Merge branch 'google:master' into hand-landmarker-python
This commit is contained in:
commit
812fa2cc70
|
@ -106,6 +106,13 @@ class MultiPort : public Single {
|
||||||
return Single{&GetWithAutoGrow(&vec_, index)};
|
return Single{&GetWithAutoGrow(&vec_, index)};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename U>
|
||||||
|
auto Cast() {
|
||||||
|
using SingleCastT =
|
||||||
|
std::invoke_result_t<decltype(&Single::template Cast<U>), Single*>;
|
||||||
|
return MultiPort<SingleCastT>(&vec_);
|
||||||
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::vector<std::unique_ptr<Base>>& vec_;
|
std::vector<std::unique_ptr<Base>>& vec_;
|
||||||
};
|
};
|
||||||
|
|
|
@ -445,6 +445,57 @@ TEST(BuilderTest, AnyTypeCanBeCast) {
|
||||||
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
|
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(BuilderTest, MultiPortIsCastToMultiPort) {
|
||||||
|
builder::Graph graph;
|
||||||
|
builder::MultiSource<AnyType> any_input = graph.In("ANY_INPUT");
|
||||||
|
builder::MultiSource<int> int_input = any_input.Cast<int>();
|
||||||
|
builder::MultiDestination<AnyType> any_output = graph.Out("ANY_OUTPUT");
|
||||||
|
builder::MultiDestination<int> int_output = any_output.Cast<int>();
|
||||||
|
int_input >> int_output;
|
||||||
|
|
||||||
|
CalculatorGraphConfig expected =
|
||||||
|
mediapipe::ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
|
||||||
|
input_stream: "ANY_INPUT:__stream_0"
|
||||||
|
output_stream: "ANY_OUTPUT:__stream_0"
|
||||||
|
)pb");
|
||||||
|
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(BuilderTest, MultiPortCanBeSlicedToSinglePort) {
|
||||||
|
builder::Graph graph;
|
||||||
|
builder::MultiSource<AnyType> any_multi_input = graph.In("ANY_INPUT");
|
||||||
|
builder::Source<AnyType> any_input = any_multi_input;
|
||||||
|
builder::MultiDestination<AnyType> any_multi_output = graph.Out("ANY_OUTPUT");
|
||||||
|
builder::Destination<AnyType> any_output = any_multi_output;
|
||||||
|
any_input >> any_output;
|
||||||
|
|
||||||
|
CalculatorGraphConfig expected =
|
||||||
|
mediapipe::ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
|
||||||
|
input_stream: "ANY_INPUT:__stream_0"
|
||||||
|
output_stream: "ANY_OUTPUT:__stream_0"
|
||||||
|
)pb");
|
||||||
|
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(BuilderTest, SinglePortAccessWorksThroughSlicing) {
|
||||||
|
builder::Graph graph;
|
||||||
|
builder::Source<int> int_input = graph.In("INT_INPUT").Cast<int>();
|
||||||
|
builder::Source<AnyType> any_input = graph.In("ANY_OUTPUT");
|
||||||
|
builder::Destination<int> int_output = graph.Out("INT_OUTPUT").Cast<int>();
|
||||||
|
builder::Destination<AnyType> any_output = graph.Out("ANY_OUTPUT");
|
||||||
|
int_input >> int_output;
|
||||||
|
any_input >> any_output;
|
||||||
|
|
||||||
|
CalculatorGraphConfig expected =
|
||||||
|
mediapipe::ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
|
||||||
|
input_stream: "ANY_OUTPUT:__stream_0"
|
||||||
|
input_stream: "INT_INPUT:__stream_1"
|
||||||
|
output_stream: "ANY_OUTPUT:__stream_0"
|
||||||
|
output_stream: "INT_OUTPUT:__stream_1"
|
||||||
|
)pb");
|
||||||
|
EXPECT_THAT(graph.GetConfig(), EqualsProto(expected));
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace test
|
} // namespace test
|
||||||
} // namespace api2
|
} // namespace api2
|
||||||
} // namespace mediapipe
|
} // namespace mediapipe
|
||||||
|
|
|
@ -45,7 +45,10 @@ py_library(
|
||||||
srcs = ["classifier.py"],
|
srcs = ["classifier.py"],
|
||||||
deps = [
|
deps = [
|
||||||
":custom_model",
|
":custom_model",
|
||||||
|
"//mediapipe/model_maker/python/core:hyperparameters",
|
||||||
|
"//mediapipe/model_maker/python/core/data:classification_dataset",
|
||||||
"//mediapipe/model_maker/python/core/data:dataset",
|
"//mediapipe/model_maker/python/core/data:dataset",
|
||||||
|
"//mediapipe/model_maker/python/core/utils:model_util",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -13,24 +13,24 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Custom classifier."""
|
"""Custom classifier."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from typing import Any, List
|
from typing import Any, Callable, Optional, Sequence, Union
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from mediapipe.model_maker.python.core import hyperparameters as hp
|
||||||
|
from mediapipe.model_maker.python.core.data import classification_dataset as classification_ds
|
||||||
from mediapipe.model_maker.python.core.data import dataset
|
from mediapipe.model_maker.python.core.data import dataset
|
||||||
from mediapipe.model_maker.python.core.tasks import custom_model
|
from mediapipe.model_maker.python.core.tasks import custom_model
|
||||||
|
from mediapipe.model_maker.python.core.utils import model_util
|
||||||
|
|
||||||
|
|
||||||
class Classifier(custom_model.CustomModel):
|
class Classifier(custom_model.CustomModel):
|
||||||
"""An abstract base class that represents a TensorFlow classifier."""
|
"""An abstract base class that represents a TensorFlow classifier."""
|
||||||
|
|
||||||
def __init__(self, model_spec: Any, label_names: List[str], shuffle: bool):
|
def __init__(self, model_spec: Any, label_names: Sequence[str],
|
||||||
"""Initilizes a classifier with its specifications.
|
shuffle: bool):
|
||||||
|
"""Initializes a classifier with its specifications.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model_spec: Specification for the model.
|
model_spec: Specification for the model.
|
||||||
|
@ -40,6 +40,59 @@ class Classifier(custom_model.CustomModel):
|
||||||
super(Classifier, self).__init__(model_spec, shuffle)
|
super(Classifier, self).__init__(model_spec, shuffle)
|
||||||
self._label_names = label_names
|
self._label_names = label_names
|
||||||
self._num_classes = len(label_names)
|
self._num_classes = len(label_names)
|
||||||
|
self._model: tf.keras.Model = None
|
||||||
|
self._optimizer: Union[str, tf.keras.optimizers.Optimizer] = None
|
||||||
|
self._loss_function: Union[str, tf.keras.losses.Loss] = None
|
||||||
|
self._metric_function: Union[str, tf.keras.metrics.Metric] = None
|
||||||
|
self._callbacks: Sequence[tf.keras.callbacks.Callback] = None
|
||||||
|
self._hparams: hp.BaseHParams = None
|
||||||
|
self._history: tf.keras.callbacks.History = None
|
||||||
|
|
||||||
|
# TODO: Integrate this into all Model Maker tasks.
|
||||||
|
def _train_model(self,
|
||||||
|
train_data: classification_ds.ClassificationDataset,
|
||||||
|
validation_data: classification_ds.ClassificationDataset,
|
||||||
|
preprocessor: Optional[Callable[..., bool]] = None):
|
||||||
|
"""Trains the classifier model.
|
||||||
|
|
||||||
|
Compiles and fits the tf.keras `_model` and records the `_history`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
train_data: Training data.
|
||||||
|
validation_data: Validation data.
|
||||||
|
preprocessor: An optional data preprocessor that can be used when
|
||||||
|
generating a tf.data.Dataset.
|
||||||
|
"""
|
||||||
|
tf.compat.v1.logging.info('Training the models...')
|
||||||
|
if len(train_data) < self._hparams.batch_size:
|
||||||
|
raise ValueError(
|
||||||
|
f'The size of the train_data {len(train_data)} can\'t be smaller than'
|
||||||
|
f' batch_size {self._hparams.batch_size}. To solve this problem, set'
|
||||||
|
' the batch_size smaller or increase the size of the train_data.')
|
||||||
|
|
||||||
|
train_dataset = train_data.gen_tf_dataset(
|
||||||
|
batch_size=self._hparams.batch_size,
|
||||||
|
is_training=True,
|
||||||
|
shuffle=self._shuffle,
|
||||||
|
preprocess=preprocessor)
|
||||||
|
self._hparams.steps_per_epoch = model_util.get_steps_per_epoch(
|
||||||
|
steps_per_epoch=self._hparams.steps_per_epoch,
|
||||||
|
batch_size=self._hparams.batch_size,
|
||||||
|
train_data=train_data)
|
||||||
|
train_dataset = train_dataset.take(count=self._hparams.steps_per_epoch)
|
||||||
|
validation_dataset = validation_data.gen_tf_dataset(
|
||||||
|
batch_size=self._hparams.batch_size,
|
||||||
|
is_training=False,
|
||||||
|
preprocess=preprocessor)
|
||||||
|
self._model.compile(
|
||||||
|
optimizer=self._optimizer,
|
||||||
|
loss=self._loss_function,
|
||||||
|
metrics=[self._metric_function])
|
||||||
|
self._history = self._model.fit(
|
||||||
|
x=train_dataset,
|
||||||
|
epochs=self._hparams.epochs,
|
||||||
|
validation_data=validation_dataset,
|
||||||
|
callbacks=self._callbacks)
|
||||||
|
|
||||||
def evaluate(self, data: dataset.Dataset, batch_size: int = 32) -> Any:
|
def evaluate(self, data: dataset.Dataset, batch_size: int = 32) -> Any:
|
||||||
"""Evaluates the classifier with the provided evaluation dataset.
|
"""Evaluates the classifier with the provided evaluation dataset.
|
||||||
|
|
|
@ -35,6 +35,7 @@ py_library(
|
||||||
name = "model_util",
|
name = "model_util",
|
||||||
srcs = ["model_util.py"],
|
srcs = ["model_util.py"],
|
||||||
deps = [
|
deps = [
|
||||||
|
":file_util",
|
||||||
":quantization",
|
":quantization",
|
||||||
"//mediapipe/model_maker/python/core/data:dataset",
|
"//mediapipe/model_maker/python/core/data:dataset",
|
||||||
],
|
],
|
||||||
|
@ -50,6 +51,18 @@ py_test(
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "file_util",
|
||||||
|
srcs = ["file_util.py"],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "file_util_test",
|
||||||
|
srcs = ["file_util_test.py"],
|
||||||
|
data = ["//mediapipe/model_maker/python/core/utils/testdata"],
|
||||||
|
deps = [":file_util"],
|
||||||
|
)
|
||||||
|
|
||||||
py_library(
|
py_library(
|
||||||
name = "loss_functions",
|
name = "loss_functions",
|
||||||
srcs = ["loss_functions.py"],
|
srcs = ["loss_functions.py"],
|
||||||
|
|
36
mediapipe/model_maker/python/core/utils/file_util.py
Normal file
36
mediapipe/model_maker/python/core/utils/file_util.py
Normal file
|
@ -0,0 +1,36 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Utilities for files."""
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
# resources dependency
|
||||||
|
|
||||||
|
|
||||||
|
def get_absolute_path(file_path: str) -> str:
|
||||||
|
"""Gets the absolute path of a file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_path: The path to a file relative to the `mediapipe` dir
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The full path of the file
|
||||||
|
"""
|
||||||
|
# Extract the file path before mediapipe/ as the `base_dir`. By joining it
|
||||||
|
# with the `path` which defines the relative path under mediapipe/, it
|
||||||
|
# yields to the absolute path of the model files directory.
|
||||||
|
cwd = os.path.dirname(__file__)
|
||||||
|
base_dir = cwd[:cwd.rfind('mediapipe')]
|
||||||
|
absolute_path = os.path.join(base_dir, file_path)
|
||||||
|
return absolute_path
|
29
mediapipe/model_maker/python/core/utils/file_util_test.py
Normal file
29
mediapipe/model_maker/python/core/utils/file_util_test.py
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import os
|
||||||
|
|
||||||
|
from absl.testing import absltest
|
||||||
|
from mediapipe.model_maker.python.core.utils import file_util
|
||||||
|
|
||||||
|
|
||||||
|
class FileUtilTest(absltest.TestCase):
|
||||||
|
|
||||||
|
def test_get_absolute_path(self):
|
||||||
|
test_file = 'mediapipe/model_maker/python/core/utils/testdata/test.txt'
|
||||||
|
absolute_path = file_util.get_absolute_path(test_file)
|
||||||
|
self.assertTrue(os.path.exists(absolute_path))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
absltest.main()
|
|
@ -11,7 +11,7 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Utilities for keras models."""
|
"""Utilities for models."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
|
@ -26,8 +26,8 @@ from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
# resources dependency
|
|
||||||
from mediapipe.model_maker.python.core.data import dataset
|
from mediapipe.model_maker.python.core.data import dataset
|
||||||
|
from mediapipe.model_maker.python.core.utils import file_util
|
||||||
from mediapipe.model_maker.python.core.utils import quantization
|
from mediapipe.model_maker.python.core.utils import quantization
|
||||||
|
|
||||||
DEFAULT_SCALE, DEFAULT_ZERO_POINT = 0, 0
|
DEFAULT_SCALE, DEFAULT_ZERO_POINT = 0, 0
|
||||||
|
@ -39,11 +39,10 @@ def get_default_callbacks(
|
||||||
"""Gets default callbacks."""
|
"""Gets default callbacks."""
|
||||||
summary_dir = os.path.join(export_dir, 'summaries')
|
summary_dir = os.path.join(export_dir, 'summaries')
|
||||||
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
|
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
|
||||||
# Save checkpoint every 20 epochs.
|
|
||||||
|
|
||||||
checkpoint_path = os.path.join(export_dir, 'checkpoint')
|
checkpoint_path = os.path.join(export_dir, 'checkpoint')
|
||||||
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
|
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
|
||||||
checkpoint_path, save_weights_only=True, period=20)
|
checkpoint_path, save_weights_only=True)
|
||||||
return [summary_callback, checkpoint_callback]
|
return [summary_callback, checkpoint_callback]
|
||||||
|
|
||||||
|
|
||||||
|
@ -62,16 +61,26 @@ def load_keras_model(model_path: str,
|
||||||
Returns:
|
Returns:
|
||||||
A tensorflow Keras model.
|
A tensorflow Keras model.
|
||||||
"""
|
"""
|
||||||
# Extract the file path before mediapipe/ as the `base_dir`. By joining it
|
absolute_path = file_util.get_absolute_path(model_path)
|
||||||
# with the `model_path` which defines the relative path under mediapipe/, it
|
|
||||||
# yields to the aboslution path of the model files directory.
|
|
||||||
cwd = os.path.dirname(__file__)
|
|
||||||
base_dir = cwd[:cwd.rfind('mediapipe')]
|
|
||||||
absolute_path = os.path.join(base_dir, model_path)
|
|
||||||
return tf.keras.models.load_model(
|
return tf.keras.models.load_model(
|
||||||
absolute_path, custom_objects={'tf': tf}, compile=compile_on_load)
|
absolute_path, custom_objects={'tf': tf}, compile=compile_on_load)
|
||||||
|
|
||||||
|
|
||||||
|
def load_tflite_model_buffer(model_path: str) -> bytearray:
|
||||||
|
"""Loads a TFLite model buffer from file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_path: Relative path to a TFLite file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A TFLite model buffer
|
||||||
|
"""
|
||||||
|
absolute_path = file_util.get_absolute_path(model_path)
|
||||||
|
with tf.io.gfile.GFile(absolute_path, 'rb') as f:
|
||||||
|
tflite_model_buffer = f.read()
|
||||||
|
return tflite_model_buffer
|
||||||
|
|
||||||
|
|
||||||
def get_steps_per_epoch(steps_per_epoch: Optional[int] = None,
|
def get_steps_per_epoch(steps_per_epoch: Optional[int] = None,
|
||||||
batch_size: Optional[int] = None,
|
batch_size: Optional[int] = None,
|
||||||
train_data: Optional[dataset.Dataset] = None) -> int:
|
train_data: Optional[dataset.Dataset] = None) -> int:
|
||||||
|
|
|
@ -24,7 +24,7 @@ from mediapipe.model_maker.python.core.utils import test_util
|
||||||
|
|
||||||
class ModelUtilTest(tf.test.TestCase, parameterized.TestCase):
|
class ModelUtilTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
def test_load_model(self):
|
def test_load_keras_model(self):
|
||||||
input_dim = 4
|
input_dim = 4
|
||||||
model = test_util.build_model(input_shape=[input_dim], num_classes=2)
|
model = test_util.build_model(input_shape=[input_dim], num_classes=2)
|
||||||
saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model')
|
saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model')
|
||||||
|
@ -36,6 +36,19 @@ class ModelUtilTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
loaded_model_output = loaded_model.predict_on_batch(input_tensors)
|
loaded_model_output = loaded_model.predict_on_batch(input_tensors)
|
||||||
self.assertTrue((model_output == loaded_model_output).all())
|
self.assertTrue((model_output == loaded_model_output).all())
|
||||||
|
|
||||||
|
def test_load_tflite_model_buffer(self):
|
||||||
|
input_dim = 4
|
||||||
|
model = test_util.build_model(input_shape=[input_dim], num_classes=2)
|
||||||
|
tflite_model = model_util.convert_to_tflite(model)
|
||||||
|
tflite_file = os.path.join(self.get_temp_dir(), 'model.tflite')
|
||||||
|
model_util.save_tflite(tflite_model=tflite_model, tflite_file=tflite_file)
|
||||||
|
|
||||||
|
tflite_model_buffer = model_util.load_tflite_model_buffer(tflite_file)
|
||||||
|
test_util.test_tflite(
|
||||||
|
keras_model=model,
|
||||||
|
tflite_model=tflite_model_buffer,
|
||||||
|
size=[1, input_dim])
|
||||||
|
|
||||||
@parameterized.named_parameters(
|
@parameterized.named_parameters(
|
||||||
dict(
|
dict(
|
||||||
testcase_name='input_only_steps_per_epoch',
|
testcase_name='input_only_steps_per_epoch',
|
||||||
|
|
23
mediapipe/model_maker/python/core/utils/testdata/BUILD
vendored
Normal file
23
mediapipe/model_maker/python/core/utils/testdata/BUILD
vendored
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
package(
|
||||||
|
default_visibility = ["//mediapipe/model_maker/python/core/utils:__subpackages__"],
|
||||||
|
licenses = ["notice"], # Apache 2.0
|
||||||
|
)
|
||||||
|
|
||||||
|
filegroup(
|
||||||
|
name = "testdata",
|
||||||
|
srcs = ["test.txt"],
|
||||||
|
)
|
0
mediapipe/model_maker/python/core/utils/testdata/test.txt
vendored
Normal file
0
mediapipe/model_maker/python/core/utils/testdata/test.txt
vendored
Normal file
|
@ -68,7 +68,10 @@ class ImageClassifier(classifier.Classifier):
|
||||||
) -> 'ImageClassifier':
|
) -> 'ImageClassifier':
|
||||||
"""Creates and trains an image classifier.
|
"""Creates and trains an image classifier.
|
||||||
|
|
||||||
Loads data and trains the model based on data for image classification.
|
Loads data and trains the model based on data for image classification. If a
|
||||||
|
checkpoint file exists in the {options.hparams.export_dir}/checkpoint/
|
||||||
|
directory, the training process will load the weight from the checkpoint
|
||||||
|
file for continual training.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
train_data: Training data.
|
train_data: Training data.
|
||||||
|
@ -190,7 +193,7 @@ class ImageClassifier(classifier.Classifier):
|
||||||
tflite_model,
|
tflite_model,
|
||||||
self._model_spec.mean_rgb,
|
self._model_spec.mean_rgb,
|
||||||
self._model_spec.stddev_rgb,
|
self._model_spec.stddev_rgb,
|
||||||
labels=metadata_writer.Labels().add(self._label_names))
|
labels=metadata_writer.Labels().add(list(self._label_names)))
|
||||||
tflite_model_with_metadata, metadata_json = writer.populate()
|
tflite_model_with_metadata, metadata_json = writer.populate()
|
||||||
model_util.save_tflite(tflite_model_with_metadata, tflite_file)
|
model_util.save_tflite(tflite_model_with_metadata, tflite_file)
|
||||||
with open(metadata_file, 'w') as f:
|
with open(metadata_file, 'w') as f:
|
||||||
|
|
|
@ -13,10 +13,13 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import filecmp
|
import filecmp
|
||||||
|
import io
|
||||||
import os
|
import os
|
||||||
|
import tempfile
|
||||||
|
|
||||||
from unittest import mock
|
from unittest import mock as unittest_mock
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
|
import mock
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
@ -63,14 +66,20 @@ class ImageClassifierTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
options=image_classifier.ImageClassifierOptions(
|
options=image_classifier.ImageClassifierOptions(
|
||||||
supported_model=image_classifier.SupportedModels.MOBILENET_V2,
|
supported_model=image_classifier.SupportedModels.MOBILENET_V2,
|
||||||
hparams=image_classifier.HParams(
|
hparams=image_classifier.HParams(
|
||||||
epochs=1, batch_size=1, shuffle=True))),
|
epochs=1,
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=True,
|
||||||
|
export_dir=tempfile.mkdtemp()))),
|
||||||
dict(
|
dict(
|
||||||
testcase_name='efficientnet_lite0',
|
testcase_name='efficientnet_lite0',
|
||||||
options=image_classifier.ImageClassifierOptions(
|
options=image_classifier.ImageClassifierOptions(
|
||||||
supported_model=(
|
supported_model=(
|
||||||
image_classifier.SupportedModels.EFFICIENTNET_LITE0),
|
image_classifier.SupportedModels.EFFICIENTNET_LITE0),
|
||||||
hparams=image_classifier.HParams(
|
hparams=image_classifier.HParams(
|
||||||
epochs=1, batch_size=1, shuffle=True))),
|
epochs=1,
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=True,
|
||||||
|
export_dir=tempfile.mkdtemp()))),
|
||||||
dict(
|
dict(
|
||||||
testcase_name='efficientnet_lite0_change_dropout_rate',
|
testcase_name='efficientnet_lite0_change_dropout_rate',
|
||||||
options=image_classifier.ImageClassifierOptions(
|
options=image_classifier.ImageClassifierOptions(
|
||||||
|
@ -78,21 +87,30 @@ class ImageClassifierTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
image_classifier.SupportedModels.EFFICIENTNET_LITE0),
|
image_classifier.SupportedModels.EFFICIENTNET_LITE0),
|
||||||
model_options=image_classifier.ModelOptions(dropout_rate=0.1),
|
model_options=image_classifier.ModelOptions(dropout_rate=0.1),
|
||||||
hparams=image_classifier.HParams(
|
hparams=image_classifier.HParams(
|
||||||
epochs=1, batch_size=1, shuffle=True))),
|
epochs=1,
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=True,
|
||||||
|
export_dir=tempfile.mkdtemp()))),
|
||||||
dict(
|
dict(
|
||||||
testcase_name='efficientnet_lite2',
|
testcase_name='efficientnet_lite2',
|
||||||
options=image_classifier.ImageClassifierOptions(
|
options=image_classifier.ImageClassifierOptions(
|
||||||
supported_model=(
|
supported_model=(
|
||||||
image_classifier.SupportedModels.EFFICIENTNET_LITE2),
|
image_classifier.SupportedModels.EFFICIENTNET_LITE2),
|
||||||
hparams=image_classifier.HParams(
|
hparams=image_classifier.HParams(
|
||||||
epochs=1, batch_size=1, shuffle=True))),
|
epochs=1,
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=True,
|
||||||
|
export_dir=tempfile.mkdtemp()))),
|
||||||
dict(
|
dict(
|
||||||
testcase_name='efficientnet_lite4',
|
testcase_name='efficientnet_lite4',
|
||||||
options=image_classifier.ImageClassifierOptions(
|
options=image_classifier.ImageClassifierOptions(
|
||||||
supported_model=(
|
supported_model=(
|
||||||
image_classifier.SupportedModels.EFFICIENTNET_LITE4),
|
image_classifier.SupportedModels.EFFICIENTNET_LITE4),
|
||||||
hparams=image_classifier.HParams(
|
hparams=image_classifier.HParams(
|
||||||
epochs=1, batch_size=1, shuffle=True))),
|
epochs=1,
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=True,
|
||||||
|
export_dir=tempfile.mkdtemp()))),
|
||||||
)
|
)
|
||||||
def test_create_and_train_model(
|
def test_create_and_train_model(
|
||||||
self, options: image_classifier.ImageClassifierOptions):
|
self, options: image_classifier.ImageClassifierOptions):
|
||||||
|
@ -117,16 +135,35 @@ class ImageClassifierTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
self.assertGreater(os.path.getsize(output_metadata_file), 0)
|
self.assertGreater(os.path.getsize(output_metadata_file), 0)
|
||||||
self.assertTrue(filecmp.cmp(output_metadata_file, expected_metadata_file))
|
self.assertTrue(filecmp.cmp(output_metadata_file, expected_metadata_file))
|
||||||
|
|
||||||
|
def test_continual_training_by_loading_checkpoint(self):
|
||||||
|
mock_stdout = io.StringIO()
|
||||||
|
with mock.patch('sys.stdout', mock_stdout):
|
||||||
|
options = image_classifier.ImageClassifierOptions(
|
||||||
|
supported_model=image_classifier.SupportedModels.EFFICIENTNET_LITE0,
|
||||||
|
hparams=image_classifier.HParams(
|
||||||
|
epochs=5, batch_size=1, shuffle=True))
|
||||||
|
model = image_classifier.ImageClassifier.create(
|
||||||
|
train_data=self._train_data,
|
||||||
|
validation_data=self._test_data,
|
||||||
|
options=options)
|
||||||
|
model = image_classifier.ImageClassifier.create(
|
||||||
|
train_data=self._train_data,
|
||||||
|
validation_data=self._test_data,
|
||||||
|
options=options)
|
||||||
|
self._test_accuracy(model)
|
||||||
|
|
||||||
|
self.assertRegex(mock_stdout.getvalue(), 'Resuming from')
|
||||||
|
|
||||||
def _test_accuracy(self, model, threshold=0.0):
|
def _test_accuracy(self, model, threshold=0.0):
|
||||||
_, accuracy = model.evaluate(self._test_data)
|
_, accuracy = model.evaluate(self._test_data)
|
||||||
self.assertGreaterEqual(accuracy, threshold)
|
self.assertGreaterEqual(accuracy, threshold)
|
||||||
|
|
||||||
@mock.patch.object(
|
@unittest_mock.patch.object(
|
||||||
image_classifier.hyperparameters,
|
image_classifier.hyperparameters,
|
||||||
'HParams',
|
'HParams',
|
||||||
autospec=True,
|
autospec=True,
|
||||||
return_value=image_classifier.HParams(epochs=1))
|
return_value=image_classifier.HParams(epochs=1))
|
||||||
@mock.patch.object(
|
@unittest_mock.patch.object(
|
||||||
image_classifier.model_options,
|
image_classifier.model_options,
|
||||||
'ImageClassifierModelOptions',
|
'ImageClassifierModelOptions',
|
||||||
autospec=True,
|
autospec=True,
|
||||||
|
|
|
@ -13,6 +13,7 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Library to train model."""
|
"""Library to train model."""
|
||||||
|
|
||||||
|
import os
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from mediapipe.model_maker.python.core.utils import model_util
|
from mediapipe.model_maker.python.core.utils import model_util
|
||||||
|
@ -78,11 +79,24 @@ def train_model(model: tf.keras.Model, hparams: hp.HParams,
|
||||||
loss = tf.keras.losses.CategoricalCrossentropy(
|
loss = tf.keras.losses.CategoricalCrossentropy(
|
||||||
label_smoothing=hparams.label_smoothing)
|
label_smoothing=hparams.label_smoothing)
|
||||||
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
||||||
callbacks = model_util.get_default_callbacks(export_dir=hparams.export_dir)
|
|
||||||
|
summary_dir = os.path.join(hparams.export_dir, 'summaries')
|
||||||
|
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
|
||||||
|
# Save checkpoint every 5 epochs.
|
||||||
|
checkpoint_path = os.path.join(hparams.export_dir, 'checkpoint')
|
||||||
|
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
|
||||||
|
os.path.join(checkpoint_path, 'model-{epoch:04d}'),
|
||||||
|
save_weights_only=True,
|
||||||
|
period=5)
|
||||||
|
|
||||||
|
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path)
|
||||||
|
if latest_checkpoint:
|
||||||
|
print(f'Resuming from {latest_checkpoint}')
|
||||||
|
model.load_weights(latest_checkpoint)
|
||||||
|
|
||||||
# Train the model.
|
# Train the model.
|
||||||
return model.fit(
|
return model.fit(
|
||||||
x=train_ds,
|
x=train_ds,
|
||||||
epochs=hparams.epochs,
|
epochs=hparams.epochs,
|
||||||
validation_data=validation_ds,
|
validation_data=validation_ds,
|
||||||
callbacks=callbacks)
|
callbacks=[summary_callback, checkpoint_callback])
|
||||||
|
|
87
mediapipe/tasks/cc/text/text_embedder/BUILD
Normal file
87
mediapipe/tasks/cc/text/text_embedder/BUILD
Normal file
|
@ -0,0 +1,87 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
|
licenses(["notice"])
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "text_embedder",
|
||||||
|
srcs = ["text_embedder.cc"],
|
||||||
|
hdrs = ["text_embedder.h"],
|
||||||
|
deps = [
|
||||||
|
":text_embedder_graph",
|
||||||
|
"//mediapipe/calculators/tensor:inference_calculator_cc_proto",
|
||||||
|
"//mediapipe/framework:calculator_cc_proto",
|
||||||
|
"//mediapipe/framework/api2:builder",
|
||||||
|
"//mediapipe/tasks/cc/components/containers:embedding_result",
|
||||||
|
"//mediapipe/tasks/cc/components/containers/proto:embeddings_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/components/processors:embedder_options",
|
||||||
|
"//mediapipe/tasks/cc/components/processors/proto:embedder_options_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/components/utils:cosine_similarity",
|
||||||
|
"//mediapipe/tasks/cc/core:base_options",
|
||||||
|
"//mediapipe/tasks/cc/core:base_task_api",
|
||||||
|
"//mediapipe/tasks/cc/core:task_api_factory",
|
||||||
|
"//mediapipe/tasks/cc/core/proto:base_options_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/text/text_embedder/proto:text_embedder_graph_options_cc_proto",
|
||||||
|
"@com_google_absl//absl/status",
|
||||||
|
"@com_google_absl//absl/status:statusor",
|
||||||
|
"@com_google_absl//absl/strings",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "text_embedder_graph",
|
||||||
|
srcs = ["text_embedder_graph.cc"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/calculators/tensor:inference_calculator",
|
||||||
|
"//mediapipe/calculators/tensor:inference_calculator_cc_proto",
|
||||||
|
"//mediapipe/framework:calculator_cc_proto",
|
||||||
|
"//mediapipe/framework:calculator_framework",
|
||||||
|
"//mediapipe/framework/api2:builder",
|
||||||
|
"//mediapipe/framework/api2:port",
|
||||||
|
"//mediapipe/tasks/cc/components:text_preprocessing_graph",
|
||||||
|
"//mediapipe/tasks/cc/components/containers/proto:embeddings_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/components/processors:embedding_postprocessing_graph",
|
||||||
|
"//mediapipe/tasks/cc/components/processors/proto:embedding_postprocessing_graph_options_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/components/proto:text_preprocessing_graph_options_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/core:model_resources",
|
||||||
|
"//mediapipe/tasks/cc/core:model_task_graph",
|
||||||
|
"//mediapipe/tasks/cc/core/proto:model_resources_calculator_cc_proto",
|
||||||
|
"//mediapipe/tasks/cc/text/text_embedder/proto:text_embedder_graph_options_cc_proto",
|
||||||
|
"@com_google_absl//absl/status",
|
||||||
|
"@com_google_absl//absl/status:statusor",
|
||||||
|
],
|
||||||
|
alwayslink = 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "text_embedder_test",
|
||||||
|
srcs = ["text_embedder_test.cc"],
|
||||||
|
data = [
|
||||||
|
"//mediapipe/tasks/testdata/text:mobilebert_embedding_model",
|
||||||
|
"//mediapipe/tasks/testdata/text:regex_embedding_with_metadata",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
":text_embedder",
|
||||||
|
"//mediapipe/framework/deps:file_path",
|
||||||
|
"//mediapipe/framework/port:gtest_main",
|
||||||
|
"//mediapipe/tasks/cc:common",
|
||||||
|
"//mediapipe/tasks/cc/components/containers:embedding_result",
|
||||||
|
"@com_google_absl//absl/flags:flag",
|
||||||
|
"@com_google_absl//absl/status",
|
||||||
|
"@com_google_absl//absl/status:statusor",
|
||||||
|
"@org_tensorflow//tensorflow/lite/core/shims:cc_shims_test_util",
|
||||||
|
],
|
||||||
|
)
|
30
mediapipe/tasks/cc/text/text_embedder/proto/BUILD
Normal file
30
mediapipe/tasks/cc/text/text_embedder/proto/BUILD
Normal file
|
@ -0,0 +1,30 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
|
licenses(["notice"])
|
||||||
|
|
||||||
|
mediapipe_proto_library(
|
||||||
|
name = "text_embedder_graph_options_proto",
|
||||||
|
srcs = ["text_embedder_graph_options.proto"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/framework:calculator_options_proto",
|
||||||
|
"//mediapipe/framework:calculator_proto",
|
||||||
|
"//mediapipe/tasks/cc/components/processors/proto:embedder_options_proto",
|
||||||
|
"//mediapipe/tasks/cc/core/proto:base_options_proto",
|
||||||
|
],
|
||||||
|
)
|
|
@ -0,0 +1,36 @@
|
||||||
|
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
syntax = "proto2";
|
||||||
|
|
||||||
|
package mediapipe.tasks.text.text_embedder.proto;
|
||||||
|
|
||||||
|
import "mediapipe/framework/calculator.proto";
|
||||||
|
import "mediapipe/tasks/cc/components/processors/proto/embedder_options.proto";
|
||||||
|
import "mediapipe/tasks/cc/core/proto/base_options.proto";
|
||||||
|
|
||||||
|
message TextEmbedderGraphOptions {
|
||||||
|
extend mediapipe.CalculatorOptions {
|
||||||
|
optional TextEmbedderGraphOptions ext = 477589892;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Base options for configuring MediaPipe Tasks, such as specifying the TfLite
|
||||||
|
// model file with metadata, accelerator options, etc.
|
||||||
|
optional core.proto.BaseOptions base_options = 1;
|
||||||
|
|
||||||
|
// Options for configuring the embedder behavior, such as normalization or
|
||||||
|
// quantization.
|
||||||
|
optional components.processors.proto.EmbedderOptions embedder_options = 2;
|
||||||
|
}
|
104
mediapipe/tasks/cc/text/text_embedder/text_embedder.cc
Normal file
104
mediapipe/tasks/cc/text/text_embedder/text_embedder.cc
Normal file
|
@ -0,0 +1,104 @@
|
||||||
|
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "mediapipe/tasks/cc/text/text_embedder/text_embedder.h"
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "absl/status/statusor.h"
|
||||||
|
#include "mediapipe/calculators/tensor/inference_calculator.pb.h"
|
||||||
|
#include "mediapipe/framework/api2/builder.h"
|
||||||
|
#include "mediapipe/framework/calculator.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/containers/embedding_result.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/containers/proto/embeddings.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/processors/embedder_options.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/processors/proto/embedder_options.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/utils/cosine_similarity.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/base_options.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/proto/base_options.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/task_api_factory.h"
|
||||||
|
#include "mediapipe/tasks/cc/text/text_embedder/proto/text_embedder_graph_options.pb.h"
|
||||||
|
|
||||||
|
namespace mediapipe::tasks::text::text_embedder {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
constexpr char kTextTag[] = "TEXT";
|
||||||
|
constexpr char kEmbeddingsTag[] = "EMBEDDINGS";
|
||||||
|
constexpr char kTextInStreamName[] = "text_in";
|
||||||
|
constexpr char kEmbeddingsStreamName[] = "embeddings_out";
|
||||||
|
constexpr char kGraphTypeName[] =
|
||||||
|
"mediapipe.tasks.text.text_embedder.TextEmbedderGraph";
|
||||||
|
|
||||||
|
using ::mediapipe::tasks::components::containers::ConvertToEmbeddingResult;
|
||||||
|
using ::mediapipe::tasks::components::containers::proto::EmbeddingResult;
|
||||||
|
|
||||||
|
// Creates a MediaPipe graph config that contains a single node of type
|
||||||
|
// "mediapipe.tasks.text.text_embedder.TextEmbedderGraph".
|
||||||
|
CalculatorGraphConfig CreateGraphConfig(
|
||||||
|
std::unique_ptr<proto::TextEmbedderGraphOptions> options_proto) {
|
||||||
|
api2::builder::Graph graph;
|
||||||
|
auto& task_graph = graph.AddNode(kGraphTypeName);
|
||||||
|
task_graph.GetOptions<proto::TextEmbedderGraphOptions>().Swap(
|
||||||
|
options_proto.get());
|
||||||
|
graph.In(kTextTag).SetName(kTextInStreamName) >> task_graph.In(kTextTag);
|
||||||
|
task_graph.Out(kEmbeddingsTag).SetName(kEmbeddingsStreamName) >>
|
||||||
|
graph.Out(kEmbeddingsTag);
|
||||||
|
return graph.GetConfig();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Converts the user-facing TextEmbedderOptions struct to the internal
|
||||||
|
// TextEmbedderGraphOptions proto.
|
||||||
|
std::unique_ptr<proto::TextEmbedderGraphOptions>
|
||||||
|
ConvertTextEmbedderOptionsToProto(TextEmbedderOptions* options) {
|
||||||
|
auto options_proto = std::make_unique<proto::TextEmbedderGraphOptions>();
|
||||||
|
auto base_options_proto = std::make_unique<tasks::core::proto::BaseOptions>(
|
||||||
|
tasks::core::ConvertBaseOptionsToProto(&(options->base_options)));
|
||||||
|
options_proto->mutable_base_options()->Swap(base_options_proto.get());
|
||||||
|
auto embedder_options_proto =
|
||||||
|
std::make_unique<components::processors::proto::EmbedderOptions>(
|
||||||
|
components::processors::ConvertEmbedderOptionsToProto(
|
||||||
|
&(options->embedder_options)));
|
||||||
|
options_proto->mutable_embedder_options()->Swap(embedder_options_proto.get());
|
||||||
|
return options_proto;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
absl::StatusOr<std::unique_ptr<TextEmbedder>> TextEmbedder::Create(
|
||||||
|
std::unique_ptr<TextEmbedderOptions> options) {
|
||||||
|
std::unique_ptr<proto::TextEmbedderGraphOptions> options_proto =
|
||||||
|
ConvertTextEmbedderOptionsToProto(options.get());
|
||||||
|
return core::TaskApiFactory::Create<TextEmbedder,
|
||||||
|
proto::TextEmbedderGraphOptions>(
|
||||||
|
CreateGraphConfig(std::move(options_proto)),
|
||||||
|
std::move(options->base_options.op_resolver));
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::StatusOr<TextEmbedderResult> TextEmbedder::Embed(absl::string_view text) {
|
||||||
|
ASSIGN_OR_RETURN(
|
||||||
|
auto output_packets,
|
||||||
|
runner_->Process(
|
||||||
|
{{kTextInStreamName, MakePacket<std::string>(std::string(text))}}));
|
||||||
|
return ConvertToEmbeddingResult(
|
||||||
|
output_packets[kEmbeddingsStreamName].Get<EmbeddingResult>());
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::StatusOr<double> TextEmbedder::CosineSimilarity(
|
||||||
|
const components::containers::Embedding& u,
|
||||||
|
const components::containers::Embedding& v) {
|
||||||
|
return components::utils::CosineSimilarity(u, v);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mediapipe::tasks::text::text_embedder
|
96
mediapipe/tasks/cc/text/text_embedder/text_embedder.h
Normal file
96
mediapipe/tasks/cc/text/text_embedder/text_embedder.h
Normal file
|
@ -0,0 +1,96 @@
|
||||||
|
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#ifndef MEDIAPIPE_TASKS_CC_TEXT_TEXT_EMBEDDER_TEXT_EMBEDDER_H_
|
||||||
|
#define MEDIAPIPE_TASKS_CC_TEXT_TEXT_EMBEDDER_TEXT_EMBEDDER_H_
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "absl/status/status.h"
|
||||||
|
#include "absl/status/statusor.h"
|
||||||
|
#include "absl/strings/string_view.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/containers/embedding_result.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/processors/embedder_options.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/base_options.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/base_task_api.h"
|
||||||
|
|
||||||
|
namespace mediapipe::tasks::text::text_embedder {
|
||||||
|
|
||||||
|
// Alias the shared EmbeddingResult struct as result typo.
|
||||||
|
using TextEmbedderResult =
|
||||||
|
::mediapipe::tasks::components::containers::EmbeddingResult;
|
||||||
|
|
||||||
|
// Options for configuring a MediaPipe text embedder task.
|
||||||
|
struct TextEmbedderOptions {
|
||||||
|
// Base options for configuring MediaPipe Tasks, such as specifying the model
|
||||||
|
// file with metadata, accelerator options, op resolver, etc.
|
||||||
|
tasks::core::BaseOptions base_options;
|
||||||
|
|
||||||
|
// Options for configuring the embedder behavior, such as L2-normalization or
|
||||||
|
// scalar-quantization.
|
||||||
|
components::processors::EmbedderOptions embedder_options;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Performs embedding extraction on text.
|
||||||
|
//
|
||||||
|
// This API expects a TFLite model with TFLite Model Metadata that contains the
|
||||||
|
// mandatory (described below) input tensors and output tensors. Metadata should
|
||||||
|
// contain the input process unit for the model's Tokenizer as well as input /
|
||||||
|
// output tensor metadata.
|
||||||
|
//
|
||||||
|
// TODO: Support Universal Sentence Encoder.
|
||||||
|
// Input tensors:
|
||||||
|
// (kTfLiteInt32)
|
||||||
|
// - 3 input tensors of size `[batch_size x bert_max_seq_len]` with names
|
||||||
|
// "ids", "mask", and "segment_ids" representing the input ids, mask ids, and
|
||||||
|
// segment ids respectively
|
||||||
|
// - or 1 input tensor of size `[batch_size x max_seq_len]` representing the
|
||||||
|
// input ids
|
||||||
|
//
|
||||||
|
// At least one output tensor with:
|
||||||
|
// (kTfLiteFloat32)
|
||||||
|
// - `N` components corresponding to the `N` dimensions of the returned
|
||||||
|
// feature vector for this output layer.
|
||||||
|
// - Either 2 or 4 dimensions, i.e. `[1 x N]` or `[1 x 1 x 1 x N]`.
|
||||||
|
class TextEmbedder : core::BaseTaskApi {
|
||||||
|
public:
|
||||||
|
using BaseTaskApi::BaseTaskApi;
|
||||||
|
|
||||||
|
// Creates a TextEmbedder from the provided `options`. A non-default
|
||||||
|
// OpResolver can be specified in the BaseOptions in order to support custom
|
||||||
|
// Ops or specify a subset of built-in Ops.
|
||||||
|
static absl::StatusOr<std::unique_ptr<TextEmbedder>> Create(
|
||||||
|
std::unique_ptr<TextEmbedderOptions> options);
|
||||||
|
|
||||||
|
// Performs embedding extraction on the input `text`.
|
||||||
|
absl::StatusOr<TextEmbedderResult> Embed(absl::string_view text);
|
||||||
|
|
||||||
|
// Shuts down the TextEmbedder when all the work is done.
|
||||||
|
absl::Status Close() { return runner_->Close(); }
|
||||||
|
|
||||||
|
// Utility function to compute cosine similarity [1] between two embeddings.
|
||||||
|
// May return an InvalidArgumentError if e.g. the embeddings are of different
|
||||||
|
// types (quantized vs. float), have different sizes, or have a an L2-norm of
|
||||||
|
// 0.
|
||||||
|
//
|
||||||
|
// [1]: https://en.wikipedia.org/wiki/Cosine_similarity
|
||||||
|
static absl::StatusOr<double> CosineSimilarity(
|
||||||
|
const components::containers::Embedding& u,
|
||||||
|
const components::containers::Embedding& v);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace mediapipe::tasks::text::text_embedder
|
||||||
|
|
||||||
|
#endif // MEDIAPIPE_TASKS_CC_TEXT_TEXT_EMBEDDER_TEXT_EMBEDDER_H_
|
145
mediapipe/tasks/cc/text/text_embedder/text_embedder_graph.cc
Normal file
145
mediapipe/tasks/cc/text/text_embedder/text_embedder_graph.cc
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "absl/status/status.h"
|
||||||
|
#include "absl/status/statusor.h"
|
||||||
|
#include "mediapipe/calculators/tensor/inference_calculator.pb.h"
|
||||||
|
#include "mediapipe/framework/api2/builder.h"
|
||||||
|
#include "mediapipe/framework/api2/port.h"
|
||||||
|
#include "mediapipe/framework/calculator.pb.h"
|
||||||
|
#include "mediapipe/framework/calculator_framework.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/containers/proto/embeddings.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/processors/embedding_postprocessing_graph.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/processors/proto/embedding_postprocessing_graph_options.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/proto/text_preprocessing_graph_options.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/text_preprocessing_graph.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/model_resources.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/model_task_graph.h"
|
||||||
|
#include "mediapipe/tasks/cc/core/proto/model_resources_calculator.pb.h"
|
||||||
|
#include "mediapipe/tasks/cc/text/text_embedder/proto/text_embedder_graph_options.pb.h"
|
||||||
|
|
||||||
|
namespace mediapipe::tasks::text::text_embedder {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
using ::mediapipe::api2::Input;
|
||||||
|
using ::mediapipe::api2::Output;
|
||||||
|
using ::mediapipe::api2::builder::Graph;
|
||||||
|
using ::mediapipe::api2::builder::Source;
|
||||||
|
using ::mediapipe::tasks::components::containers::proto::EmbeddingResult;
|
||||||
|
using ::mediapipe::tasks::core::ModelResources;
|
||||||
|
|
||||||
|
constexpr char kEmbeddingsTag[] = "EMBEDDINGS";
|
||||||
|
constexpr char kTextTag[] = "TEXT";
|
||||||
|
constexpr char kMetadataExtractorTag[] = "METADATA_EXTRACTOR";
|
||||||
|
constexpr char kTensorsTag[] = "TENSORS";
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
// A "mediapipe.tasks.text.TextEmbedderGraph" performs text embedding
|
||||||
|
// extraction.
|
||||||
|
// - Accepts input text and outputs embeddings on CPU.
|
||||||
|
//
|
||||||
|
// Inputs:
|
||||||
|
// TEXT - std::string
|
||||||
|
// Input text to perform embedding extraction on.
|
||||||
|
//
|
||||||
|
// Outputs:
|
||||||
|
// EMBEDDINGS - EmbeddingResult
|
||||||
|
// The embedding result.
|
||||||
|
//
|
||||||
|
// Example:
|
||||||
|
// node {
|
||||||
|
// calculator: "mediapipe.tasks.text.TextEmbedderGraph"
|
||||||
|
// input_stream: "TEXT:text_in"
|
||||||
|
// output_stream: "EMBEDDINGS:embedding_result_out"
|
||||||
|
// options {
|
||||||
|
// [mediapipe.tasks.text.text_embedder.proto.TextEmbedderGraphOptions.ext] {
|
||||||
|
// base_options {
|
||||||
|
// model_asset {
|
||||||
|
// file_name: "/path/to/model.tflite"
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
class TextEmbedderGraph : public core::ModelTaskGraph {
|
||||||
|
public:
|
||||||
|
absl::StatusOr<CalculatorGraphConfig> GetConfig(
|
||||||
|
SubgraphContext* sc) override {
|
||||||
|
CHECK(sc != nullptr);
|
||||||
|
ASSIGN_OR_RETURN(const ModelResources* model_resources,
|
||||||
|
CreateModelResources<proto::TextEmbedderGraphOptions>(sc));
|
||||||
|
Graph graph;
|
||||||
|
ASSIGN_OR_RETURN(
|
||||||
|
Source<EmbeddingResult> embedding_result_out,
|
||||||
|
BuildTextEmbedderTask(sc->Options<proto::TextEmbedderGraphOptions>(),
|
||||||
|
*model_resources,
|
||||||
|
graph[Input<std::string>(kTextTag)], graph));
|
||||||
|
embedding_result_out >> graph[Output<EmbeddingResult>(kEmbeddingsTag)];
|
||||||
|
return graph.GetConfig();
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
// Adds a mediapipe TextEmbedder task graph into the provided
|
||||||
|
// builder::Graph instance. The TextEmbedder task takes an input
|
||||||
|
// text (std::string) and returns an embedding result.
|
||||||
|
//
|
||||||
|
// task_options: the mediapipe tasks TextEmbedderGraphOptions proto.
|
||||||
|
// model_resources: the ModelResources object initialized from a
|
||||||
|
// TextEmbedder model file with model metadata.
|
||||||
|
// text_in: (std::string) stream to run embedding extraction on.
|
||||||
|
// graph: the mediapipe builder::Graph instance to be updated.
|
||||||
|
absl::StatusOr<Source<EmbeddingResult>> BuildTextEmbedderTask(
|
||||||
|
const proto::TextEmbedderGraphOptions& task_options,
|
||||||
|
const ModelResources& model_resources, Source<std::string> text_in,
|
||||||
|
Graph& graph) {
|
||||||
|
// Adds preprocessing calculators and connects them to the text input
|
||||||
|
// stream.
|
||||||
|
auto& preprocessing =
|
||||||
|
graph.AddNode("mediapipe.tasks.components.TextPreprocessingSubgraph");
|
||||||
|
MP_RETURN_IF_ERROR(components::ConfigureTextPreprocessingSubgraph(
|
||||||
|
model_resources,
|
||||||
|
preprocessing.GetOptions<
|
||||||
|
tasks::components::proto::TextPreprocessingGraphOptions>()));
|
||||||
|
text_in >> preprocessing.In(kTextTag);
|
||||||
|
|
||||||
|
// Adds both InferenceCalculator and ModelResourcesCalculator.
|
||||||
|
auto& inference = AddInference(
|
||||||
|
model_resources, task_options.base_options().acceleration(), graph);
|
||||||
|
// The metadata extractor side-output comes from the
|
||||||
|
// ModelResourcesCalculator.
|
||||||
|
inference.SideOut(kMetadataExtractorTag) >>
|
||||||
|
preprocessing.SideIn(kMetadataExtractorTag);
|
||||||
|
preprocessing.Out(kTensorsTag) >> inference.In(kTensorsTag);
|
||||||
|
|
||||||
|
// Adds postprocessing calculators and connects its input stream to the
|
||||||
|
// inference results.
|
||||||
|
auto& postprocessing = graph.AddNode(
|
||||||
|
"mediapipe.tasks.components.processors.EmbeddingPostprocessingGraph");
|
||||||
|
MP_RETURN_IF_ERROR(components::processors::ConfigureEmbeddingPostprocessing(
|
||||||
|
model_resources, task_options.embedder_options(),
|
||||||
|
&postprocessing.GetOptions<components::processors::proto::
|
||||||
|
EmbeddingPostprocessingGraphOptions>()));
|
||||||
|
inference.Out(kTensorsTag) >> postprocessing.In(kTensorsTag);
|
||||||
|
|
||||||
|
// Outputs the embedding result.
|
||||||
|
return postprocessing[Output<EmbeddingResult>(kEmbeddingsTag)];
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_MEDIAPIPE_GRAPH(
|
||||||
|
::mediapipe::tasks::text::text_embedder::TextEmbedderGraph);
|
||||||
|
|
||||||
|
} // namespace mediapipe::tasks::text::text_embedder
|
143
mediapipe/tasks/cc/text/text_embedder/text_embedder_test.cc
Normal file
143
mediapipe/tasks/cc/text/text_embedder/text_embedder_test.cc
Normal file
|
@ -0,0 +1,143 @@
|
||||||
|
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "mediapipe/tasks/cc/text/text_embedder/text_embedder.h"
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "absl/flags/flag.h"
|
||||||
|
#include "absl/status/status.h"
|
||||||
|
#include "absl/status/statusor.h"
|
||||||
|
#include "mediapipe/framework/deps/file_path.h"
|
||||||
|
#include "mediapipe/framework/port/gmock.h"
|
||||||
|
#include "mediapipe/framework/port/gtest.h"
|
||||||
|
#include "mediapipe/framework/port/status_matchers.h"
|
||||||
|
#include "mediapipe/tasks/cc/common.h"
|
||||||
|
#include "mediapipe/tasks/cc/components/containers/embedding_result.h"
|
||||||
|
#include "tensorflow/lite/core/shims/cc/shims_test_util.h"
|
||||||
|
|
||||||
|
namespace mediapipe::tasks::text::text_embedder {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
constexpr char kTestDataDirectory[] = "/mediapipe/tasks/testdata/text/";
|
||||||
|
|
||||||
|
// Note that these models use dynamic-sized tensors.
|
||||||
|
// Embedding model with BERT preprocessing.
|
||||||
|
constexpr char kMobileBert[] = "mobilebert_embedding_with_metadata.tflite";
|
||||||
|
// Embedding model with regex preprocessing.
|
||||||
|
constexpr char kRegexOneEmbeddingModel[] =
|
||||||
|
"regex_one_embedding_with_metadata.tflite";
|
||||||
|
|
||||||
|
// Tolerance for embedding vector coordinate values.
|
||||||
|
constexpr float kEpsilon = 1e-4;
|
||||||
|
// Tolerancy for cosine similarity evaluation.
|
||||||
|
constexpr double kSimilarityTolerancy = 1e-6;
|
||||||
|
|
||||||
|
using ::mediapipe::file::JoinPath;
|
||||||
|
using ::testing::HasSubstr;
|
||||||
|
using ::testing::Optional;
|
||||||
|
|
||||||
|
class EmbedderTest : public tflite_shims::testing::Test {};
|
||||||
|
|
||||||
|
TEST_F(EmbedderTest, FailsWithMissingModel) {
|
||||||
|
auto text_embedder =
|
||||||
|
TextEmbedder::Create(std::make_unique<TextEmbedderOptions>());
|
||||||
|
ASSERT_EQ(text_embedder.status().code(), absl::StatusCode::kInvalidArgument);
|
||||||
|
ASSERT_THAT(
|
||||||
|
text_embedder.status().message(),
|
||||||
|
HasSubstr("ExternalFile must specify at least one of 'file_content', "
|
||||||
|
"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."));
|
||||||
|
ASSERT_THAT(text_embedder.status().GetPayload(kMediaPipeTasksPayload),
|
||||||
|
Optional(absl::Cord(absl::StrCat(
|
||||||
|
MediaPipeTasksStatus::kRunnerInitializationError))));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(EmbedderTest, SucceedsWithMobileBert) {
|
||||||
|
auto options = std::make_unique<TextEmbedderOptions>();
|
||||||
|
options->base_options.model_asset_path =
|
||||||
|
JoinPath("./", kTestDataDirectory, kMobileBert);
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TextEmbedder> text_embedder,
|
||||||
|
TextEmbedder::Create(std::move(options)));
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
TextEmbedderResult result0,
|
||||||
|
text_embedder->Embed("it's a charming and often affecting journey"));
|
||||||
|
ASSERT_EQ(result0.embeddings.size(), 1);
|
||||||
|
ASSERT_EQ(result0.embeddings[0].float_embedding.size(), 512);
|
||||||
|
ASSERT_NEAR(result0.embeddings[0].float_embedding[0], 19.9016f, kEpsilon);
|
||||||
|
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
auto result1, text_embedder->Embed("what a great and fantastic trip"));
|
||||||
|
ASSERT_EQ(result1.embeddings.size(), 1);
|
||||||
|
ASSERT_EQ(result1.embeddings[0].float_embedding.size(), 512);
|
||||||
|
ASSERT_NEAR(result1.embeddings[0].float_embedding[0], 22.626251f, kEpsilon);
|
||||||
|
|
||||||
|
// Check cosine similarity.
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
double similarity, TextEmbedder::CosineSimilarity(result0.embeddings[0],
|
||||||
|
result1.embeddings[0]));
|
||||||
|
EXPECT_NEAR(similarity, 0.969514, kSimilarityTolerancy);
|
||||||
|
|
||||||
|
MP_ASSERT_OK(text_embedder->Close());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(EmbedTest, SucceedsWithRegexOneEmbeddingModel) {
|
||||||
|
auto options = std::make_unique<TextEmbedderOptions>();
|
||||||
|
options->base_options.model_asset_path =
|
||||||
|
JoinPath("./", kTestDataDirectory, kRegexOneEmbeddingModel);
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TextEmbedder> text_embedder,
|
||||||
|
TextEmbedder::Create(std::move(options)));
|
||||||
|
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
auto result0,
|
||||||
|
text_embedder->Embed("it's a charming and often affecting journey"));
|
||||||
|
EXPECT_EQ(result0.embeddings.size(), 1);
|
||||||
|
EXPECT_EQ(result0.embeddings[0].float_embedding.size(), 16);
|
||||||
|
|
||||||
|
EXPECT_NEAR(result0.embeddings[0].float_embedding[0], 0.0309356f, kEpsilon);
|
||||||
|
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
auto result1, text_embedder->Embed("what a great and fantastic trip"));
|
||||||
|
EXPECT_EQ(result1.embeddings.size(), 1);
|
||||||
|
EXPECT_EQ(result1.embeddings[0].float_embedding.size(), 16);
|
||||||
|
|
||||||
|
EXPECT_NEAR(result1.embeddings[0].float_embedding[0], 0.0312863f, kEpsilon);
|
||||||
|
|
||||||
|
// Check cosine similarity.
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
double similarity, TextEmbedder::CosineSimilarity(result0.embeddings[0],
|
||||||
|
result1.embeddings[0]));
|
||||||
|
EXPECT_NEAR(similarity, 0.999937, kSimilarityTolerancy);
|
||||||
|
|
||||||
|
MP_ASSERT_OK(text_embedder->Close());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(EmbedderTest, SucceedsWithQuantization) {
|
||||||
|
auto options = std::make_unique<TextEmbedderOptions>();
|
||||||
|
options->base_options.model_asset_path =
|
||||||
|
JoinPath("./", kTestDataDirectory, kMobileBert);
|
||||||
|
options->embedder_options.quantize = true;
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TextEmbedder> text_embedder,
|
||||||
|
TextEmbedder::Create(std::move(options)));
|
||||||
|
MP_ASSERT_OK_AND_ASSIGN(
|
||||||
|
TextEmbedderResult result,
|
||||||
|
text_embedder->Embed("it's a charming and often affecting journey"));
|
||||||
|
ASSERT_EQ(result.embeddings.size(), 1);
|
||||||
|
ASSERT_EQ(result.embeddings[0].quantized_embedding.size(), 512);
|
||||||
|
|
||||||
|
MP_ASSERT_OK(text_embedder->Close());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
} // namespace mediapipe::tasks::text::text_embedder
|
|
@ -26,22 +26,23 @@ public abstract class BaseOptions {
|
||||||
@AutoValue.Builder
|
@AutoValue.Builder
|
||||||
public abstract static class Builder {
|
public abstract static class Builder {
|
||||||
/**
|
/**
|
||||||
* Sets the model path to a tflite model with metadata in the assets.
|
* Sets the model path to a model asset file (a tflite model or a model asset bundle file) in
|
||||||
|
* the Android app assets folder.
|
||||||
*
|
*
|
||||||
* <p>Note: when model path is set, both model file descriptor and model buffer should be empty.
|
* <p>Note: when model path is set, both model file descriptor and model buffer should be empty.
|
||||||
*/
|
*/
|
||||||
public abstract Builder setModelAssetPath(String value);
|
public abstract Builder setModelAssetPath(String value);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sets the native fd int of a tflite model with metadata.
|
* Sets the native fd int of a model asset file (a tflite model or a model asset bundle file).
|
||||||
*
|
*
|
||||||
* <p>Note: when model file descriptor is set, both model path and model buffer should be empty.
|
* <p>Note: when model file descriptor is set, both model path and model buffer should be empty.
|
||||||
*/
|
*/
|
||||||
public abstract Builder setModelAssetFileDescriptor(Integer value);
|
public abstract Builder setModelAssetFileDescriptor(Integer value);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sets either the direct {@link ByteBuffer} or the {@link MappedByteBuffer} of a tflite model
|
* Sets either the direct {@link ByteBuffer} or the {@link MappedByteBuffer} of a model asset
|
||||||
* with metadata.
|
* file (a tflite model or a model asset bundle file).
|
||||||
*
|
*
|
||||||
* <p>Note: when model buffer is set, both model file and model file descriptor should be empty.
|
* <p>Note: when model buffer is set, both model file and model file descriptor should be empty.
|
||||||
*/
|
*/
|
||||||
|
|
5
mediapipe/tasks/testdata/vision/BUILD
vendored
5
mediapipe/tasks/testdata/vision/BUILD
vendored
|
@ -144,8 +144,13 @@ filegroup(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Gestures related models. Visible to model_maker.
|
# Gestures related models. Visible to model_maker.
|
||||||
|
# TODO: Upload canned gesture model and gesture embedding model to GCS after Model Card approval
|
||||||
filegroup(
|
filegroup(
|
||||||
name = "test_gesture_models",
|
name = "test_gesture_models",
|
||||||
|
srcs = [
|
||||||
|
"hand_landmark_full.tflite",
|
||||||
|
"palm_detection_full.tflite",
|
||||||
|
],
|
||||||
visibility = [
|
visibility = [
|
||||||
"//mediapipe/model_maker:__subpackages__",
|
"//mediapipe/model_maker:__subpackages__",
|
||||||
"//mediapipe/tasks:internal",
|
"//mediapipe/tasks:internal",
|
||||||
|
|
106
mediapipe/tasks/web/BUILD
Normal file
106
mediapipe/tasks/web/BUILD
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# This contains the MediaPipe Tasks NPM package definitions.
|
||||||
|
|
||||||
|
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
||||||
|
load("@build_bazel_rules_nodejs//:index.bzl", "pkg_npm")
|
||||||
|
load("@npm//@bazel/rollup:index.bzl", "rollup_bundle")
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
|
# Audio
|
||||||
|
|
||||||
|
mediapipe_ts_library(
|
||||||
|
name = "audio_lib",
|
||||||
|
srcs = ["audio.ts"],
|
||||||
|
deps = ["//mediapipe/tasks/web/audio:audio_lib"],
|
||||||
|
)
|
||||||
|
|
||||||
|
rollup_bundle(
|
||||||
|
name = "audio_bundle",
|
||||||
|
config_file = "rollup.config.mjs",
|
||||||
|
entry_point = "audio.ts",
|
||||||
|
output_dir = False,
|
||||||
|
deps = [
|
||||||
|
":audio_lib",
|
||||||
|
"@npm//@rollup/plugin-commonjs",
|
||||||
|
"@npm//@rollup/plugin-node-resolve",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
pkg_npm(
|
||||||
|
name = "audio_pkg",
|
||||||
|
package_name = "__PACKAGE_NAME__",
|
||||||
|
srcs = ["package.json"],
|
||||||
|
substitutions = {
|
||||||
|
"__PACKAGE_NAME__": "@mediapipe/tasks-audio",
|
||||||
|
"__DESCRIPTION__": "MediaPipe Audio Tasks",
|
||||||
|
"__BUNDLE__": "audio_bundle.js",
|
||||||
|
},
|
||||||
|
tgz = "audio.tgz",
|
||||||
|
deps = [":audio_bundle"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Text
|
||||||
|
|
||||||
|
mediapipe_ts_library(
|
||||||
|
name = "text_lib",
|
||||||
|
srcs = ["text.ts"],
|
||||||
|
deps = ["//mediapipe/tasks/web/text:text_lib"],
|
||||||
|
)
|
||||||
|
|
||||||
|
rollup_bundle(
|
||||||
|
name = "text_bundle",
|
||||||
|
config_file = "rollup.config.mjs",
|
||||||
|
entry_point = "text.ts",
|
||||||
|
output_dir = False,
|
||||||
|
deps = [
|
||||||
|
":text_lib",
|
||||||
|
"@npm//@rollup/plugin-commonjs",
|
||||||
|
"@npm//@rollup/plugin-node-resolve",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
pkg_npm(
|
||||||
|
name = "text_pkg",
|
||||||
|
package_name = "__PACKAGE_NAME__",
|
||||||
|
srcs = ["package.json"],
|
||||||
|
substitutions = {
|
||||||
|
"__PACKAGE_NAME__": "@mediapipe/tasks-text",
|
||||||
|
"__DESCRIPTION__": "MediaPipe Text Tasks",
|
||||||
|
"__BUNDLE__": "text_bundle.js",
|
||||||
|
},
|
||||||
|
tgz = "text.tgz",
|
||||||
|
deps = [":text_bundle"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Vision
|
||||||
|
|
||||||
|
mediapipe_ts_library(
|
||||||
|
name = "vision_lib",
|
||||||
|
srcs = ["vision.ts"],
|
||||||
|
deps = ["//mediapipe/tasks/web/vision:vision_lib"],
|
||||||
|
)
|
||||||
|
|
||||||
|
rollup_bundle(
|
||||||
|
name = "vision_bundle",
|
||||||
|
config_file = "rollup.config.mjs",
|
||||||
|
entry_point = "vision.ts",
|
||||||
|
output_dir = False,
|
||||||
|
deps = [
|
||||||
|
":vision_lib",
|
||||||
|
"@npm//@rollup/plugin-commonjs",
|
||||||
|
"@npm//@rollup/plugin-node-resolve",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
pkg_npm(
|
||||||
|
name = "vision_pkg",
|
||||||
|
package_name = "__PACKAGE_NAME__",
|
||||||
|
srcs = ["package.json"],
|
||||||
|
substitutions = {
|
||||||
|
"__PACKAGE_NAME__": "@mediapipe/tasks-vision",
|
||||||
|
"__DESCRIPTION__": "MediaPipe Vision Tasks",
|
||||||
|
"__BUNDLE__": "vision_bundle.js",
|
||||||
|
},
|
||||||
|
tgz = "vision.tgz",
|
||||||
|
deps = [":vision_bundle"],
|
||||||
|
)
|
17
mediapipe/tasks/web/audio.ts
Normal file
17
mediapipe/tasks/web/audio.ts
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
export * from '../../tasks/web/audio/index';
|
|
@ -2,6 +2,8 @@
|
||||||
|
|
||||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
mediapipe_ts_library(
|
mediapipe_ts_library(
|
||||||
name = "audio_lib",
|
name = "audio_lib",
|
||||||
srcs = ["index.ts"],
|
srcs = ["index.ts"],
|
||||||
|
|
|
@ -198,7 +198,7 @@ export class AudioClassifier extends TaskRunner {
|
||||||
classifierNode.addInputStream('AUDIO:' + AUDIO_STREAM);
|
classifierNode.addInputStream('AUDIO:' + AUDIO_STREAM);
|
||||||
classifierNode.addInputStream('SAMPLE_RATE:' + SAMPLE_RATE_STREAM);
|
classifierNode.addInputStream('SAMPLE_RATE:' + SAMPLE_RATE_STREAM);
|
||||||
classifierNode.addOutputStream(
|
classifierNode.addOutputStream(
|
||||||
'CLASSIFICATION_RESULT:' + CLASSIFICATION_RESULT_STREAM);
|
'CLASSIFICATIONS:' + CLASSIFICATION_RESULT_STREAM);
|
||||||
classifierNode.setOptions(calculatorOptions);
|
classifierNode.setOptions(calculatorOptions);
|
||||||
|
|
||||||
graphConfig.addNode(classifierNode);
|
graphConfig.addNode(classifierNode);
|
||||||
|
|
15
mediapipe/tasks/web/package.json
Normal file
15
mediapipe/tasks/web/package.json
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
{
|
||||||
|
"name": "__PACKAGE_NAME__",
|
||||||
|
"version": "__VERSION__",
|
||||||
|
"description": "__DESCRIPTION__",
|
||||||
|
"main": "__BUNDLE__",
|
||||||
|
"module": "__BUNDLE__",
|
||||||
|
"author": "mediapipe@google.com",
|
||||||
|
"license": "Apache-2.0",
|
||||||
|
"type": "module",
|
||||||
|
"dependencies": {
|
||||||
|
"google-protobuf": "^3.21.2"
|
||||||
|
},
|
||||||
|
"homepage": "http://mediapipe.dev",
|
||||||
|
"keywords": [ "AR", "ML", "Augmented", "MediaPipe", "MediaPipe Tasks" ]
|
||||||
|
}
|
9
mediapipe/tasks/web/rollup.config.mjs
Normal file
9
mediapipe/tasks/web/rollup.config.mjs
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
import resolve from '@rollup/plugin-node-resolve';
|
||||||
|
import commonjs from '@rollup/plugin-commonjs';
|
||||||
|
|
||||||
|
export default {
|
||||||
|
plugins: [
|
||||||
|
resolve(),
|
||||||
|
commonjs()
|
||||||
|
]
|
||||||
|
}
|
17
mediapipe/tasks/web/text.ts
Normal file
17
mediapipe/tasks/web/text.ts
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
export * from '../../tasks/web/text/index';
|
|
@ -2,6 +2,8 @@
|
||||||
|
|
||||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
mediapipe_ts_library(
|
mediapipe_ts_library(
|
||||||
name = "text_lib",
|
name = "text_lib",
|
||||||
srcs = ["index.ts"],
|
srcs = ["index.ts"],
|
||||||
|
|
|
@ -13,8 +13,8 @@ mediapipe_ts_library(
|
||||||
name = "text_classifier",
|
name = "text_classifier",
|
||||||
srcs = [
|
srcs = [
|
||||||
"text_classifier.ts",
|
"text_classifier.ts",
|
||||||
"text_classifier_options.d.ts",
|
"text_classifier_options.ts",
|
||||||
"text_classifier_result.d.ts",
|
"text_classifier_result.ts",
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
"//mediapipe/framework:calculator_jspb_proto",
|
"//mediapipe/framework:calculator_jspb_proto",
|
||||||
|
|
17
mediapipe/tasks/web/vision.ts
Normal file
17
mediapipe/tasks/web/vision.ts
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
export * from '../../tasks/web/vision/index';
|
|
@ -2,6 +2,8 @@
|
||||||
|
|
||||||
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_ts_library")
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
mediapipe_ts_library(
|
mediapipe_ts_library(
|
||||||
name = "vision_lib",
|
name = "vision_lib",
|
||||||
srcs = ["index.ts"],
|
srcs = ["index.ts"],
|
||||||
|
|
|
@ -13,8 +13,8 @@ mediapipe_ts_library(
|
||||||
name = "gesture_recognizer",
|
name = "gesture_recognizer",
|
||||||
srcs = [
|
srcs = [
|
||||||
"gesture_recognizer.ts",
|
"gesture_recognizer.ts",
|
||||||
"gesture_recognizer_options.d.ts",
|
"gesture_recognizer_options.ts",
|
||||||
"gesture_recognizer_result.d.ts",
|
"gesture_recognizer_result.ts",
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
"//mediapipe/framework:calculator_jspb_proto",
|
"//mediapipe/framework:calculator_jspb_proto",
|
||||||
|
|
|
@ -13,8 +13,8 @@ mediapipe_ts_library(
|
||||||
name = "object_detector",
|
name = "object_detector",
|
||||||
srcs = [
|
srcs = [
|
||||||
"object_detector.ts",
|
"object_detector.ts",
|
||||||
"object_detector_options.d.ts",
|
"object_detector_options.ts",
|
||||||
"object_detector_result.d.ts",
|
"object_detector_result.ts",
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
"//mediapipe/framework:calculator_jspb_proto",
|
"//mediapipe/framework:calculator_jspb_proto",
|
||||||
|
|
|
@ -3,12 +3,16 @@
|
||||||
"version": "0.0.0-alphga",
|
"version": "0.0.0-alphga",
|
||||||
"description": "MediaPipe GitHub repo",
|
"description": "MediaPipe GitHub repo",
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
|
"@bazel/rollup": "^5.7.1",
|
||||||
"@bazel/typescript": "^5.7.1",
|
"@bazel/typescript": "^5.7.1",
|
||||||
|
"@rollup/plugin-commonjs": "^23.0.2",
|
||||||
|
"@rollup/plugin-node-resolve": "^15.0.1",
|
||||||
"@types/google-protobuf": "^3.15.6",
|
"@types/google-protobuf": "^3.15.6",
|
||||||
"@types/offscreencanvas": "^2019.7.0",
|
"@types/offscreencanvas": "^2019.7.0",
|
||||||
"google-protobuf": "^3.21.2",
|
"google-protobuf": "^3.21.2",
|
||||||
"protobufjs": "^7.1.2",
|
"protobufjs": "^7.1.2",
|
||||||
"protobufjs-cli": "^1.0.2",
|
"protobufjs-cli": "^1.0.2",
|
||||||
|
"rollup": "^2.3.0",
|
||||||
"ts-protoc-gen": "^0.15.0",
|
"ts-protoc-gen": "^0.15.0",
|
||||||
"typescript": "^4.8.4"
|
"typescript": "^4.8.4"
|
||||||
}
|
}
|
||||||
|
|
182
yarn.lock
182
yarn.lock
|
@ -3,9 +3,16 @@
|
||||||
|
|
||||||
|
|
||||||
"@babel/parser@^7.9.4":
|
"@babel/parser@^7.9.4":
|
||||||
version "7.20.1"
|
version "7.20.3"
|
||||||
resolved "https://registry.yarnpkg.com/@babel/parser/-/parser-7.20.1.tgz#3e045a92f7b4623cafc2425eddcb8cf2e54f9cc5"
|
resolved "https://registry.yarnpkg.com/@babel/parser/-/parser-7.20.3.tgz#5358cf62e380cf69efcb87a7bb922ff88bfac6e2"
|
||||||
integrity sha512-hp0AYxaZJhxULfM1zyp7Wgr+pSUKBcP3M+PHnSzWGdXOzg/kHWIgiUWARvubhUKGOEw3xqY4x+lyZ9ytBVcELw==
|
integrity sha512-OP/s5a94frIPXwjzEcv5S/tpQfc6XhxYUnmWpgdqMWGgYCuErA3SzozaRAMQgSZWKeTJxht9aWAkUY+0UzvOFg==
|
||||||
|
|
||||||
|
"@bazel/rollup@^5.7.1":
|
||||||
|
version "5.7.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/@bazel/rollup/-/rollup-5.7.1.tgz#6f644c2d493a5bd9cd3724a6f239e609585c6e37"
|
||||||
|
integrity sha512-LLNogoK2Qx9GIJVywQ+V/czjud8236mnaRX//g7qbOyXoWZDQvAEgsxRHq+lS/XX9USbh+zJJlfb+Dfp/PXx4A==
|
||||||
|
dependencies:
|
||||||
|
"@bazel/worker" "5.7.1"
|
||||||
|
|
||||||
"@bazel/typescript@^5.7.1":
|
"@bazel/typescript@^5.7.1":
|
||||||
version "5.7.1"
|
version "5.7.1"
|
||||||
|
@ -77,6 +84,44 @@
|
||||||
resolved "https://registry.yarnpkg.com/@protobufjs/utf8/-/utf8-1.1.0.tgz#a777360b5b39a1a2e5106f8e858f2fd2d060c570"
|
resolved "https://registry.yarnpkg.com/@protobufjs/utf8/-/utf8-1.1.0.tgz#a777360b5b39a1a2e5106f8e858f2fd2d060c570"
|
||||||
integrity sha512-Vvn3zZrhQZkkBE8LSuW3em98c0FwgO4nxzv6OdSxPKJIEKY2bGbHn+mhGIPerzI4twdxaP8/0+06HBpwf345Lw==
|
integrity sha512-Vvn3zZrhQZkkBE8LSuW3em98c0FwgO4nxzv6OdSxPKJIEKY2bGbHn+mhGIPerzI4twdxaP8/0+06HBpwf345Lw==
|
||||||
|
|
||||||
|
"@rollup/plugin-commonjs@^23.0.2":
|
||||||
|
version "23.0.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/@rollup/plugin-commonjs/-/plugin-commonjs-23.0.2.tgz#3a3a5b7b1b1cb29037eb4992edcaae997d7ebd92"
|
||||||
|
integrity sha512-e9ThuiRf93YlVxc4qNIurvv+Hp9dnD+4PjOqQs5vAYfcZ3+AXSrcdzXnVjWxcGQOa6KGJFcRZyUI3ktWLavFjg==
|
||||||
|
dependencies:
|
||||||
|
"@rollup/pluginutils" "^5.0.1"
|
||||||
|
commondir "^1.0.1"
|
||||||
|
estree-walker "^2.0.2"
|
||||||
|
glob "^8.0.3"
|
||||||
|
is-reference "1.2.1"
|
||||||
|
magic-string "^0.26.4"
|
||||||
|
|
||||||
|
"@rollup/plugin-node-resolve@^15.0.1":
|
||||||
|
version "15.0.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/@rollup/plugin-node-resolve/-/plugin-node-resolve-15.0.1.tgz#72be449b8e06f6367168d5b3cd5e2802e0248971"
|
||||||
|
integrity sha512-ReY88T7JhJjeRVbfCyNj+NXAG3IIsVMsX9b5/9jC98dRP8/yxlZdz7mHZbHk5zHr24wZZICS5AcXsFZAXYUQEg==
|
||||||
|
dependencies:
|
||||||
|
"@rollup/pluginutils" "^5.0.1"
|
||||||
|
"@types/resolve" "1.20.2"
|
||||||
|
deepmerge "^4.2.2"
|
||||||
|
is-builtin-module "^3.2.0"
|
||||||
|
is-module "^1.0.0"
|
||||||
|
resolve "^1.22.1"
|
||||||
|
|
||||||
|
"@rollup/pluginutils@^5.0.1":
|
||||||
|
version "5.0.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/@rollup/pluginutils/-/pluginutils-5.0.2.tgz#012b8f53c71e4f6f9cb317e311df1404f56e7a33"
|
||||||
|
integrity sha512-pTd9rIsP92h+B6wWwFbW8RkZv4hiR/xKsqre4SIuAOaOEQRxi0lqLke9k2/7WegC85GgUs9pjmOjCUi3In4vwA==
|
||||||
|
dependencies:
|
||||||
|
"@types/estree" "^1.0.0"
|
||||||
|
estree-walker "^2.0.2"
|
||||||
|
picomatch "^2.3.1"
|
||||||
|
|
||||||
|
"@types/estree@*", "@types/estree@^1.0.0":
|
||||||
|
version "1.0.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/@types/estree/-/estree-1.0.0.tgz#5fb2e536c1ae9bf35366eed879e827fa59ca41c2"
|
||||||
|
integrity sha512-WulqXMDUTYAXCjZnk6JtIHPigp55cVtDgDrO2gHRwhyJto21+1zbVCtOYB2L1F9w4qCQ0rOGWBnBe0FNTiEJIQ==
|
||||||
|
|
||||||
"@types/google-protobuf@^3.15.6":
|
"@types/google-protobuf@^3.15.6":
|
||||||
version "3.15.6"
|
version "3.15.6"
|
||||||
resolved "https://registry.yarnpkg.com/@types/google-protobuf/-/google-protobuf-3.15.6.tgz#674a69493ef2c849b95eafe69167ea59079eb504"
|
resolved "https://registry.yarnpkg.com/@types/google-protobuf/-/google-protobuf-3.15.6.tgz#674a69493ef2c849b95eafe69167ea59079eb504"
|
||||||
|
@ -110,6 +155,11 @@
|
||||||
resolved "https://registry.yarnpkg.com/@types/offscreencanvas/-/offscreencanvas-2019.7.0.tgz#e4a932069db47bb3eabeb0b305502d01586fa90d"
|
resolved "https://registry.yarnpkg.com/@types/offscreencanvas/-/offscreencanvas-2019.7.0.tgz#e4a932069db47bb3eabeb0b305502d01586fa90d"
|
||||||
integrity sha512-PGcyveRIpL1XIqK8eBsmRBt76eFgtzuPiSTyKHZxnGemp2yzGzWpjYKAfK3wIMiU7eH+851yEpiuP8JZerTmWg==
|
integrity sha512-PGcyveRIpL1XIqK8eBsmRBt76eFgtzuPiSTyKHZxnGemp2yzGzWpjYKAfK3wIMiU7eH+851yEpiuP8JZerTmWg==
|
||||||
|
|
||||||
|
"@types/resolve@1.20.2":
|
||||||
|
version "1.20.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/@types/resolve/-/resolve-1.20.2.tgz#97d26e00cd4a0423b4af620abecf3e6f442b7975"
|
||||||
|
integrity sha512-60BCwRFOZCQhDncwQdxxeOEEkbc5dIMccYLwbxsS4TUNeVECQ/pBJ0j09mrHOl/JJvpRPGwO9SvE4nR2Nb/a4Q==
|
||||||
|
|
||||||
acorn-jsx@^5.3.2:
|
acorn-jsx@^5.3.2:
|
||||||
version "5.3.2"
|
version "5.3.2"
|
||||||
resolved "https://registry.yarnpkg.com/acorn-jsx/-/acorn-jsx-5.3.2.tgz#7ed5bb55908b3b2f1bc55c6af1653bada7f07937"
|
resolved "https://registry.yarnpkg.com/acorn-jsx/-/acorn-jsx-5.3.2.tgz#7ed5bb55908b3b2f1bc55c6af1653bada7f07937"
|
||||||
|
@ -162,6 +212,11 @@ buffer-from@^1.0.0:
|
||||||
resolved "https://registry.yarnpkg.com/buffer-from/-/buffer-from-1.1.2.tgz#2b146a6fd72e80b4f55d255f35ed59a3a9a41bd5"
|
resolved "https://registry.yarnpkg.com/buffer-from/-/buffer-from-1.1.2.tgz#2b146a6fd72e80b4f55d255f35ed59a3a9a41bd5"
|
||||||
integrity sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==
|
integrity sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==
|
||||||
|
|
||||||
|
builtin-modules@^3.3.0:
|
||||||
|
version "3.3.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/builtin-modules/-/builtin-modules-3.3.0.tgz#cae62812b89801e9656336e46223e030386be7b6"
|
||||||
|
integrity sha512-zhaCDicdLuWN5UbN5IMnFqNMhNfo919sH85y2/ea+5Yg9TsTkeZxpL+JLbp6cgYFS4sRLp3YV4S6yDuqVWHYOw==
|
||||||
|
|
||||||
catharsis@^0.9.0:
|
catharsis@^0.9.0:
|
||||||
version "0.9.0"
|
version "0.9.0"
|
||||||
resolved "https://registry.yarnpkg.com/catharsis/-/catharsis-0.9.0.tgz#40382a168be0e6da308c277d3a2b3eb40c7d2121"
|
resolved "https://registry.yarnpkg.com/catharsis/-/catharsis-0.9.0.tgz#40382a168be0e6da308c277d3a2b3eb40c7d2121"
|
||||||
|
@ -189,6 +244,11 @@ color-name@~1.1.4:
|
||||||
resolved "https://registry.yarnpkg.com/color-name/-/color-name-1.1.4.tgz#c2a09a87acbde69543de6f63fa3995c826c536a2"
|
resolved "https://registry.yarnpkg.com/color-name/-/color-name-1.1.4.tgz#c2a09a87acbde69543de6f63fa3995c826c536a2"
|
||||||
integrity sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==
|
integrity sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==
|
||||||
|
|
||||||
|
commondir@^1.0.1:
|
||||||
|
version "1.0.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/commondir/-/commondir-1.0.1.tgz#ddd800da0c66127393cca5950ea968a3aaf1253b"
|
||||||
|
integrity sha512-W9pAhw0ja1Edb5GVdIF1mjZw/ASI0AlShXM83UUGe2DVr5TdAPEA1OA8m/g8zWp9x6On7gqufY+FatDbC3MDQg==
|
||||||
|
|
||||||
concat-map@0.0.1:
|
concat-map@0.0.1:
|
||||||
version "0.0.1"
|
version "0.0.1"
|
||||||
resolved "https://registry.yarnpkg.com/concat-map/-/concat-map-0.0.1.tgz#d8a96bd77fd68df7793a73036a3ba0d5405d477b"
|
resolved "https://registry.yarnpkg.com/concat-map/-/concat-map-0.0.1.tgz#d8a96bd77fd68df7793a73036a3ba0d5405d477b"
|
||||||
|
@ -199,6 +259,11 @@ deep-is@~0.1.3:
|
||||||
resolved "https://registry.yarnpkg.com/deep-is/-/deep-is-0.1.4.tgz#a6f2dce612fadd2ef1f519b73551f17e85199831"
|
resolved "https://registry.yarnpkg.com/deep-is/-/deep-is-0.1.4.tgz#a6f2dce612fadd2ef1f519b73551f17e85199831"
|
||||||
integrity sha512-oIPzksmTg4/MriiaYGO+okXDT7ztn/w3Eptv/+gSIdMdKsJo0u4CfYNFJPy+4SKMuCqGw2wxnA+URMg3t8a/bQ==
|
integrity sha512-oIPzksmTg4/MriiaYGO+okXDT7ztn/w3Eptv/+gSIdMdKsJo0u4CfYNFJPy+4SKMuCqGw2wxnA+URMg3t8a/bQ==
|
||||||
|
|
||||||
|
deepmerge@^4.2.2:
|
||||||
|
version "4.2.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/deepmerge/-/deepmerge-4.2.2.tgz#44d2ea3679b8f4d4ffba33f03d865fc1e7bf4955"
|
||||||
|
integrity sha512-FJ3UgI4gIl+PHZm53knsuSFpE+nESMr7M4v9QcgB7S63Kj/6WqMiFQJpBBYz1Pt+66bZpP3Q7Lye0Oo9MPKEdg==
|
||||||
|
|
||||||
entities@~2.1.0:
|
entities@~2.1.0:
|
||||||
version "2.1.0"
|
version "2.1.0"
|
||||||
resolved "https://registry.yarnpkg.com/entities/-/entities-2.1.0.tgz#992d3129cf7df6870b96c57858c249a120f8b8b5"
|
resolved "https://registry.yarnpkg.com/entities/-/entities-2.1.0.tgz#992d3129cf7df6870b96c57858c249a120f8b8b5"
|
||||||
|
@ -227,9 +292,9 @@ eslint-visitor-keys@^3.3.0:
|
||||||
integrity sha512-mQ+suqKJVyeuwGYHAdjMFqjCyfl8+Ldnxuyp3ldiMBFKkvytrXUZWaiPCEav8qDHKty44bD+qV1IP4T+w+xXRA==
|
integrity sha512-mQ+suqKJVyeuwGYHAdjMFqjCyfl8+Ldnxuyp3ldiMBFKkvytrXUZWaiPCEav8qDHKty44bD+qV1IP4T+w+xXRA==
|
||||||
|
|
||||||
espree@^9.0.0:
|
espree@^9.0.0:
|
||||||
version "9.4.0"
|
version "9.4.1"
|
||||||
resolved "https://registry.yarnpkg.com/espree/-/espree-9.4.0.tgz#cd4bc3d6e9336c433265fc0aa016fc1aaf182f8a"
|
resolved "https://registry.yarnpkg.com/espree/-/espree-9.4.1.tgz#51d6092615567a2c2cff7833445e37c28c0065bd"
|
||||||
integrity sha512-DQmnRpLj7f6TgN/NYb0MTzJXL+vJF9h3pHy4JhCIs3zwcgez8xmGg3sXHcEO97BrmO2OSvCwMdfdlyl+E9KjOw==
|
integrity sha512-XwctdmTO6SIvCzd9810yyNzIrOrqNYV9Koizx4C/mRhf9uq0o4yHoCEU/670pOxOL/MSraektvSAji79kX90Vg==
|
||||||
dependencies:
|
dependencies:
|
||||||
acorn "^8.8.0"
|
acorn "^8.8.0"
|
||||||
acorn-jsx "^5.3.2"
|
acorn-jsx "^5.3.2"
|
||||||
|
@ -250,6 +315,11 @@ estraverse@^5.1.0:
|
||||||
resolved "https://registry.yarnpkg.com/estraverse/-/estraverse-5.3.0.tgz#2eea5290702f26ab8fe5370370ff86c965d21123"
|
resolved "https://registry.yarnpkg.com/estraverse/-/estraverse-5.3.0.tgz#2eea5290702f26ab8fe5370370ff86c965d21123"
|
||||||
integrity sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==
|
integrity sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==
|
||||||
|
|
||||||
|
estree-walker@^2.0.2:
|
||||||
|
version "2.0.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/estree-walker/-/estree-walker-2.0.2.tgz#52f010178c2a4c117a7757cfe942adb7d2da4cac"
|
||||||
|
integrity sha512-Rfkk/Mp/DL7JVje3u18FxFujQlTNR2q6QfMSMB7AvCBx91NGj/ba3kCfza0f6dVDbw7YlRf/nDrn7pQrCCyQ/w==
|
||||||
|
|
||||||
esutils@^2.0.2:
|
esutils@^2.0.2:
|
||||||
version "2.0.3"
|
version "2.0.3"
|
||||||
resolved "https://registry.yarnpkg.com/esutils/-/esutils-2.0.3.tgz#74d2eb4de0b8da1293711910d50775b9b710ef64"
|
resolved "https://registry.yarnpkg.com/esutils/-/esutils-2.0.3.tgz#74d2eb4de0b8da1293711910d50775b9b710ef64"
|
||||||
|
@ -265,6 +335,16 @@ fs.realpath@^1.0.0:
|
||||||
resolved "https://registry.yarnpkg.com/fs.realpath/-/fs.realpath-1.0.0.tgz#1504ad2523158caa40db4a2787cb01411994ea4f"
|
resolved "https://registry.yarnpkg.com/fs.realpath/-/fs.realpath-1.0.0.tgz#1504ad2523158caa40db4a2787cb01411994ea4f"
|
||||||
integrity sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==
|
integrity sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==
|
||||||
|
|
||||||
|
fsevents@~2.3.2:
|
||||||
|
version "2.3.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/fsevents/-/fsevents-2.3.2.tgz#8a526f78b8fdf4623b709e0b975c52c24c02fd1a"
|
||||||
|
integrity sha512-xiqMQR4xAeHTuB9uWm+fFRcIOgKBMiOBP+eXiyT7jsgVCq1bkVygt00oASowB7EdtpOHaaPgKt812P9ab+DDKA==
|
||||||
|
|
||||||
|
function-bind@^1.1.1:
|
||||||
|
version "1.1.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/function-bind/-/function-bind-1.1.1.tgz#a56899d3ea3c9bab874bb9773b7c5ede92f4895d"
|
||||||
|
integrity sha512-yIovAzMX49sF8Yl58fSCWJ5svSLuaibPxXQJFLmBObTuCr0Mf1KiPopGM9NiFjiYBCbfaa2Fh6breQ6ANVTI0A==
|
||||||
|
|
||||||
glob@^7.1.3:
|
glob@^7.1.3:
|
||||||
version "7.2.3"
|
version "7.2.3"
|
||||||
resolved "https://registry.yarnpkg.com/glob/-/glob-7.2.3.tgz#b8df0fb802bbfa8e89bd1d938b4e16578ed44f2b"
|
resolved "https://registry.yarnpkg.com/glob/-/glob-7.2.3.tgz#b8df0fb802bbfa8e89bd1d938b4e16578ed44f2b"
|
||||||
|
@ -277,7 +357,7 @@ glob@^7.1.3:
|
||||||
once "^1.3.0"
|
once "^1.3.0"
|
||||||
path-is-absolute "^1.0.0"
|
path-is-absolute "^1.0.0"
|
||||||
|
|
||||||
glob@^8.0.0:
|
glob@^8.0.0, glob@^8.0.3:
|
||||||
version "8.0.3"
|
version "8.0.3"
|
||||||
resolved "https://registry.yarnpkg.com/glob/-/glob-8.0.3.tgz#415c6eb2deed9e502c68fa44a272e6da6eeca42e"
|
resolved "https://registry.yarnpkg.com/glob/-/glob-8.0.3.tgz#415c6eb2deed9e502c68fa44a272e6da6eeca42e"
|
||||||
integrity sha512-ull455NHSHI/Y1FqGaaYFaLGkNMMJbavMrEGFXG/PGrg6y7sutWHUHrz6gy6WEBH6akM1M414dWKCNs+IhKdiQ==
|
integrity sha512-ull455NHSHI/Y1FqGaaYFaLGkNMMJbavMrEGFXG/PGrg6y7sutWHUHrz6gy6WEBH6akM1M414dWKCNs+IhKdiQ==
|
||||||
|
@ -303,6 +383,13 @@ has-flag@^4.0.0:
|
||||||
resolved "https://registry.yarnpkg.com/has-flag/-/has-flag-4.0.0.tgz#944771fd9c81c81265c4d6941860da06bb59479b"
|
resolved "https://registry.yarnpkg.com/has-flag/-/has-flag-4.0.0.tgz#944771fd9c81c81265c4d6941860da06bb59479b"
|
||||||
integrity sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==
|
integrity sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==
|
||||||
|
|
||||||
|
has@^1.0.3:
|
||||||
|
version "1.0.3"
|
||||||
|
resolved "https://registry.yarnpkg.com/has/-/has-1.0.3.tgz#722d7cbfc1f6aa8241f16dd814e011e1f41e8796"
|
||||||
|
integrity sha512-f2dvO0VU6Oej7RkWJGrehjbzMAjFp5/VKPp5tTpWIV4JHHZK1/BxbFRtf/siA2SWTe09caDmVtYYzWEIbBS4zw==
|
||||||
|
dependencies:
|
||||||
|
function-bind "^1.1.1"
|
||||||
|
|
||||||
inflight@^1.0.4:
|
inflight@^1.0.4:
|
||||||
version "1.0.6"
|
version "1.0.6"
|
||||||
resolved "https://registry.yarnpkg.com/inflight/-/inflight-1.0.6.tgz#49bd6331d7d02d0c09bc910a1075ba8165b56df9"
|
resolved "https://registry.yarnpkg.com/inflight/-/inflight-1.0.6.tgz#49bd6331d7d02d0c09bc910a1075ba8165b56df9"
|
||||||
|
@ -316,6 +403,32 @@ inherits@2:
|
||||||
resolved "https://registry.yarnpkg.com/inherits/-/inherits-2.0.4.tgz#0fa2c64f932917c3433a0ded55363aae37416b7c"
|
resolved "https://registry.yarnpkg.com/inherits/-/inherits-2.0.4.tgz#0fa2c64f932917c3433a0ded55363aae37416b7c"
|
||||||
integrity sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==
|
integrity sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==
|
||||||
|
|
||||||
|
is-builtin-module@^3.2.0:
|
||||||
|
version "3.2.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/is-builtin-module/-/is-builtin-module-3.2.0.tgz#bb0310dfe881f144ca83f30100ceb10cf58835e0"
|
||||||
|
integrity sha512-phDA4oSGt7vl1n5tJvTWooWWAsXLY+2xCnxNqvKhGEzujg+A43wPlPOyDg3C8XQHN+6k/JTQWJ/j0dQh/qr+Hw==
|
||||||
|
dependencies:
|
||||||
|
builtin-modules "^3.3.0"
|
||||||
|
|
||||||
|
is-core-module@^2.9.0:
|
||||||
|
version "2.11.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/is-core-module/-/is-core-module-2.11.0.tgz#ad4cb3e3863e814523c96f3f58d26cc570ff0144"
|
||||||
|
integrity sha512-RRjxlvLDkD1YJwDbroBHMb+cukurkDWNyHx7D3oNB5x9rb5ogcksMC5wHCadcXoo67gVr/+3GFySh3134zi6rw==
|
||||||
|
dependencies:
|
||||||
|
has "^1.0.3"
|
||||||
|
|
||||||
|
is-module@^1.0.0:
|
||||||
|
version "1.0.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/is-module/-/is-module-1.0.0.tgz#3258fb69f78c14d5b815d664336b4cffb6441591"
|
||||||
|
integrity sha512-51ypPSPCoTEIN9dy5Oy+h4pShgJmPCygKfyRCISBI+JoWT/2oJvK8QPxmwv7b/p239jXrm9M1mlQbyKJ5A152g==
|
||||||
|
|
||||||
|
is-reference@1.2.1:
|
||||||
|
version "1.2.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/is-reference/-/is-reference-1.2.1.tgz#8b2dac0b371f4bc994fdeaba9eb542d03002d0b7"
|
||||||
|
integrity sha512-U82MsXXiFIrjCK4otLT+o2NA2Cd2g5MLoOVXUZjIOhLurrRxpEXzI8O0KZHr3IjLvlAH1kTPYSuqer5T9ZVBKQ==
|
||||||
|
dependencies:
|
||||||
|
"@types/estree" "*"
|
||||||
|
|
||||||
js2xmlparser@^4.0.2:
|
js2xmlparser@^4.0.2:
|
||||||
version "4.0.2"
|
version "4.0.2"
|
||||||
resolved "https://registry.yarnpkg.com/js2xmlparser/-/js2xmlparser-4.0.2.tgz#2a1fdf01e90585ef2ae872a01bc169c6a8d5e60a"
|
resolved "https://registry.yarnpkg.com/js2xmlparser/-/js2xmlparser-4.0.2.tgz#2a1fdf01e90585ef2ae872a01bc169c6a8d5e60a"
|
||||||
|
@ -372,9 +485,9 @@ lodash@^4.17.14, lodash@^4.17.15:
|
||||||
integrity sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==
|
integrity sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==
|
||||||
|
|
||||||
long@^5.0.0:
|
long@^5.0.0:
|
||||||
version "5.2.0"
|
version "5.2.1"
|
||||||
resolved "https://registry.yarnpkg.com/long/-/long-5.2.0.tgz#2696dadf4b4da2ce3f6f6b89186085d94d52fd61"
|
resolved "https://registry.yarnpkg.com/long/-/long-5.2.1.tgz#e27595d0083d103d2fa2c20c7699f8e0c92b897f"
|
||||||
integrity sha512-9RTUNjK60eJbx3uz+TEGF7fUr29ZDxR5QzXcyDpeSfeH28S9ycINflOgOlppit5U+4kNTe83KQnMEerw7GmE8w==
|
integrity sha512-GKSNGeNAtw8IryjjkhZxuKB3JzlcLTwjtiQCHKvqQet81I93kXslhDQruGI/QsddO83mcDToBVy7GqGS/zYf/A==
|
||||||
|
|
||||||
lru-cache@^6.0.0:
|
lru-cache@^6.0.0:
|
||||||
version "6.0.0"
|
version "6.0.0"
|
||||||
|
@ -383,6 +496,13 @@ lru-cache@^6.0.0:
|
||||||
dependencies:
|
dependencies:
|
||||||
yallist "^4.0.0"
|
yallist "^4.0.0"
|
||||||
|
|
||||||
|
magic-string@^0.26.4:
|
||||||
|
version "0.26.7"
|
||||||
|
resolved "https://registry.yarnpkg.com/magic-string/-/magic-string-0.26.7.tgz#caf7daf61b34e9982f8228c4527474dac8981d6f"
|
||||||
|
integrity sha512-hX9XH3ziStPoPhJxLq1syWuZMxbDvGNbVchfrdCtanC7D13888bMFow61x8axrx+GfHLtVeAx2kxL7tTGRl+Ow==
|
||||||
|
dependencies:
|
||||||
|
sourcemap-codec "^1.4.8"
|
||||||
|
|
||||||
markdown-it-anchor@^8.4.1:
|
markdown-it-anchor@^8.4.1:
|
||||||
version "8.6.5"
|
version "8.6.5"
|
||||||
resolved "https://registry.yarnpkg.com/markdown-it-anchor/-/markdown-it-anchor-8.6.5.tgz#30c4bc5bbff327f15ce3c429010ec7ba75e7b5f8"
|
resolved "https://registry.yarnpkg.com/markdown-it-anchor/-/markdown-it-anchor-8.6.5.tgz#30c4bc5bbff327f15ce3c429010ec7ba75e7b5f8"
|
||||||
|
@ -400,9 +520,9 @@ markdown-it@^12.3.2:
|
||||||
uc.micro "^1.0.5"
|
uc.micro "^1.0.5"
|
||||||
|
|
||||||
marked@^4.0.10:
|
marked@^4.0.10:
|
||||||
version "4.2.1"
|
version "4.2.2"
|
||||||
resolved "https://registry.yarnpkg.com/marked/-/marked-4.2.1.tgz#eaa32594e45b4e58c02e4d118531fd04345de3b4"
|
resolved "https://registry.yarnpkg.com/marked/-/marked-4.2.2.tgz#1d2075ad6cdfe42e651ac221c32d949a26c0672a"
|
||||||
integrity sha512-VK1/jNtwqDLvPktNpL0Fdg3qoeUZhmRsuiIjPEy/lHwXW4ouLoZfO4XoWd4ClDt+hupV1VLpkZhEovjU0W/kqA==
|
integrity sha512-JjBTFTAvuTgANXx82a5vzK9JLSMoV6V3LBVn4Uhdso6t7vXrGx7g1Cd2r6NYSsxrYbQGFCMqBDhFHyK5q2UvcQ==
|
||||||
|
|
||||||
mdurl@^1.0.1:
|
mdurl@^1.0.1:
|
||||||
version "1.0.1"
|
version "1.0.1"
|
||||||
|
@ -457,6 +577,16 @@ path-is-absolute@^1.0.0:
|
||||||
resolved "https://registry.yarnpkg.com/path-is-absolute/-/path-is-absolute-1.0.1.tgz#174b9268735534ffbc7ace6bf53a5a9e1b5c5f5f"
|
resolved "https://registry.yarnpkg.com/path-is-absolute/-/path-is-absolute-1.0.1.tgz#174b9268735534ffbc7ace6bf53a5a9e1b5c5f5f"
|
||||||
integrity sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==
|
integrity sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==
|
||||||
|
|
||||||
|
path-parse@^1.0.7:
|
||||||
|
version "1.0.7"
|
||||||
|
resolved "https://registry.yarnpkg.com/path-parse/-/path-parse-1.0.7.tgz#fbc114b60ca42b30d9daf5858e4bd68bbedb6735"
|
||||||
|
integrity sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==
|
||||||
|
|
||||||
|
picomatch@^2.3.1:
|
||||||
|
version "2.3.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/picomatch/-/picomatch-2.3.1.tgz#3ba3833733646d9d3e4995946c1365a67fb07a42"
|
||||||
|
integrity sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==
|
||||||
|
|
||||||
prelude-ls@~1.1.2:
|
prelude-ls@~1.1.2:
|
||||||
version "1.1.2"
|
version "1.1.2"
|
||||||
resolved "https://registry.yarnpkg.com/prelude-ls/-/prelude-ls-1.1.2.tgz#21932a549f5e52ffd9a827f570e04be62a97da54"
|
resolved "https://registry.yarnpkg.com/prelude-ls/-/prelude-ls-1.1.2.tgz#21932a549f5e52ffd9a827f570e04be62a97da54"
|
||||||
|
@ -503,6 +633,15 @@ requizzle@^0.2.3:
|
||||||
dependencies:
|
dependencies:
|
||||||
lodash "^4.17.14"
|
lodash "^4.17.14"
|
||||||
|
|
||||||
|
resolve@^1.22.1:
|
||||||
|
version "1.22.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/resolve/-/resolve-1.22.1.tgz#27cb2ebb53f91abb49470a928bba7558066ac177"
|
||||||
|
integrity sha512-nBpuuYuY5jFsli/JIs1oldw6fOQCBioohqWZg/2hiaOybXOft4lonv85uDOKXdf8rhyK159cxU5cDcK/NKk8zw==
|
||||||
|
dependencies:
|
||||||
|
is-core-module "^2.9.0"
|
||||||
|
path-parse "^1.0.7"
|
||||||
|
supports-preserve-symlinks-flag "^1.0.0"
|
||||||
|
|
||||||
rimraf@^3.0.0:
|
rimraf@^3.0.0:
|
||||||
version "3.0.2"
|
version "3.0.2"
|
||||||
resolved "https://registry.yarnpkg.com/rimraf/-/rimraf-3.0.2.tgz#f1a5402ba6220ad52cc1282bac1ae3aa49fd061a"
|
resolved "https://registry.yarnpkg.com/rimraf/-/rimraf-3.0.2.tgz#f1a5402ba6220ad52cc1282bac1ae3aa49fd061a"
|
||||||
|
@ -510,6 +649,13 @@ rimraf@^3.0.0:
|
||||||
dependencies:
|
dependencies:
|
||||||
glob "^7.1.3"
|
glob "^7.1.3"
|
||||||
|
|
||||||
|
rollup@^2.3.0:
|
||||||
|
version "2.79.1"
|
||||||
|
resolved "https://registry.yarnpkg.com/rollup/-/rollup-2.79.1.tgz#bedee8faef7c9f93a2647ac0108748f497f081c7"
|
||||||
|
integrity sha512-uKxbd0IhMZOhjAiD5oAFp7BqvkA4Dv47qpOCtaNvng4HBwdbWtdOh8f5nZNuk2rp51PMGk3bzfWu5oayNEuYnw==
|
||||||
|
optionalDependencies:
|
||||||
|
fsevents "~2.3.2"
|
||||||
|
|
||||||
semver@5.6.0:
|
semver@5.6.0:
|
||||||
version "5.6.0"
|
version "5.6.0"
|
||||||
resolved "https://registry.yarnpkg.com/semver/-/semver-5.6.0.tgz#7e74256fbaa49c75aa7c7a205cc22799cac80004"
|
resolved "https://registry.yarnpkg.com/semver/-/semver-5.6.0.tgz#7e74256fbaa49c75aa7c7a205cc22799cac80004"
|
||||||
|
@ -535,6 +681,11 @@ source-map@^0.6.0, source-map@~0.6.1:
|
||||||
resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.6.1.tgz#74722af32e9614e9c287a8d0bbde48b5e2f1a263"
|
resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.6.1.tgz#74722af32e9614e9c287a8d0bbde48b5e2f1a263"
|
||||||
integrity sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==
|
integrity sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==
|
||||||
|
|
||||||
|
sourcemap-codec@^1.4.8:
|
||||||
|
version "1.4.8"
|
||||||
|
resolved "https://registry.yarnpkg.com/sourcemap-codec/-/sourcemap-codec-1.4.8.tgz#ea804bd94857402e6992d05a38ef1ae35a9ab4c4"
|
||||||
|
integrity sha512-9NykojV5Uih4lgo5So5dtw+f0JgJX30KCNI8gwhz2J9A15wD0Ml6tjHKwf6fTSa6fAdVBdZeNOs9eJ71qCk8vA==
|
||||||
|
|
||||||
strip-json-comments@^3.1.0:
|
strip-json-comments@^3.1.0:
|
||||||
version "3.1.1"
|
version "3.1.1"
|
||||||
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-3.1.1.tgz#31f1281b3832630434831c310c01cccda8cbe006"
|
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-3.1.1.tgz#31f1281b3832630434831c310c01cccda8cbe006"
|
||||||
|
@ -547,6 +698,11 @@ supports-color@^7.1.0:
|
||||||
dependencies:
|
dependencies:
|
||||||
has-flag "^4.0.0"
|
has-flag "^4.0.0"
|
||||||
|
|
||||||
|
supports-preserve-symlinks-flag@^1.0.0:
|
||||||
|
version "1.0.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz#6eda4bd344a3c94aea376d4cc31bc77311039e09"
|
||||||
|
integrity sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==
|
||||||
|
|
||||||
taffydb@2.6.2:
|
taffydb@2.6.2:
|
||||||
version "2.6.2"
|
version "2.6.2"
|
||||||
resolved "https://registry.yarnpkg.com/taffydb/-/taffydb-2.6.2.tgz#7cbcb64b5a141b6a2efc2c5d2c67b4e150b2a268"
|
resolved "https://registry.yarnpkg.com/taffydb/-/taffydb-2.6.2.tgz#7cbcb64b5a141b6a2efc2c5d2c67b4e150b2a268"
|
||||||
|
|
Loading…
Reference in New Issue
Block a user