diff --git a/mediapipe/python/BUILD b/mediapipe/python/BUILD index f157c9f27..b5e87b490 100644 --- a/mediapipe/python/BUILD +++ b/mediapipe/python/BUILD @@ -88,6 +88,7 @@ cc_library( name = "builtin_task_graphs", deps = [ "//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph", + "//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph", "//mediapipe/tasks/cc/vision/object_detector:object_detector_graph", ], ) diff --git a/mediapipe/tasks/python/test/vision/BUILD b/mediapipe/tasks/python/test/vision/BUILD index acf24f875..e75415e41 100644 --- a/mediapipe/tasks/python/test/vision/BUILD +++ b/mediapipe/tasks/python/test/vision/BUILD @@ -56,3 +56,19 @@ py_test( "//mediapipe/tasks/python/vision/core:vision_task_running_mode", ], ) + +py_test( + name = "image_segmenter_test", + srcs = ["image_segmenter_test.py"], + data = [ + "//mediapipe/tasks/testdata/vision:test_images", + "//mediapipe/tasks/testdata/vision:test_models", + ], + deps = [ + "//mediapipe/python:_framework_bindings", + "//mediapipe/tasks/python/core:base_options", + "//mediapipe/tasks/python/test:test_utils", + "//mediapipe/tasks/python/vision:image_segmenter", + "//mediapipe/tasks/python/vision/core:vision_task_running_mode", + ], +) diff --git a/mediapipe/tasks/python/test/vision/image_segmenter_test.py b/mediapipe/tasks/python/test/vision/image_segmenter_test.py new file mode 100644 index 000000000..b1fe4f759 --- /dev/null +++ b/mediapipe/tasks/python/test/vision/image_segmenter_test.py @@ -0,0 +1,353 @@ +# Copyright 2022 The MediaPipe Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tests for image segmenter.""" + +import enum +from typing import List +from unittest import mock + +from absl.testing import absltest +from absl.testing import parameterized +import cv2 +import numpy as np + +from mediapipe.python._framework_bindings import image as image_module +from mediapipe.python._framework_bindings import image_frame +from mediapipe.tasks.python.core import base_options as base_options_module +from mediapipe.tasks.python.test import test_utils +from mediapipe.tasks.python.vision import image_segmenter +from mediapipe.tasks.python.vision.core import vision_task_running_mode + +_BaseOptions = base_options_module.BaseOptions +_Image = image_module.Image +_ImageFormat = image_frame.ImageFormat +_OutputType = image_segmenter.OutputType +_Activation = image_segmenter.Activation +_ImageSegmenter = image_segmenter.ImageSegmenter +_ImageSegmenterOptions = image_segmenter.ImageSegmenterOptions +_RUNNING_MODE = vision_task_running_mode.VisionTaskRunningMode + +_MODEL_FILE = 'deeplabv3.tflite' +_IMAGE_FILE = 'segmentation_input_rotation0.jpg' +_SEGMENTATION_FILE = 'segmentation_golden_rotation0.png' +_MASK_MAGNIFICATION_FACTOR = 10 +_MASK_SIMILARITY_THRESHOLD = 0.98 + + +def _similar_to_uint8_mask(actual_mask, expected_mask): + actual_mask_pixels = actual_mask.numpy_view().flatten() + expected_mask_pixels = expected_mask.numpy_view().flatten() + + consistent_pixels = 0 + num_pixels = len(expected_mask_pixels) + + for index in range(num_pixels): + consistent_pixels += ( + actual_mask_pixels[index] * + _MASK_MAGNIFICATION_FACTOR == expected_mask_pixels[index]) + + return consistent_pixels / num_pixels >= _MASK_SIMILARITY_THRESHOLD + + +class ModelFileType(enum.Enum): + FILE_CONTENT = 1 + FILE_NAME = 2 + + +class ImageSegmenterTest(parameterized.TestCase): + + def setUp(self): + super().setUp() + # Load the test input image. + self.test_image = _Image.create_from_file( + test_utils.get_test_data_path(_IMAGE_FILE)) + # Loads ground truth segmentation file. + gt_segmentation_data = cv2.imread( + test_utils.get_test_data_path(_SEGMENTATION_FILE), cv2.IMREAD_GRAYSCALE) + self.test_seg_image = _Image(_ImageFormat.GRAY8, gt_segmentation_data) + self.model_path = test_utils.get_test_data_path(_MODEL_FILE) + + def test_create_from_file_succeeds_with_valid_model_path(self): + # Creates with default option and valid model file successfully. + with _ImageSegmenter.create_from_model_path(self.model_path) as segmenter: + self.assertIsInstance(segmenter, _ImageSegmenter) + + def test_create_from_options_succeeds_with_valid_model_path(self): + # Creates with options containing model file successfully. + base_options = _BaseOptions(model_asset_path=self.model_path) + options = _ImageSegmenterOptions(base_options=base_options) + with _ImageSegmenter.create_from_options(options) as segmenter: + self.assertIsInstance(segmenter, _ImageSegmenter) + + def test_create_from_options_fails_with_invalid_model_path(self): + # Invalid empty model path. + with self.assertRaisesRegex( + ValueError, + r"ExternalFile must specify at least one of 'file_content', " + r"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."): + base_options = _BaseOptions(model_asset_path='') + options = _ImageSegmenterOptions(base_options=base_options) + _ImageSegmenter.create_from_options(options) + + def test_create_from_options_succeeds_with_valid_model_content(self): + # Creates with options containing model content successfully. + with open(self.model_path, 'rb') as f: + base_options = _BaseOptions(model_asset_buffer=f.read()) + options = _ImageSegmenterOptions(base_options=base_options) + segmenter = _ImageSegmenter.create_from_options(options) + self.assertIsInstance(segmenter, _ImageSegmenter) + + @parameterized.parameters((ModelFileType.FILE_NAME,), + (ModelFileType.FILE_CONTENT,)) + def test_segment_succeeds_with_category_mask(self, model_file_type): + # Creates segmenter. + if model_file_type is ModelFileType.FILE_NAME: + base_options = _BaseOptions(model_asset_path=self.model_path) + elif model_file_type is ModelFileType.FILE_CONTENT: + with open(self.model_path, 'rb') as f: + model_content = f.read() + base_options = _BaseOptions(model_asset_buffer=model_content) + else: + # Should never happen + raise ValueError('model_file_type is invalid.') + + options = _ImageSegmenterOptions( + base_options=base_options, output_type=_OutputType.CATEGORY_MASK) + segmenter = _ImageSegmenter.create_from_options(options) + + # Performs image segmentation on the input. + category_masks = segmenter.segment(self.test_image) + self.assertLen(category_masks, 1) + category_mask = category_masks[0] + result_pixels = category_mask.numpy_view().flatten() + + # Check if data type of `category_mask` is correct. + self.assertEqual(result_pixels.dtype, np.uint8) + + self.assertTrue( + _similar_to_uint8_mask(category_masks[0], self.test_seg_image), + f'Number of pixels in the candidate mask differing from that of the ' + f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.') + + # Closes the segmenter explicitly when the segmenter is not used in + # a context. + segmenter.close() + + def test_segment_succeeds_with_confidence_mask(self): + # Creates segmenter. + base_options = _BaseOptions(model_asset_path=self.model_path) + + # Run segmentation on the model in CATEGORY_MASK mode. + options = _ImageSegmenterOptions( + base_options=base_options, output_type=_OutputType.CATEGORY_MASK) + segmenter = _ImageSegmenter.create_from_options(options) + category_masks = segmenter.segment(self.test_image) + category_mask = category_masks[0].numpy_view() + + # Run segmentation on the model in CONFIDENCE_MASK mode. + options = _ImageSegmenterOptions( + base_options=base_options, + output_type=_OutputType.CONFIDENCE_MASK, + activation=_Activation.SOFTMAX) + segmenter = _ImageSegmenter.create_from_options(options) + confidence_masks = segmenter.segment(self.test_image) + + # Check if confidence mask shape is correct. + self.assertLen( + confidence_masks, 21, + 'Number of confidence masks must match with number of categories.') + + # Gather the confidence masks in a single array `confidence_mask_array`. + confidence_mask_array = np.array( + [confidence_mask.numpy_view() for confidence_mask in confidence_masks]) + + # Check if data type of `confidence_masks` are correct. + self.assertEqual(confidence_mask_array.dtype, np.float32) + + # Compute the category mask from the created confidence mask. + calculated_category_mask = np.argmax(confidence_mask_array, axis=0) + self.assertListEqual( + calculated_category_mask.tolist(), category_mask.tolist(), + 'Confidence mask does not match with the category mask.') + + # Closes the segmenter explicitly when the segmenter is not used in + # a context. + segmenter.close() + + @parameterized.parameters((ModelFileType.FILE_NAME), + (ModelFileType.FILE_CONTENT)) + def test_segment_in_context(self, model_file_type): + if model_file_type is ModelFileType.FILE_NAME: + base_options = _BaseOptions(model_asset_path=self.model_path) + elif model_file_type is ModelFileType.FILE_CONTENT: + with open(self.model_path, 'rb') as f: + model_contents = f.read() + base_options = _BaseOptions(model_asset_buffer=model_contents) + else: + # Should never happen + raise ValueError('model_file_type is invalid.') + + options = _ImageSegmenterOptions( + base_options=base_options, output_type=_OutputType.CATEGORY_MASK) + with _ImageSegmenter.create_from_options(options) as segmenter: + # Performs image segmentation on the input. + category_masks = segmenter.segment(self.test_image) + self.assertLen(category_masks, 1) + + self.assertTrue( + _similar_to_uint8_mask(category_masks[0], self.test_seg_image), + f'Number of pixels in the candidate mask differing from that of the ' + f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.') + + def test_missing_result_callback(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.LIVE_STREAM) + with self.assertRaisesRegex(ValueError, + r'result callback must be provided'): + with _ImageSegmenter.create_from_options(options) as unused_segmenter: + pass + + @parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO)) + def test_illegal_result_callback(self, running_mode): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=running_mode, + result_callback=mock.MagicMock()) + with self.assertRaisesRegex(ValueError, + r'result callback should not be provided'): + with _ImageSegmenter.create_from_options(options) as unused_segmenter: + pass + + def test_calling_segment_for_video_in_image_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.IMAGE) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the video mode'): + segmenter.segment_for_video(self.test_image, 0) + + def test_calling_segment_async_in_image_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.IMAGE) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the live stream mode'): + segmenter.segment_async(self.test_image, 0) + + def test_calling_segment_in_video_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.VIDEO) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the image mode'): + segmenter.segment(self.test_image) + + def test_calling_segment_async_in_video_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.VIDEO) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the live stream mode'): + segmenter.segment_async(self.test_image, 0) + + def test_segment_for_video_with_out_of_order_timestamp(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.VIDEO) + with _ImageSegmenter.create_from_options(options) as segmenter: + unused_result = segmenter.segment_for_video(self.test_image, 1) + with self.assertRaisesRegex( + ValueError, r'Input timestamp must be monotonically increasing'): + segmenter.segment_for_video(self.test_image, 0) + + def test_segment_for_video(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + output_type=_OutputType.CATEGORY_MASK, + running_mode=_RUNNING_MODE.VIDEO) + with _ImageSegmenter.create_from_options(options) as segmenter: + for timestamp in range(0, 300, 30): + category_masks = segmenter.segment_for_video(self.test_image, timestamp) + self.assertLen(category_masks, 1) + self.assertTrue( + _similar_to_uint8_mask(category_masks[0], self.test_seg_image), + f'Number of pixels in the candidate mask differing from that of the ' + f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.') + + def test_calling_segment_in_live_stream_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.LIVE_STREAM, + result_callback=mock.MagicMock()) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the image mode'): + segmenter.segment(self.test_image) + + def test_calling_segment_for_video_in_live_stream_mode(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.LIVE_STREAM, + result_callback=mock.MagicMock()) + with _ImageSegmenter.create_from_options(options) as segmenter: + with self.assertRaisesRegex(ValueError, + r'not initialized with the video mode'): + segmenter.segment_for_video(self.test_image, 0) + + def test_segment_async_calls_with_illegal_timestamp(self): + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + running_mode=_RUNNING_MODE.LIVE_STREAM, + result_callback=mock.MagicMock()) + with _ImageSegmenter.create_from_options(options) as segmenter: + segmenter.segment_async(self.test_image, 100) + with self.assertRaisesRegex( + ValueError, r'Input timestamp must be monotonically increasing'): + segmenter.segment_async(self.test_image, 0) + + def test_segment_async_calls(self): + observed_timestamp_ms = -1 + + def check_result(result: List[image_module.Image], output_image: _Image, + timestamp_ms: int): + # Get the output category mask. + category_mask = result[0] + self.assertEqual(output_image.width, self.test_image.width) + self.assertEqual(output_image.height, self.test_image.height) + self.assertEqual(output_image.width, self.test_seg_image.width) + self.assertEqual(output_image.height, self.test_seg_image.height) + self.assertTrue( + _similar_to_uint8_mask(category_mask, self.test_seg_image), + f'Number of pixels in the candidate mask differing from that of the ' + f'ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.') + self.assertLess(observed_timestamp_ms, timestamp_ms) + self.observed_timestamp_ms = timestamp_ms + + options = _ImageSegmenterOptions( + base_options=_BaseOptions(model_asset_path=self.model_path), + output_type=_OutputType.CATEGORY_MASK, + running_mode=_RUNNING_MODE.LIVE_STREAM, + result_callback=check_result) + with _ImageSegmenter.create_from_options(options) as segmenter: + for timestamp in range(0, 300, 30): + segmenter.segment_async(self.test_image, timestamp) + + +if __name__ == '__main__': + absltest.main() diff --git a/mediapipe/tasks/python/vision/BUILD b/mediapipe/tasks/python/vision/BUILD index 1036d0d32..00fc3268f 100644 --- a/mediapipe/tasks/python/vision/BUILD +++ b/mediapipe/tasks/python/vision/BUILD @@ -58,3 +58,22 @@ py_library( "//mediapipe/tasks/python/vision/core:vision_task_running_mode", ], ) + +py_library( + name = "image_segmenter", + srcs = [ + "image_segmenter.py", + ], + deps = [ + "//mediapipe/python:_framework_bindings", + "//mediapipe/python:packet_creator", + "//mediapipe/python:packet_getter", + "//mediapipe/tasks/cc/components/proto:segmenter_options_py_pb2", + "//mediapipe/tasks/cc/vision/image_segmenter/proto:image_segmenter_options_py_pb2", + "//mediapipe/tasks/python/core:base_options", + "//mediapipe/tasks/python/core:optional_dependencies", + "//mediapipe/tasks/python/core:task_info", + "//mediapipe/tasks/python/vision/core:base_vision_task_api", + "//mediapipe/tasks/python/vision/core:vision_task_running_mode", + ], +) diff --git a/mediapipe/tasks/python/vision/image_segmenter.py b/mediapipe/tasks/python/vision/image_segmenter.py new file mode 100644 index 000000000..b7022b856 --- /dev/null +++ b/mediapipe/tasks/python/vision/image_segmenter.py @@ -0,0 +1,253 @@ +# Copyright 2022 The MediaPipe Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""MediaPipe image segmenter task.""" + +import dataclasses +import enum +from typing import Callable, List, Mapping, Optional + +from mediapipe.python import packet_creator +from mediapipe.python import packet_getter +from mediapipe.python._framework_bindings import image as image_module +from mediapipe.python._framework_bindings import packet +from mediapipe.python._framework_bindings import task_runner +from mediapipe.tasks.cc.components.proto import segmenter_options_pb2 +from mediapipe.tasks.cc.vision.image_segmenter.proto import image_segmenter_options_pb2 +from mediapipe.tasks.python.core import base_options as base_options_module +from mediapipe.tasks.python.core import task_info as task_info_module +from mediapipe.tasks.python.core.optional_dependencies import doc_controls +from mediapipe.tasks.python.vision.core import base_vision_task_api +from mediapipe.tasks.python.vision.core import vision_task_running_mode + +_BaseOptions = base_options_module.BaseOptions +_SegmenterOptionsProto = segmenter_options_pb2.SegmenterOptions +_ImageSegmenterOptionsProto = image_segmenter_options_pb2.ImageSegmenterOptions +_RunningMode = vision_task_running_mode.VisionTaskRunningMode +_TaskInfo = task_info_module.TaskInfo +_TaskRunner = task_runner.TaskRunner + +_SEGMENTATION_OUT_STREAM_NAME = 'segmented_mask_out' +_SEGMENTATION_TAG = 'GROUPED_SEGMENTATION' +_IMAGE_IN_STREAM_NAME = 'image_in' +_IMAGE_OUT_STREAM_NAME = 'image_out' +_IMAGE_TAG = 'IMAGE' +_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.ImageSegmenterGraph' +_MICRO_SECONDS_PER_MILLISECOND = 1000 + + +class OutputType(enum.Enum): + UNSPECIFIED = 0 + CATEGORY_MASK = 1 + CONFIDENCE_MASK = 2 + + +class Activation(enum.Enum): + NONE = 0 + SIGMOID = 1 + SOFTMAX = 2 + + +@dataclasses.dataclass +class ImageSegmenterOptions: + """Options for the image segmenter task. + + Attributes: + base_options: Base options for the image segmenter task. + running_mode: The running mode of the task. Default to the image mode. Image + segmenter task has three running modes: 1) The image mode for segmenting + objects on single image inputs. 2) The video mode for segmenting objects + on the decoded frames of a video. 3) The live stream mode for segmenting + objects on a live stream of input data, such as from camera. + output_type: The output mask type allows specifying the type of + post-processing to perform on the raw model results. + activation: Activation function to apply to input tensor. + result_callback: The user-defined result callback for processing live stream + data. The result callback should only be specified when the running mode + is set to the live stream mode. + """ + base_options: _BaseOptions + running_mode: _RunningMode = _RunningMode.IMAGE + output_type: Optional[OutputType] = OutputType.CATEGORY_MASK + activation: Optional[Activation] = Activation.NONE + result_callback: Optional[Callable[ + [List[image_module.Image], image_module.Image, int], None]] = None + + @doc_controls.do_not_generate_docs + def to_pb2(self) -> _ImageSegmenterOptionsProto: + """Generates an ImageSegmenterOptions protobuf object.""" + base_options_proto = self.base_options.to_pb2() + base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True + segmenter_options_proto = _SegmenterOptionsProto( + output_type=self.output_type.value, activation=self.activation.value) + return _ImageSegmenterOptionsProto( + base_options=base_options_proto, + segmenter_options=segmenter_options_proto) + + +class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi): + """Class that performs image segmentation on images.""" + + @classmethod + def create_from_model_path(cls, model_path: str) -> 'ImageSegmenter': + """Creates an `ImageSegmenter` object from a TensorFlow Lite model and the default `ImageSegmenterOptions`. + + Note that the created `ImageSegmenter` instance is in image mode, for + performing image segmentation on single image inputs. + + Args: + model_path: Path to the model. + + Returns: + `ImageSegmenter` object that's created from the model file and the default + `ImageSegmenterOptions`. + + Raises: + ValueError: If failed to create `ImageSegmenter` object from the provided + file such as invalid file path. + RuntimeError: If other types of error occurred. + """ + base_options = _BaseOptions(model_asset_path=model_path) + options = ImageSegmenterOptions( + base_options=base_options, running_mode=_RunningMode.IMAGE) + return cls.create_from_options(options) + + @classmethod + def create_from_options(cls, + options: ImageSegmenterOptions) -> 'ImageSegmenter': + """Creates the `ImageSegmenter` object from image segmenter options. + + Args: + options: Options for the image segmenter task. + + Returns: + `ImageSegmenter` object that's created from `options`. + + Raises: + ValueError: If failed to create `ImageSegmenter` object from + `ImageSegmenterOptions` such as missing the model. + RuntimeError: If other types of error occurred. + """ + + def packets_callback(output_packets: Mapping[str, packet.Packet]): + if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty(): + return + segmentation_result = packet_getter.get_image_list( + output_packets[_SEGMENTATION_OUT_STREAM_NAME]) + image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME]) + timestamp = output_packets[_SEGMENTATION_OUT_STREAM_NAME].timestamp + options.result_callback(segmentation_result, image, + timestamp.value // _MICRO_SECONDS_PER_MILLISECOND) + + task_info = _TaskInfo( + task_graph=_TASK_GRAPH_NAME, + input_streams=[':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME])], + output_streams=[ + ':'.join([_SEGMENTATION_TAG, _SEGMENTATION_OUT_STREAM_NAME]), + ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]) + ], + task_options=options) + return cls( + task_info.generate_graph_config( + enable_flow_limiting=options.running_mode == + _RunningMode.LIVE_STREAM), options.running_mode, + packets_callback if options.result_callback else None) + + def segment(self, image: image_module.Image) -> List[image_module.Image]: + """Performs the actual segmentation task on the provided MediaPipe Image. + + Args: + image: MediaPipe Image. + + Returns: + If the output_type is CATEGORY_MASK, the returned vector of images is + per-category segmented image mask. + If the output_type is CONFIDENCE_MASK, the returned vector of images + contains only one confidence image mask. A segmentation result object that + contains a list of segmentation masks as images. + + Raises: + ValueError: If any of the input arguments is invalid. + RuntimeError: If image segmentation failed to run. + """ + output_packets = self._process_image_data( + {_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image)}) + segmentation_result = packet_getter.get_image_list( + output_packets[_SEGMENTATION_OUT_STREAM_NAME]) + return segmentation_result + + def segment_for_video(self, image: image_module.Image, + timestamp_ms: int) -> List[image_module.Image]: + """Performs segmentation on the provided video frames. + + Only use this method when the ImageSegmenter is created with the video + running mode. It's required to provide the video frame's timestamp (in + milliseconds) along with the video frame. The input timestamps should be + monotonically increasing for adjacent calls of this method. + + Args: + image: MediaPipe Image. + timestamp_ms: The timestamp of the input video frame in milliseconds. + + Returns: + If the output_type is CATEGORY_MASK, the returned vector of images is + per-category segmented image mask. + If the output_type is CONFIDENCE_MASK, the returned vector of images + contains only one confidence image mask. A segmentation result object that + contains a list of segmentation masks as images. + + Raises: + ValueError: If any of the input arguments is invalid. + RuntimeError: If image segmentation failed to run. + """ + output_packets = self._process_video_data({ + _IMAGE_IN_STREAM_NAME: + packet_creator.create_image(image).at( + timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND) + }) + segmentation_result = packet_getter.get_image_list( + output_packets[_SEGMENTATION_OUT_STREAM_NAME]) + return segmentation_result + + def segment_async(self, image: image_module.Image, timestamp_ms: int) -> None: + """Sends live image data (an Image with a unique timestamp) to perform image segmentation. + + Only use this method when the ImageSegmenter is created with the live stream + running mode. The input timestamps should be monotonically increasing for + adjacent calls of this method. This method will return immediately after the + input image is accepted. The results will be available via the + `result_callback` provided in the `ImageSegmenterOptions`. The + `segment_async` method is designed to process live stream data such as + camera input. To lower the overall latency, image segmenter may drop the + input images if needed. In other words, it's not guaranteed to have output + per input image. + + The `result_callback` prvoides: + - A segmentation result object that contains a list of segmentation masks + as images. + - The input image that the image segmenter runs on. + - The input timestamp in milliseconds. + + Args: + image: MediaPipe Image. + timestamp_ms: The timestamp of the input image in milliseconds. + + Raises: + ValueError: If the current input timestamp is smaller than what the image + segmenter has already processed. + """ + self._send_live_stream_data({ + _IMAGE_IN_STREAM_NAME: + packet_creator.create_image(image).at( + timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND) + })