.com/mediapipe-assets/face_detection_full_range_sparse.tflite?generation=1661875739104017"], urls = ["https://storage.googleapis.com/mediapipe-assets/face_detection_full_range_sparse.tflite?generation=1674261618323821"],
) )
http_file( http_file(
name = "com_google_mediapipe_face_detection_full_range_tflite", name = "com_google_mediapipe_face_detection_full_range_tflite",
sha256 = "99bf9494d84f50acc6617d89873f71bf6635a841ea699c17cb3377f9507cfec3", sha256 = "3698b18f063835bc609069ef052228fbe86d9c9a6dc8dcb7c7c2d69aed2b181b",
urls = ["https://storage.googleapis.com/mediapipe-assets/face_detection_full_range.tflite?generation=1661875742733283"], urls = ["https://storage.googleapis.com/mediapipe-assets/face_detection_full_range.tflite?generation=1674261620964007"],
) )
http_file( http_file(
@ -712,6 +712,18 @@ def external_files():
urls = ["https://storage.googleapis.com/mediapipe-assets/pointing_up_rotated_landmarks.pbtxt?generation=1666629486774022"], urls = ["https://storage.googleapis.com/mediapipe-assets/pointing_up_rotated_landmarks.pbtxt?generation=1666629486774022"],
) )
http_file(
name = "com_google_mediapipe_portrait_expected_detection_pbtxt",
sha256 = "bb54e08e87844ef14bb185d5cb808908eb6011bfa6db48bd22d9650f6fda338b",
urls = ["https://storage.googleapis.com/mediapipe-assets/portrait_expected_detection.pbtxt?generation=1674261627835475"],
)
http_file(
name = "com_google_mediapipe_portrait_jpg",
sha256 = "a6f11efaa834706db23f275b6115058fa87fc7f14362681e6abe14e82749de3e",
urls = ["https://storage.googleapis.com/mediapipe-assets/portrait.jpg?generation=1674261630039907"],
)
http_file( http_file(
name = "com_google_mediapipe_pose_detection_tflite", name = "com_google_mediapipe_pose_detection_tflite",
sha256 = "a63c614bef30d35947f13be361820b1e4e3bec9cfeebf4d11216a18373108e85", sha256 = "a63c614bef30d35947f13be361820b1e4e3bec9cfeebf4d11216a18373108e85",