Merge pull request #4192 from kinaryml:face-stylizer-python
PiperOrigin-RevId: 521781683
This commit is contained in:
commit
7c2930102d
|
@ -94,6 +94,7 @@ cc_library(
|
||||||
"//mediapipe/tasks/cc/text/text_embedder:text_embedder_graph",
|
"//mediapipe/tasks/cc/text/text_embedder:text_embedder_graph",
|
||||||
"//mediapipe/tasks/cc/vision/face_detector:face_detector_graph",
|
"//mediapipe/tasks/cc/vision/face_detector:face_detector_graph",
|
||||||
"//mediapipe/tasks/cc/vision/face_landmarker:face_landmarker_graph",
|
"//mediapipe/tasks/cc/vision/face_landmarker:face_landmarker_graph",
|
||||||
|
"//mediapipe/tasks/cc/vision/face_stylizer:face_stylizer_graph",
|
||||||
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
|
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
|
||||||
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
||||||
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
|
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
|
||||||
|
|
|
@ -197,3 +197,22 @@ py_library(
|
||||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "face_stylizer",
|
||||||
|
srcs = [
|
||||||
|
"face_stylizer.py",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/python:_framework_bindings",
|
||||||
|
"//mediapipe/python:packet_creator",
|
||||||
|
"//mediapipe/python:packet_getter",
|
||||||
|
"//mediapipe/tasks/cc/vision/face_stylizer/proto:face_stylizer_graph_options_py_pb2",
|
||||||
|
"//mediapipe/tasks/python/core:base_options",
|
||||||
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
|
"//mediapipe/tasks/python/core:task_info",
|
||||||
|
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||||
|
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||||
|
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
279
mediapipe/tasks/python/vision/face_stylizer.py
Normal file
279
mediapipe/tasks/python/vision/face_stylizer.py
Normal file
|
@ -0,0 +1,279 @@
|
||||||
|
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""MediaPipe face stylizer task."""
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Callable, Mapping, Optional
|
||||||
|
|
||||||
|
from mediapipe.python import packet_creator
|
||||||
|
from mediapipe.python import packet_getter
|
||||||
|
from mediapipe.python._framework_bindings import image as image_module
|
||||||
|
from mediapipe.python._framework_bindings import packet as packet_module
|
||||||
|
from mediapipe.tasks.cc.vision.face_stylizer.proto import face_stylizer_graph_options_pb2
|
||||||
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||||
|
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||||
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
|
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
|
||||||
|
_BaseOptions = base_options_module.BaseOptions
|
||||||
|
_FaceStylizerGraphOptionsProto = (
|
||||||
|
face_stylizer_graph_options_pb2.FaceStylizerGraphOptions
|
||||||
|
)
|
||||||
|
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
|
_TaskInfo = task_info_module.TaskInfo
|
||||||
|
|
||||||
|
_STYLIZED_IMAGE_NAME = 'stylized_image'
|
||||||
|
_STYLIZED_IMAGE_TAG = 'STYLIZED_IMAGE'
|
||||||
|
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||||
|
_NORM_RECT_TAG = 'NORM_RECT'
|
||||||
|
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||||
|
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||||
|
_IMAGE_TAG = 'IMAGE'
|
||||||
|
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.face_stylizer.FaceStylizerGraph'
|
||||||
|
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class FaceStylizerOptions:
|
||||||
|
"""Options for the face stylizer task.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
base_options: Base options for the face stylizer task.
|
||||||
|
running_mode: The running mode of the task. Default to the image mode. Face
|
||||||
|
stylizer task has three running modes: 1) The image mode for stylizing one
|
||||||
|
face on a single image input. 2) The video mode for stylizing one face per
|
||||||
|
frame on the decoded frames of a video. 3) The live stream mode for
|
||||||
|
stylizing one face on a live stream of input data, such as from camera.
|
||||||
|
result_callback: The user-defined result callback for processing live stream
|
||||||
|
data. The result callback should only be specified when the running mode
|
||||||
|
is set to the live stream mode.
|
||||||
|
"""
|
||||||
|
|
||||||
|
base_options: _BaseOptions
|
||||||
|
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||||
|
result_callback: Optional[
|
||||||
|
Callable[[image_module.Image, image_module.Image, int], None]
|
||||||
|
] = None
|
||||||
|
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def to_pb2(self) -> _FaceStylizerGraphOptionsProto:
|
||||||
|
"""Generates an FaceStylizerOptions protobuf object."""
|
||||||
|
base_options_proto = self.base_options.to_pb2()
|
||||||
|
base_options_proto.use_stream_mode = (
|
||||||
|
False if self.running_mode == _RunningMode.IMAGE else True
|
||||||
|
)
|
||||||
|
return _FaceStylizerGraphOptionsProto(base_options=base_options_proto)
|
||||||
|
|
||||||
|
|
||||||
|
class FaceStylizer(base_vision_task_api.BaseVisionTaskApi):
|
||||||
|
"""Class that performs face stylization on images."""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_from_model_path(cls, model_path: str) -> 'FaceStylizer':
|
||||||
|
"""Creates an `FaceStylizer` object from a TensorFlow Lite model and the default `FaceStylizerOptions`.
|
||||||
|
|
||||||
|
Note that the created `FaceStylizer` instance is in image mode, for
|
||||||
|
stylizing one face on a single image input.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_path: Path to the model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`FaceStylizer` object that's created from the model file and the default
|
||||||
|
`FaceStylizerOptions`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If failed to create `FaceStylizer` object from the provided
|
||||||
|
file such as invalid file path.
|
||||||
|
RuntimeError: If other types of error occurred.
|
||||||
|
"""
|
||||||
|
base_options = _BaseOptions(model_asset_path=model_path)
|
||||||
|
options = FaceStylizerOptions(
|
||||||
|
base_options=base_options, running_mode=_RunningMode.IMAGE
|
||||||
|
)
|
||||||
|
return cls.create_from_options(options)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_from_options(cls, options: FaceStylizerOptions) -> 'FaceStylizer':
|
||||||
|
"""Creates the `FaceStylizer` object from face stylizer options.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
options: Options for the face stylizer task.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`FaceStylizer` object that's created from `options`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If failed to create `FaceStylizer` object from
|
||||||
|
`FaceStylizerOptions` such as missing the model.
|
||||||
|
RuntimeError: If other types of error occurred.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
||||||
|
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||||
|
return
|
||||||
|
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
||||||
|
stylized_image_packet = output_packets[_STYLIZED_IMAGE_NAME]
|
||||||
|
stylized_image = packet_getter.get_image(stylized_image_packet)
|
||||||
|
|
||||||
|
options.result_callback(
|
||||||
|
stylized_image,
|
||||||
|
image,
|
||||||
|
stylized_image_packet.timestamp.value
|
||||||
|
// _MICRO_SECONDS_PER_MILLISECOND,
|
||||||
|
)
|
||||||
|
|
||||||
|
task_info = _TaskInfo(
|
||||||
|
task_graph=_TASK_GRAPH_NAME,
|
||||||
|
input_streams=[
|
||||||
|
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||||
|
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||||
|
],
|
||||||
|
output_streams=[
|
||||||
|
':'.join([_STYLIZED_IMAGE_TAG, _STYLIZED_IMAGE_NAME]),
|
||||||
|
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
||||||
|
],
|
||||||
|
task_options=options,
|
||||||
|
)
|
||||||
|
return cls(
|
||||||
|
task_info.generate_graph_config(
|
||||||
|
enable_flow_limiting=options.running_mode
|
||||||
|
== _RunningMode.LIVE_STREAM
|
||||||
|
),
|
||||||
|
options.running_mode,
|
||||||
|
packets_callback if options.result_callback else None,
|
||||||
|
)
|
||||||
|
|
||||||
|
def stylize(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||||
|
) -> image_module.Image:
|
||||||
|
"""Performs face stylization on the provided MediaPipe Image.
|
||||||
|
|
||||||
|
Only use this method when the FaceStylizer is created with the image
|
||||||
|
running mode.
|
||||||
|
|
||||||
|
To ensure that the output image has reasonable quality, the stylized output
|
||||||
|
image size is the smaller of the model output size and the size of the
|
||||||
|
`region_of_interest` specified in `image_processing_options`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The stylized image.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If any of the input arguments is invalid.
|
||||||
|
RuntimeError: If face stylization failed to run.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
output_packets = self._process_image_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
||||||
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
|
normalized_rect.to_pb2()
|
||||||
|
),
|
||||||
|
})
|
||||||
|
return packet_getter.get_image(output_packets[_STYLIZED_IMAGE_NAME])
|
||||||
|
|
||||||
|
def stylize_for_video(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
timestamp_ms: int,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||||
|
) -> image_module.Image:
|
||||||
|
"""Performs face stylization on the provided video frames.
|
||||||
|
|
||||||
|
Only use this method when the FaceStylizer is created with the video
|
||||||
|
running mode. It's required to provide the video frame's timestamp (in
|
||||||
|
milliseconds) along with the video frame. The input timestamps should be
|
||||||
|
monotonically increasing for adjacent calls of this method.
|
||||||
|
|
||||||
|
To ensure that the output image has reasonable quality, the stylized output
|
||||||
|
image size is the smaller of the model output size and the size of the
|
||||||
|
`region_of_interest` specified in `image_processing_options`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The stylized image.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If any of the input arguments is invalid.
|
||||||
|
RuntimeError: If face stylization failed to run.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
output_packets = self._process_video_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
||||||
|
),
|
||||||
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
|
normalized_rect.to_pb2()
|
||||||
|
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
|
})
|
||||||
|
return packet_getter.get_image(output_packets[_STYLIZED_IMAGE_NAME])
|
||||||
|
|
||||||
|
def stylize_async(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
timestamp_ms: int,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Sends live image data (an Image with a unique timestamp) to perform face stylization.
|
||||||
|
|
||||||
|
Only use this method when the FaceStylizer is created with the live stream
|
||||||
|
running mode. The input timestamps should be monotonically increasing for
|
||||||
|
adjacent calls of this method. This method will return immediately after the
|
||||||
|
input image is accepted. The results will be available via the
|
||||||
|
`result_callback` provided in the `FaceStylizerOptions`. The
|
||||||
|
`stylize_async` method is designed to process live stream data such as
|
||||||
|
camera input. To lower the overall latency, face stylizer may drop the input
|
||||||
|
images if needed. In other words, it's not guaranteed to have output per
|
||||||
|
input image.
|
||||||
|
|
||||||
|
To ensure that the stylized image has reasonable quality, the stylized
|
||||||
|
output image size is the smaller of the model output size and the size of
|
||||||
|
the `region_of_interest` specified in `image_processing_options`.
|
||||||
|
|
||||||
|
The `result_callback` provides:
|
||||||
|
- The stylized image.
|
||||||
|
- The input image that the face stylizer runs on.
|
||||||
|
- The input timestamp in milliseconds.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the current input timestamp is smaller than what the face
|
||||||
|
stylizer has already processed.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
self._send_live_stream_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
||||||
|
),
|
||||||
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||||
|
normalized_rect.to_pb2()
|
||||||
|
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
|
})
|
Loading…
Reference in New Issue
Block a user