Internal cleanup for text-domain unit tests.

PiperOrigin-RevId: 482241566
This commit is contained in:
MediaPipe Team 2022-10-19 10:29:57 -07:00 committed by Copybara-Service
parent a18f91e04f
commit 8426428de3

View File

@ -0,0 +1,130 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/gmock.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status_matchers.h"
#include "mediapipe/framework/tool/sink.h"
#include "mediapipe/tasks/cc/core/utils.h"
#include "mediapipe/tasks/cc/metadata/metadata_extractor.h"
namespace mediapipe {
namespace {
using ::mediapipe::tasks::metadata::ModelMetadataExtractor;
using ::testing::ElementsAreArray;
constexpr int kMaxSeqLen = 256;
constexpr char kTestModelPath[] =
"mediapipe/tasks/testdata/text/"
"test_model_text_classifier_with_regex_tokenizer.tflite";
absl::StatusOr<std::vector<int>> RunRegexPreprocessorCalculator(
absl::string_view text) {
auto graph_config =
ParseTextProtoOrDie<CalculatorGraphConfig>(absl::Substitute(
R"pb(
input_stream: "text"
output_stream: "tensors"
node {
calculator: "RegexPreprocessorCalculator"
input_stream: "TEXT:text"
input_side_packet: "METADATA_EXTRACTOR:metadata_extractor"
output_stream: "TENSORS:tensors"
options {
[mediapipe.RegexPreprocessorCalculatorOptions.ext] {
max_seq_len: $0
}
}
}
)pb",
kMaxSeqLen));
std::vector<Packet> output_packets;
tool::AddVectorSink("tensors", &graph_config, &output_packets);
std::string model_buffer = tasks::core::LoadBinaryContent(kTestModelPath);
ASSIGN_OR_RETURN(std::unique_ptr<ModelMetadataExtractor> metadata_extractor,
ModelMetadataExtractor::CreateFromModelBuffer(
model_buffer.data(), model_buffer.size()));
// Run the graph.
CalculatorGraph graph;
MP_RETURN_IF_ERROR(graph.Initialize(
graph_config,
{{"metadata_extractor",
MakePacket<ModelMetadataExtractor>(std::move(*metadata_extractor))}}));
MP_RETURN_IF_ERROR(graph.StartRun({}));
MP_RETURN_IF_ERROR(graph.AddPacketToInputStream(
"text", MakePacket<std::string>(text).At(Timestamp(0))));
MP_RETURN_IF_ERROR(graph.WaitUntilIdle());
if (output_packets.size() != 1) {
return absl::InvalidArgumentError(absl::Substitute(
"output_packets has size $0, expected 1", output_packets.size()));
}
const std::vector<Tensor>& tensor_vec =
output_packets[0].Get<std::vector<Tensor>>();
if (tensor_vec.size() != 1) {
return absl::InvalidArgumentError(absl::Substitute(
"tensor_vec has size $0, expected $1", tensor_vec.size(), 1));
}
if (tensor_vec[0].element_type() != Tensor::ElementType::kInt32) {
return absl::InvalidArgumentError("Expected tensor element type kInt32");
}
auto* buffer = tensor_vec[0].GetCpuReadView().buffer<int>();
std::vector<int> result(buffer, buffer + kMaxSeqLen);
MP_RETURN_IF_ERROR(graph.CloseAllPacketSources());
MP_RETURN_IF_ERROR(graph.WaitUntilDone());
return result;
}
TEST(RegexPreprocessorCalculatorTest, TextClassifierModel) {
MP_ASSERT_OK_AND_ASSIGN(
std::vector<int> processed_tensor_values,
RunRegexPreprocessorCalculator("This is the best movie Ive seen in "
"recent years. Strongly recommend it!"));
static const int expected_result[kMaxSeqLen] = {
1, 2, 9, 4, 118, 20, 2, 2, 110, 11, 1136, 153, 2, 386, 12};
EXPECT_THAT(processed_tensor_values, ElementsAreArray(expected_result));
}
TEST(RegexPreprocessorCalculatorTest, LongInput) {
std::stringstream long_input;
long_input << "This is the best";
for (int i = 0; i < kMaxSeqLen; ++i) {
long_input << " best";
}
long_input << "movie Ive seen in recent years. Strongly recommend it!";
MP_ASSERT_OK_AND_ASSIGN(std::vector<int> processed_tensor_values,
RunRegexPreprocessorCalculator(long_input.str()));
std::vector<int> expected_result = {1, 2, 9, 4, 118};
// "best" id
expected_result.resize(kMaxSeqLen, 118);
EXPECT_THAT(processed_tensor_values, ElementsAreArray(expected_result));
}
} // namespace
} // namespace mediapipe