Project import generated by Copybara.
GitOrigin-RevId: d0039a576e2db9c0fcefffd26a527df74cbe145b
This commit is contained in:
parent
024f7bf0f1
commit
7bad8fce62
|
@ -19,6 +19,7 @@
|
|||
* [Object Detection and Tracking](mediapipe/docs/object_tracking_mobile_gpu.md)
|
||||
* [Objectron: 3D Object Detection and Tracking](mediapipe/docs/objectron_mobile_gpu.md)
|
||||
* [AutoFlip: Intelligent Video Reframing](mediapipe/docs/autoflip.md)
|
||||
* [KNIFT: Template Matching with Neural Image Features](mediapipe/docs/template_matching_mobile_cpu.md)
|
||||
|
||||
![face_detection](mediapipe/docs/images/mobile/face_detection_android_gpu_small.gif)
|
||||
![face_mesh](mediapipe/docs/images/mobile/face_mesh_android_gpu_small.gif)
|
||||
|
@ -29,6 +30,7 @@
|
|||
![object_tracking](mediapipe/docs/images/mobile/object_tracking_android_gpu_small.gif)
|
||||
![objectron_shoes](mediapipe/docs/images/mobile/objectron_shoe_android_gpu_small.gif)
|
||||
![objectron_chair](mediapipe/docs/images/mobile/objectron_chair_android_gpu_small.gif)
|
||||
![template_matching](mediapipe/docs/images/mobile/template_matching_android_cpu_small.gif)
|
||||
|
||||
## Installation
|
||||
Follow these [instructions](mediapipe/docs/install.md).
|
||||
|
@ -53,6 +55,7 @@ Search MediaPipe Github repository using [Google Open Source code search](https:
|
|||
* [YouTube Channel](https://www.youtube.com/channel/UCObqmpuSMx-usADtL_qdMAw)
|
||||
|
||||
## Publications
|
||||
* [MediaPipe KNIFT: Template-based Feature Matching](https://mediapipe.page.link/knift-blog)
|
||||
* [Alfred Camera: Smart camera features using MediaPipe](https://developers.googleblog.com/2020/03/alfred-camera-smart-camera-features-using-mediapipe.html)
|
||||
* [MediaPipe Objectron: Real-time 3D Object Detection on Mobile Devices](https://mediapipe.page.link/objectron-aiblog)
|
||||
* [AutoFlip: An Open Source Framework for Intelligent Video Reframing](https://mediapipe.page.link/autoflip)
|
||||
|
|
|
@ -19,6 +19,11 @@
|
|||
#include "mediapipe/gpu/gpu_buffer.h"
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
namespace {
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
|
||||
} // namespace
|
||||
|
||||
namespace mediapipe {
|
||||
|
||||
// Extracts image properties from the input image and outputs the properties.
|
||||
|
@ -40,13 +45,14 @@ namespace mediapipe {
|
|||
class ImagePropertiesCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("IMAGE") ^ cc->Inputs().HasTag("IMAGE_GPU"));
|
||||
if (cc->Inputs().HasTag("IMAGE")) {
|
||||
cc->Inputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) ^
|
||||
cc->Inputs().HasTag(kGpuBufferTag));
|
||||
if (cc->Inputs().HasTag(kImageFrameTag)) {
|
||||
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
cc->Inputs().Tag("IMAGE_GPU").Set<::mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
cc->Inputs().Tag(kGpuBufferTag).Set<::mediapipe::GpuBuffer>();
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
|
@ -66,16 +72,17 @@ class ImagePropertiesCalculator : public CalculatorBase {
|
|||
int width;
|
||||
int height;
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE") && !cc->Inputs().Tag("IMAGE").IsEmpty()) {
|
||||
const auto& image = cc->Inputs().Tag("IMAGE").Get<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kImageFrameTag) &&
|
||||
!cc->Inputs().Tag(kImageFrameTag).IsEmpty()) {
|
||||
const auto& image = cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
|
||||
width = image.Width();
|
||||
height = image.Height();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU") &&
|
||||
!cc->Inputs().Tag("IMAGE_GPU").IsEmpty()) {
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag) &&
|
||||
!cc->Inputs().Tag(kGpuBufferTag).IsEmpty()) {
|
||||
const auto& image =
|
||||
cc->Inputs().Tag("IMAGE_GPU").Get<mediapipe::GpuBuffer>();
|
||||
cc->Inputs().Tag(kGpuBufferTag).Get<mediapipe::GpuBuffer>();
|
||||
width = image.width();
|
||||
height = image.height();
|
||||
}
|
||||
|
|
|
@ -47,6 +47,9 @@ namespace mediapipe {
|
|||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
namespace {
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
|
||||
|
||||
int RotationModeToDegrees(mediapipe::RotationMode_Mode rotation) {
|
||||
switch (rotation) {
|
||||
case mediapipe::RotationMode_Mode_UNKNOWN:
|
||||
|
@ -95,7 +98,7 @@ mediapipe::ScaleMode_Mode ParseScaleMode(
|
|||
// Scales, rotates, and flips images horizontally or vertically.
|
||||
//
|
||||
// Input:
|
||||
// One of the following two tags:
|
||||
// One of the following tags:
|
||||
// IMAGE: ImageFrame representing the input image.
|
||||
// IMAGE_GPU: GpuBuffer representing the input image.
|
||||
//
|
||||
|
@ -113,7 +116,7 @@ mediapipe::ScaleMode_Mode ParseScaleMode(
|
|||
// corresponding field in the calculator options.
|
||||
//
|
||||
// Output:
|
||||
// One of the following two tags:
|
||||
// One of the following tags:
|
||||
// IMAGE - ImageFrame representing the output image.
|
||||
// IMAGE_GPU - GpuBuffer representing the output image.
|
||||
//
|
||||
|
@ -152,7 +155,8 @@ mediapipe::ScaleMode_Mode ParseScaleMode(
|
|||
// Note: To enable horizontal or vertical flipping, specify them in the
|
||||
// calculator options. Flipping is applied after rotation.
|
||||
//
|
||||
// Note: Only scale mode STRETCH is currently supported on CPU.
|
||||
// Note: Input defines output, so only matchig types supported:
|
||||
// IMAGE -> IMAGE or IMAGE_GPU -> IMAGE_GPU
|
||||
//
|
||||
class ImageTransformationCalculator : public CalculatorBase {
|
||||
public:
|
||||
|
@ -186,7 +190,7 @@ class ImageTransformationCalculator : public CalculatorBase {
|
|||
|
||||
bool use_gpu_ = false;
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
GlCalculatorHelper helper_;
|
||||
GlCalculatorHelper gpu_helper_;
|
||||
std::unique_ptr<QuadRenderer> rgb_renderer_;
|
||||
std::unique_ptr<QuadRenderer> yuv_renderer_;
|
||||
std::unique_ptr<QuadRenderer> ext_rgb_renderer_;
|
||||
|
@ -197,21 +201,22 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
// static
|
||||
::mediapipe::Status ImageTransformationCalculator::GetContract(
|
||||
CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("IMAGE") ^ cc->Inputs().HasTag("IMAGE_GPU"));
|
||||
RET_CHECK(cc->Outputs().HasTag("IMAGE") ^ cc->Outputs().HasTag("IMAGE_GPU"));
|
||||
// Only one input can be set, and the output type must match.
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) ^
|
||||
cc->Inputs().HasTag(kGpuBufferTag));
|
||||
|
||||
bool use_gpu = false;
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE")) {
|
||||
RET_CHECK(cc->Outputs().HasTag("IMAGE"));
|
||||
cc->Inputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
cc->Outputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kImageFrameTag)) {
|
||||
RET_CHECK(cc->Outputs().HasTag(kImageFrameTag));
|
||||
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
RET_CHECK(cc->Outputs().HasTag("IMAGE_GPU"));
|
||||
cc->Inputs().Tag("IMAGE_GPU").Set<GpuBuffer>();
|
||||
cc->Outputs().Tag("IMAGE_GPU").Set<GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
RET_CHECK(cc->Outputs().HasTag(kGpuBufferTag));
|
||||
cc->Inputs().Tag(kGpuBufferTag).Set<GpuBuffer>();
|
||||
cc->Outputs().Tag(kGpuBufferTag).Set<GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -259,7 +264,7 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
|
||||
options_ = cc->Options<ImageTransformationCalculatorOptions>();
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
use_gpu_ = true;
|
||||
}
|
||||
|
||||
|
@ -300,7 +305,7 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
if (use_gpu_) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
// Let the helper access the GL context information.
|
||||
MP_RETURN_IF_ERROR(helper_.Open(cc));
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
||||
#else
|
||||
RET_CHECK_FAIL() << "GPU processing not enabled.";
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -328,18 +333,14 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
|
||||
if (use_gpu_) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().Tag("IMAGE_GPU").IsEmpty()) {
|
||||
// Image is missing, hence no way to produce output image. (Timestamp
|
||||
// bound will be updated automatically.)
|
||||
if (cc->Inputs().Tag(kGpuBufferTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
return helper_.RunInGlContext(
|
||||
return gpu_helper_.RunInGlContext(
|
||||
[this, cc]() -> ::mediapipe::Status { return RenderGpu(cc); });
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
} else {
|
||||
if (cc->Inputs().Tag("IMAGE").IsEmpty()) {
|
||||
// Image is missing, hence no way to produce output image. (Timestamp
|
||||
// bound will be updated automatically.)
|
||||
if (cc->Inputs().Tag(kImageFrameTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
return RenderCpu(cc);
|
||||
|
@ -354,7 +355,7 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
QuadRenderer* rgb_renderer = rgb_renderer_.release();
|
||||
QuadRenderer* yuv_renderer = yuv_renderer_.release();
|
||||
QuadRenderer* ext_rgb_renderer = ext_rgb_renderer_.release();
|
||||
helper_.RunInGlContext([rgb_renderer, yuv_renderer, ext_rgb_renderer] {
|
||||
gpu_helper_.RunInGlContext([rgb_renderer, yuv_renderer, ext_rgb_renderer] {
|
||||
if (rgb_renderer) {
|
||||
rgb_renderer->GlTeardown();
|
||||
delete rgb_renderer;
|
||||
|
@ -376,17 +377,21 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
|
||||
::mediapipe::Status ImageTransformationCalculator::RenderCpu(
|
||||
CalculatorContext* cc) {
|
||||
const auto& input_img = cc->Inputs().Tag("IMAGE").Get<ImageFrame>();
|
||||
cv::Mat input_mat = formats::MatView(&input_img);
|
||||
cv::Mat scaled_mat;
|
||||
cv::Mat input_mat;
|
||||
mediapipe::ImageFormat::Format format;
|
||||
|
||||
const int input_width = input_img.Width();
|
||||
const int input_height = input_img.Height();
|
||||
const auto& input = cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
|
||||
input_mat = formats::MatView(&input);
|
||||
format = input.Format();
|
||||
|
||||
const int input_width = input_mat.cols;
|
||||
const int input_height = input_mat.rows;
|
||||
if (!output_height_ || !output_width_) {
|
||||
output_height_ = input_height;
|
||||
output_width_ = input_width;
|
||||
}
|
||||
|
||||
cv::Mat scaled_mat;
|
||||
if (scale_mode_ == mediapipe::ScaleMode_Mode_STRETCH) {
|
||||
cv::resize(input_mat, scaled_mat, cv::Size(output_width_, output_height_));
|
||||
} else {
|
||||
|
@ -443,10 +448,12 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
}
|
||||
|
||||
std::unique_ptr<ImageFrame> output_frame(
|
||||
new ImageFrame(input_img.Format(), output_width, output_height));
|
||||
new ImageFrame(format, output_width, output_height));
|
||||
cv::Mat output_mat = formats::MatView(output_frame.get());
|
||||
flipped_mat.copyTo(output_mat);
|
||||
cc->Outputs().Tag("IMAGE").Add(output_frame.release(), cc->InputTimestamp());
|
||||
cc->Outputs()
|
||||
.Tag(kImageFrameTag)
|
||||
.Add(output_frame.release(), cc->InputTimestamp());
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
@ -454,7 +461,7 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
::mediapipe::Status ImageTransformationCalculator::RenderGpu(
|
||||
CalculatorContext* cc) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
const auto& input = cc->Inputs().Tag("IMAGE_GPU").Get<GpuBuffer>();
|
||||
const auto& input = cc->Inputs().Tag(kGpuBufferTag).Get<GpuBuffer>();
|
||||
const int input_width = input.width();
|
||||
const int input_height = input.height();
|
||||
|
||||
|
@ -485,11 +492,11 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
{"video_frame_y", "video_frame_uv"}));
|
||||
}
|
||||
renderer = yuv_renderer_.get();
|
||||
src1 = helper_.CreateSourceTexture(input, 0);
|
||||
src1 = gpu_helper_.CreateSourceTexture(input, 0);
|
||||
} else // NOLINT(readability/braces)
|
||||
#endif // iOS
|
||||
{
|
||||
src1 = helper_.CreateSourceTexture(input);
|
||||
src1 = gpu_helper_.CreateSourceTexture(input);
|
||||
#if defined(TEXTURE_EXTERNAL_OES)
|
||||
if (src1.target() == GL_TEXTURE_EXTERNAL_OES) {
|
||||
if (!ext_rgb_renderer_) {
|
||||
|
@ -515,10 +522,10 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
mediapipe::FrameRotation rotation =
|
||||
mediapipe::FrameRotationFromDegrees(RotationModeToDegrees(rotation_));
|
||||
|
||||
auto dst = helper_.CreateDestinationTexture(output_width, output_height,
|
||||
auto dst = gpu_helper_.CreateDestinationTexture(output_width, output_height,
|
||||
input.format());
|
||||
|
||||
helper_.BindFramebuffer(dst); // GL_TEXTURE0
|
||||
gpu_helper_.BindFramebuffer(dst); // GL_TEXTURE0
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(src1.target(), src1.name());
|
||||
|
||||
|
@ -533,8 +540,8 @@ REGISTER_CALCULATOR(ImageTransformationCalculator);
|
|||
// Execute GL commands, before getting result.
|
||||
glFlush();
|
||||
|
||||
auto output = dst.GetFrame<GpuBuffer>();
|
||||
cc->Outputs().Tag("IMAGE_GPU").Add(output.release(), cc->InputTimestamp());
|
||||
auto output = dst.template GetFrame<GpuBuffer>();
|
||||
cc->Outputs().Tag(kGpuBufferTag).Add(output.release(), cc->InputTimestamp());
|
||||
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
|
|
|
@ -32,6 +32,11 @@
|
|||
|
||||
namespace {
|
||||
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
|
||||
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
constexpr char kMaskCpuTag[] = "MASK";
|
||||
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
|
||||
constexpr char kMaskGpuTag[] = "MASK_GPU";
|
||||
} // namespace
|
||||
|
||||
namespace mediapipe {
|
||||
|
@ -112,39 +117,41 @@ REGISTER_CALCULATOR(RecolorCalculator);
|
|||
bool use_gpu = false;
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
cc->Inputs().Tag("IMAGE_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
cc->Inputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
if (cc->Inputs().HasTag("IMAGE")) {
|
||||
cc->Inputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kImageFrameTag)) {
|
||||
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
}
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Inputs().HasTag("MASK_GPU")) {
|
||||
cc->Inputs().Tag("MASK_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kMaskGpuTag)) {
|
||||
cc->Inputs().Tag(kMaskGpuTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
if (cc->Inputs().HasTag("MASK")) {
|
||||
cc->Inputs().Tag("MASK").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kMaskCpuTag)) {
|
||||
cc->Inputs().Tag(kMaskCpuTag).Set<ImageFrame>();
|
||||
}
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
if (cc->Outputs().HasTag("IMAGE_GPU")) {
|
||||
cc->Outputs().Tag("IMAGE_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Outputs().HasTag(kGpuBufferTag)) {
|
||||
cc->Outputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
if (cc->Outputs().HasTag("IMAGE")) {
|
||||
cc->Outputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
if (cc->Outputs().HasTag(kImageFrameTag)) {
|
||||
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
}
|
||||
|
||||
// Confirm only one of the input streams is present.
|
||||
RET_CHECK(cc->Inputs().HasTag("IMAGE") ^ cc->Inputs().HasTag("IMAGE_GPU"));
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) ^
|
||||
cc->Inputs().HasTag(kGpuBufferTag));
|
||||
// Confirm only one of the output streams is present.
|
||||
RET_CHECK(cc->Outputs().HasTag("IMAGE") ^ cc->Outputs().HasTag("IMAGE_GPU"));
|
||||
RET_CHECK(cc->Outputs().HasTag(kImageFrameTag) ^
|
||||
cc->Outputs().HasTag(kGpuBufferTag));
|
||||
|
||||
if (use_gpu) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
|
@ -158,7 +165,7 @@ REGISTER_CALCULATOR(RecolorCalculator);
|
|||
::mediapipe::Status RecolorCalculator::Open(CalculatorContext* cc) {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
use_gpu_ = true;
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
||||
|
@ -201,12 +208,12 @@ REGISTER_CALCULATOR(RecolorCalculator);
|
|||
}
|
||||
|
||||
::mediapipe::Status RecolorCalculator::RenderCpu(CalculatorContext* cc) {
|
||||
if (cc->Inputs().Tag("MASK").IsEmpty()) {
|
||||
if (cc->Inputs().Tag(kMaskCpuTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
// Get inputs and setup output.
|
||||
const auto& input_img = cc->Inputs().Tag("IMAGE").Get<ImageFrame>();
|
||||
const auto& mask_img = cc->Inputs().Tag("MASK").Get<ImageFrame>();
|
||||
const auto& input_img = cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
|
||||
const auto& mask_img = cc->Inputs().Tag(kMaskCpuTag).Get<ImageFrame>();
|
||||
|
||||
cv::Mat input_mat = formats::MatView(&input_img);
|
||||
cv::Mat mask_mat = formats::MatView(&mask_img);
|
||||
|
@ -254,19 +261,21 @@ REGISTER_CALCULATOR(RecolorCalculator);
|
|||
}
|
||||
}
|
||||
|
||||
cc->Outputs().Tag("IMAGE").Add(output_img.release(), cc->InputTimestamp());
|
||||
cc->Outputs()
|
||||
.Tag(kImageFrameTag)
|
||||
.Add(output_img.release(), cc->InputTimestamp());
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status RecolorCalculator::RenderGpu(CalculatorContext* cc) {
|
||||
if (cc->Inputs().Tag("MASK_GPU").IsEmpty()) {
|
||||
if (cc->Inputs().Tag(kMaskGpuTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU)
|
||||
// Get inputs and setup output.
|
||||
const Packet& input_packet = cc->Inputs().Tag("IMAGE_GPU").Value();
|
||||
const Packet& mask_packet = cc->Inputs().Tag("MASK_GPU").Value();
|
||||
const Packet& input_packet = cc->Inputs().Tag(kGpuBufferTag).Value();
|
||||
const Packet& mask_packet = cc->Inputs().Tag(kMaskGpuTag).Value();
|
||||
|
||||
const auto& input_buffer = input_packet.Get<mediapipe::GpuBuffer>();
|
||||
const auto& mask_buffer = mask_packet.Get<mediapipe::GpuBuffer>();
|
||||
|
@ -296,7 +305,7 @@ REGISTER_CALCULATOR(RecolorCalculator);
|
|||
|
||||
// Send result image in GPU packet.
|
||||
auto output = dst_tex.GetFrame<mediapipe::GpuBuffer>();
|
||||
cc->Outputs().Tag("IMAGE_GPU").Add(output.release(), cc->InputTimestamp());
|
||||
cc->Outputs().Tag(kGpuBufferTag).Add(output.release(), cc->InputTimestamp());
|
||||
|
||||
// Cleanup
|
||||
img_tex.Release();
|
||||
|
|
|
@ -243,6 +243,7 @@ cc_library(
|
|||
"@org_tensorflow//tensorflow/lite/delegates/gpu:metal_delegate_internal",
|
||||
],
|
||||
"//conditions:default": [
|
||||
"//mediapipe/util/tflite:tflite_gpu_runner",
|
||||
"//mediapipe/gpu:gl_calculator_helper",
|
||||
"//mediapipe/gpu:gpu_buffer",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu/common:shape",
|
||||
|
|
|
@ -63,6 +63,10 @@ typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
|
|||
typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>
|
||||
ColMajorMatrixXf;
|
||||
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
|
||||
constexpr char kTensorsTag[] = "TENSORS";
|
||||
constexpr char kTensorsGpuTag[] = "TENSORS_GPU";
|
||||
} // namespace
|
||||
|
||||
namespace mediapipe {
|
||||
|
@ -124,6 +128,9 @@ struct GPUData {
|
|||
// GPU tensors are currently only supported on mobile platforms.
|
||||
// This calculator uses FixedSizeInputStreamHandler by default.
|
||||
//
|
||||
// Note: Input defines output, so only these type sets are supported:
|
||||
// IMAGE -> TENSORS | IMAGE_GPU -> TENSORS_GPU | MATRIX -> TENSORS
|
||||
//
|
||||
class TfLiteConverterCalculator : public CalculatorBase {
|
||||
public:
|
||||
static ::mediapipe::Status GetContract(CalculatorContract* cc);
|
||||
|
@ -138,9 +145,9 @@ class TfLiteConverterCalculator : public CalculatorBase {
|
|||
template <class T>
|
||||
::mediapipe::Status NormalizeImage(const ImageFrame& image_frame,
|
||||
bool zero_center, bool flip_vertically,
|
||||
float* tensor_buffer);
|
||||
float* tensor_ptr);
|
||||
::mediapipe::Status CopyMatrixToTensor(const Matrix& matrix,
|
||||
float* tensor_buffer);
|
||||
float* tensor_ptr);
|
||||
::mediapipe::Status ProcessCPU(CalculatorContext* cc);
|
||||
::mediapipe::Status ProcessGPU(CalculatorContext* cc);
|
||||
|
||||
|
@ -166,33 +173,35 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteConverterCalculator::GetContract(
|
||||
CalculatorContract* cc) {
|
||||
const bool has_image_tag = cc->Inputs().HasTag("IMAGE");
|
||||
const bool has_image_gpu_tag = cc->Inputs().HasTag("IMAGE_GPU");
|
||||
const bool has_matrix_tag = cc->Inputs().HasTag("MATRIX");
|
||||
// Confirm only one of the input streams is present.
|
||||
RET_CHECK(has_image_tag ^ has_image_gpu_tag ^ has_matrix_tag &&
|
||||
!(has_image_tag && has_image_gpu_tag && has_matrix_tag));
|
||||
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) ^
|
||||
cc->Inputs().HasTag(kGpuBufferTag) ^ cc->Inputs().HasTag("MATRIX"));
|
||||
|
||||
// Confirm only one of the output streams is present.
|
||||
RET_CHECK(cc->Outputs().HasTag("TENSORS") ^
|
||||
cc->Outputs().HasTag("TENSORS_GPU"));
|
||||
RET_CHECK(cc->Outputs().HasTag(kTensorsTag) ^
|
||||
cc->Outputs().HasTag(kTensorsGpuTag));
|
||||
|
||||
bool use_gpu = false;
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE")) cc->Inputs().Tag("IMAGE").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag("MATRIX")) cc->Inputs().Tag("MATRIX").Set<Matrix>();
|
||||
if (cc->Inputs().HasTag(kImageFrameTag)) {
|
||||
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
}
|
||||
if (cc->Inputs().HasTag("MATRIX")) {
|
||||
cc->Inputs().Tag("MATRIX").Set<Matrix>();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU")) {
|
||||
cc->Inputs().Tag("IMAGE_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag)) {
|
||||
cc->Inputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
if (cc->Outputs().HasTag("TENSORS"))
|
||||
cc->Outputs().Tag("TENSORS").Set<std::vector<TfLiteTensor>>();
|
||||
if (cc->Outputs().HasTag(kTensorsTag)) {
|
||||
cc->Outputs().Tag(kTensorsTag).Set<std::vector<TfLiteTensor>>();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
if (cc->Outputs().HasTag("TENSORS_GPU")) {
|
||||
cc->Outputs().Tag("TENSORS_GPU").Set<std::vector<GpuTensor>>();
|
||||
if (cc->Outputs().HasTag(kTensorsGpuTag)) {
|
||||
cc->Outputs().Tag(kTensorsGpuTag).Set<std::vector<GpuTensor>>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -216,8 +225,8 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
MP_RETURN_IF_ERROR(LoadOptions(cc));
|
||||
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU") ||
|
||||
cc->Outputs().HasTag("IMAGE_OUT_GPU")) {
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag) ||
|
||||
cc->Outputs().HasTag(kGpuBufferTag)) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
use_gpu_ = true;
|
||||
#else
|
||||
|
@ -227,8 +236,8 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
if (use_gpu_) {
|
||||
// Cannot mix CPU/GPU streams.
|
||||
RET_CHECK(cc->Inputs().HasTag("IMAGE_GPU") &&
|
||||
cc->Outputs().HasTag("TENSORS_GPU"));
|
||||
RET_CHECK(cc->Inputs().HasTag(kGpuBufferTag) &&
|
||||
cc->Outputs().HasTag(kTensorsGpuTag));
|
||||
// Cannot use quantization.
|
||||
use_quantized_tensors_ = false;
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
|
@ -248,7 +257,6 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteConverterCalculator::Process(CalculatorContext* cc) {
|
||||
if (use_gpu_) {
|
||||
// GpuBuffer to tflite::gpu::GlBuffer conversion.
|
||||
if (!initialized_) {
|
||||
MP_RETURN_IF_ERROR(InitGpu(cc));
|
||||
initialized_ = true;
|
||||
|
@ -259,7 +267,6 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
// Convert to CPU tensors or Matrix type.
|
||||
MP_RETURN_IF_ERROR(ProcessCPU(cc));
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
|
@ -275,24 +282,26 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteConverterCalculator::ProcessCPU(
|
||||
CalculatorContext* cc) {
|
||||
if (cc->Inputs().HasTag("IMAGE")) {
|
||||
if (cc->Inputs().HasTag(kImageFrameTag)) {
|
||||
// CPU ImageFrame to TfLiteTensor conversion.
|
||||
|
||||
const auto& image_frame = cc->Inputs().Tag("IMAGE").Get<ImageFrame>();
|
||||
const auto& image_frame =
|
||||
cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
|
||||
const int height = image_frame.Height();
|
||||
const int width = image_frame.Width();
|
||||
const int channels = image_frame.NumberOfChannels();
|
||||
const int channels_preserved = std::min(channels, max_num_channels_);
|
||||
const mediapipe::ImageFormat::Format format = image_frame.Format();
|
||||
|
||||
if (!initialized_) {
|
||||
if (!(image_frame.Format() == mediapipe::ImageFormat::SRGBA ||
|
||||
image_frame.Format() == mediapipe::ImageFormat::SRGB ||
|
||||
image_frame.Format() == mediapipe::ImageFormat::GRAY8 ||
|
||||
image_frame.Format() == mediapipe::ImageFormat::VEC32F1))
|
||||
if (!(format == mediapipe::ImageFormat::SRGBA ||
|
||||
format == mediapipe::ImageFormat::SRGB ||
|
||||
format == mediapipe::ImageFormat::GRAY8 ||
|
||||
format == mediapipe::ImageFormat::VEC32F1))
|
||||
RET_CHECK_FAIL() << "Unsupported CPU input format.";
|
||||
TfLiteQuantization quant;
|
||||
if (use_quantized_tensors_) {
|
||||
RET_CHECK(image_frame.Format() != mediapipe::ImageFormat::VEC32F1)
|
||||
RET_CHECK(format != mediapipe::ImageFormat::VEC32F1)
|
||||
<< "Only 8-bit input images are supported for quantization.";
|
||||
quant.type = kTfLiteAffineQuantization;
|
||||
quant.params = nullptr;
|
||||
|
@ -349,8 +358,9 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
|
||||
auto output_tensors = absl::make_unique<std::vector<TfLiteTensor>>();
|
||||
output_tensors->emplace_back(*tensor);
|
||||
cc->Outputs().Tag("TENSORS").Add(output_tensors.release(),
|
||||
cc->InputTimestamp());
|
||||
cc->Outputs()
|
||||
.Tag(kTensorsTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
} else if (cc->Inputs().HasTag("MATRIX")) {
|
||||
// CPU Matrix to TfLiteTensor conversion.
|
||||
|
||||
|
@ -371,15 +381,16 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
interpreter_->ResizeInputTensor(tensor_idx, {height, width, channels});
|
||||
interpreter_->AllocateTensors();
|
||||
|
||||
float* tensor_buffer = tensor->data.f;
|
||||
RET_CHECK(tensor_buffer);
|
||||
float* tensor_ptr = tensor->data.f;
|
||||
RET_CHECK(tensor_ptr);
|
||||
|
||||
MP_RETURN_IF_ERROR(CopyMatrixToTensor(matrix, tensor_buffer));
|
||||
MP_RETURN_IF_ERROR(CopyMatrixToTensor(matrix, tensor_ptr));
|
||||
|
||||
auto output_tensors = absl::make_unique<std::vector<TfLiteTensor>>();
|
||||
output_tensors->emplace_back(*tensor);
|
||||
cc->Outputs().Tag("TENSORS").Add(output_tensors.release(),
|
||||
cc->InputTimestamp());
|
||||
cc->Outputs()
|
||||
.Tag(kTensorsTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
|
@ -389,7 +400,8 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
CalculatorContext* cc) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
// GpuBuffer to tflite::gpu::GlBuffer conversion.
|
||||
const auto& input = cc->Inputs().Tag("IMAGE_GPU").Get<mediapipe::GpuBuffer>();
|
||||
const auto& input =
|
||||
cc->Inputs().Tag(kGpuBufferTag).Get<mediapipe::GpuBuffer>();
|
||||
MP_RETURN_IF_ERROR(
|
||||
gpu_helper_.RunInGlContext([this, &input]() -> ::mediapipe::Status {
|
||||
// Convert GL texture into TfLite GlBuffer (SSBO).
|
||||
|
@ -421,11 +433,12 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
return ::mediapipe::OkStatus();
|
||||
}));
|
||||
cc->Outputs()
|
||||
.Tag("TENSORS_GPU")
|
||||
.Tag(kTensorsGpuTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
#elif defined(MEDIAPIPE_IOS)
|
||||
// GpuBuffer to id<MTLBuffer> conversion.
|
||||
const auto& input = cc->Inputs().Tag("IMAGE_GPU").Get<mediapipe::GpuBuffer>();
|
||||
const auto& input =
|
||||
cc->Inputs().Tag(kGpuBufferTag).Get<mediapipe::GpuBuffer>();
|
||||
id<MTLCommandBuffer> command_buffer = [gpu_helper_ commandBuffer];
|
||||
|
||||
id<MTLTexture> src_texture = [gpu_helper_ metalTextureWithGpuBuffer:input];
|
||||
|
@ -457,7 +470,7 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
commandBuffer:command_buffer];
|
||||
|
||||
cc->Outputs()
|
||||
.Tag("TENSORS_GPU")
|
||||
.Tag(kTensorsGpuTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
#else
|
||||
RET_CHECK_FAIL() << "GPU processing is not enabled.";
|
||||
|
@ -469,7 +482,8 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
::mediapipe::Status TfLiteConverterCalculator::InitGpu(CalculatorContext* cc) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
// Get input image sizes.
|
||||
const auto& input = cc->Inputs().Tag("IMAGE_GPU").Get<mediapipe::GpuBuffer>();
|
||||
const auto& input =
|
||||
cc->Inputs().Tag(kGpuBufferTag).Get<mediapipe::GpuBuffer>();
|
||||
mediapipe::ImageFormat::Format format =
|
||||
mediapipe::ImageFormatForGpuBufferFormat(input.format());
|
||||
gpu_data_out_ = absl::make_unique<GPUData>();
|
||||
|
@ -612,7 +626,7 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
CHECK_LE(max_num_channels_, 4);
|
||||
CHECK_NE(max_num_channels_, 2);
|
||||
#if defined(MEDIAPIPE_IOS)
|
||||
if (cc->Inputs().HasTag("IMAGE_GPU"))
|
||||
if (cc->Inputs().HasTag(kGpuBufferTag))
|
||||
// Currently on iOS, tflite gpu input tensor must be 4 channels,
|
||||
// so input image must be 4 channels also (checked in InitGpu).
|
||||
max_num_channels_ = 4;
|
||||
|
@ -627,7 +641,7 @@ REGISTER_CALCULATOR(TfLiteConverterCalculator);
|
|||
template <class T>
|
||||
::mediapipe::Status TfLiteConverterCalculator::NormalizeImage(
|
||||
const ImageFrame& image_frame, bool zero_center, bool flip_vertically,
|
||||
float* tensor_buffer) {
|
||||
float* tensor_ptr) {
|
||||
const int height = image_frame.Height();
|
||||
const int width = image_frame.Width();
|
||||
const int channels = image_frame.NumberOfChannels();
|
||||
|
@ -651,7 +665,7 @@ template <class T>
|
|||
(flip_vertically ? height - 1 - i : i) * image_frame.WidthStep());
|
||||
for (int j = 0; j < width; ++j) {
|
||||
for (int c = 0; c < channels_preserved; ++c) {
|
||||
*tensor_buffer++ = *image_ptr++ / div - sub;
|
||||
*tensor_ptr++ = *image_ptr++ / div - sub;
|
||||
}
|
||||
image_ptr += channels_ignored;
|
||||
}
|
||||
|
@ -661,14 +675,14 @@ template <class T>
|
|||
}
|
||||
|
||||
::mediapipe::Status TfLiteConverterCalculator::CopyMatrixToTensor(
|
||||
const Matrix& matrix, float* tensor_buffer) {
|
||||
const Matrix& matrix, float* tensor_ptr) {
|
||||
if (row_major_matrix_) {
|
||||
auto matrix_map = Eigen::Map<RowMajorMatrixXf>(tensor_buffer, matrix.rows(),
|
||||
matrix.cols());
|
||||
auto matrix_map =
|
||||
Eigen::Map<RowMajorMatrixXf>(tensor_ptr, matrix.rows(), matrix.cols());
|
||||
matrix_map = matrix;
|
||||
} else {
|
||||
auto matrix_map = Eigen::Map<ColMajorMatrixXf>(tensor_buffer, matrix.rows(),
|
||||
matrix.cols());
|
||||
auto matrix_map =
|
||||
Eigen::Map<ColMajorMatrixXf>(tensor_ptr, matrix.rows(), matrix.cols());
|
||||
matrix_map = matrix;
|
||||
}
|
||||
|
||||
|
|
|
@ -36,6 +36,7 @@
|
|||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
#include "mediapipe/gpu/gl_calculator_helper.h"
|
||||
#include "mediapipe/gpu/gpu_buffer.h"
|
||||
#include "mediapipe/util/tflite/tflite_gpu_runner.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/shape.h"
|
||||
#include "tensorflow/lite/delegates/gpu/gl/gl_buffer.h"
|
||||
#include "tensorflow/lite/delegates/gpu/gl/gl_program.h"
|
||||
|
@ -75,6 +76,9 @@ typedef id<MTLBuffer> GpuTensor;
|
|||
|
||||
// Round up n to next multiple of m.
|
||||
size_t RoundUp(size_t n, size_t m) { return ((n + m - 1) / m) * m; } // NOLINT
|
||||
|
||||
constexpr char kTensorsTag[] = "TENSORS";
|
||||
constexpr char kTensorsGpuTag[] = "TENSORS_GPU";
|
||||
} // namespace
|
||||
|
||||
#if defined(MEDIAPIPE_EDGE_TPU)
|
||||
|
@ -219,6 +223,7 @@ class TfLiteInferenceCalculator : public CalculatorBase {
|
|||
::mediapipe::Status LoadModel(CalculatorContext* cc);
|
||||
::mediapipe::StatusOr<Packet> GetModelAsPacket(const CalculatorContext& cc);
|
||||
::mediapipe::Status LoadDelegate(CalculatorContext* cc);
|
||||
::mediapipe::Status InitTFLiteGPURunner();
|
||||
|
||||
Packet model_packet_;
|
||||
std::unique_ptr<tflite::Interpreter> interpreter_;
|
||||
|
@ -228,6 +233,7 @@ class TfLiteInferenceCalculator : public CalculatorBase {
|
|||
mediapipe::GlCalculatorHelper gpu_helper_;
|
||||
std::vector<std::unique_ptr<GPUData>> gpu_data_in_;
|
||||
std::vector<std::unique_ptr<GPUData>> gpu_data_out_;
|
||||
std::unique_ptr<tflite::gpu::TFLiteGPURunner> tflite_gpu_runner_;
|
||||
#elif defined(MEDIAPIPE_IOS)
|
||||
MPPMetalHelper* gpu_helper_ = nullptr;
|
||||
std::vector<std::unique_ptr<GPUData>> gpu_data_in_;
|
||||
|
@ -245,6 +251,8 @@ class TfLiteInferenceCalculator : public CalculatorBase {
|
|||
bool gpu_input_ = false;
|
||||
bool gpu_output_ = false;
|
||||
bool use_quantized_tensors_ = false;
|
||||
|
||||
bool use_advanced_gpu_api_ = false;
|
||||
};
|
||||
REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
||||
|
||||
|
@ -252,10 +260,10 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteInferenceCalculator::GetContract(
|
||||
CalculatorContract* cc) {
|
||||
RET_CHECK(cc->Inputs().HasTag("TENSORS") ^
|
||||
cc->Inputs().HasTag("TENSORS_GPU"));
|
||||
RET_CHECK(cc->Outputs().HasTag("TENSORS") ^
|
||||
cc->Outputs().HasTag("TENSORS_GPU"));
|
||||
RET_CHECK(cc->Inputs().HasTag(kTensorsTag) ^
|
||||
cc->Inputs().HasTag(kTensorsGpuTag));
|
||||
RET_CHECK(cc->Outputs().HasTag(kTensorsTag) ^
|
||||
cc->Outputs().HasTag(kTensorsGpuTag));
|
||||
|
||||
const auto& options =
|
||||
cc->Options<::mediapipe::TfLiteInferenceCalculatorOptions>();
|
||||
|
@ -266,26 +274,26 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
bool use_gpu =
|
||||
options.has_delegate() ? options.delegate().has_gpu() : options.use_gpu();
|
||||
|
||||
if (cc->Inputs().HasTag("TENSORS"))
|
||||
cc->Inputs().Tag("TENSORS").Set<std::vector<TfLiteTensor>>();
|
||||
if (cc->Inputs().HasTag(kTensorsTag))
|
||||
cc->Inputs().Tag(kTensorsTag).Set<std::vector<TfLiteTensor>>();
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
RET_CHECK(!options.has_delegate() || options.delegate().has_gpu())
|
||||
<< "GPU input is compatible with GPU delegate only.";
|
||||
|
||||
cc->Inputs().Tag("TENSORS_GPU").Set<std::vector<GpuTensor>>();
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Set<std::vector<GpuTensor>>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
if (cc->Outputs().HasTag("TENSORS"))
|
||||
cc->Outputs().Tag("TENSORS").Set<std::vector<TfLiteTensor>>();
|
||||
if (cc->Outputs().HasTag(kTensorsTag))
|
||||
cc->Outputs().Tag(kTensorsTag).Set<std::vector<TfLiteTensor>>();
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
if (cc->Outputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Outputs().HasTag(kTensorsGpuTag)) {
|
||||
RET_CHECK(!options.has_delegate() || options.delegate().has_gpu())
|
||||
<< "GPU output is compatible with GPU delegate only.";
|
||||
|
||||
cc->Outputs().Tag("TENSORS_GPU").Set<std::vector<GpuTensor>>();
|
||||
cc->Outputs().Tag(kTensorsGpuTag).Set<std::vector<GpuTensor>>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -320,27 +328,31 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
cc->Options<::mediapipe::TfLiteInferenceCalculatorOptions>();
|
||||
gpu_inference_ = options.use_gpu();
|
||||
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
gpu_input_ = true;
|
||||
gpu_inference_ = true; // Inference must be on GPU also.
|
||||
#else
|
||||
RET_CHECK(!cc->Inputs().HasTag("TENSORS_GPU"))
|
||||
RET_CHECK(!cc->Inputs().HasTag(kTensorsGpuTag))
|
||||
<< "GPU processing not enabled.";
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
}
|
||||
|
||||
if (cc->Outputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Outputs().HasTag(kTensorsGpuTag)) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
gpu_output_ = true;
|
||||
RET_CHECK(cc->Inputs().HasTag("TENSORS_GPU"))
|
||||
RET_CHECK(cc->Inputs().HasTag(kTensorsGpuTag))
|
||||
<< "GPU output must also have GPU Input.";
|
||||
#else
|
||||
RET_CHECK(!cc->Inputs().HasTag("TENSORS_GPU"))
|
||||
RET_CHECK(!cc->Inputs().HasTag(kTensorsGpuTag))
|
||||
<< "GPU processing not enabled.";
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
}
|
||||
|
||||
const auto& calculator_opts =
|
||||
cc->Options<mediapipe::TfLiteInferenceCalculatorOptions>();
|
||||
use_advanced_gpu_api_ = false;
|
||||
|
||||
MP_RETURN_IF_ERROR(LoadModel(cc));
|
||||
|
||||
if (gpu_inference_) {
|
||||
|
@ -352,8 +364,12 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
#endif
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
||||
[this, &cc]() -> ::mediapipe::Status { return LoadDelegate(cc); }));
|
||||
MP_RETURN_IF_ERROR(
|
||||
gpu_helper_.RunInGlContext([this, &cc]() -> ::mediapipe::Status {
|
||||
return use_advanced_gpu_api_ ? InitTFLiteGPURunner()
|
||||
: LoadDelegate(cc);
|
||||
}));
|
||||
if (use_advanced_gpu_api_) return ::mediapipe::OkStatus();
|
||||
#else
|
||||
MP_RETURN_IF_ERROR(LoadDelegate(cc));
|
||||
#endif
|
||||
|
@ -365,13 +381,51 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status TfLiteInferenceCalculator::InitTFLiteGPURunner() {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
// Create and bind OpenGL buffers for outputs.
|
||||
// These buffers are created onve and later their ids are jut passed to the
|
||||
// calculator outputs.
|
||||
|
||||
gpu_data_out_.resize(tflite_gpu_runner_->outputs_size());
|
||||
for (int i = 0; i < tflite_gpu_runner_->outputs_size(); ++i) {
|
||||
gpu_data_out_[i] = absl::make_unique<GPUData>();
|
||||
ASSIGN_OR_RETURN(gpu_data_out_[i]->elements,
|
||||
tflite_gpu_runner_->GetOutputElements(i));
|
||||
// Create and bind input buffer.
|
||||
RET_CHECK_CALL(::tflite::gpu::gl::CreateReadWriteShaderStorageBuffer<float>(
|
||||
gpu_data_out_[i]->elements, &gpu_data_out_[i]->buffer));
|
||||
}
|
||||
RET_CHECK_CALL(tflite_gpu_runner_->Build());
|
||||
#endif
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
::mediapipe::Status TfLiteInferenceCalculator::Process(CalculatorContext* cc) {
|
||||
// 1. Receive pre-processed tensor inputs.
|
||||
if (gpu_input_) {
|
||||
// Read GPU input into SSBO.
|
||||
if (use_advanced_gpu_api_) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS_GPU").Get<std::vector<GpuTensor>>();
|
||||
RET_CHECK(input_tensors.empty());
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
||||
[this, &input_tensors]() -> ::mediapipe::Status {
|
||||
for (int i = 0; i < input_tensors.size(); ++i) {
|
||||
MP_RETURN_IF_ERROR(tflite_gpu_runner_->BindSSBOToInputTensor(
|
||||
input_tensors[i].id(), i));
|
||||
}
|
||||
for (int i = 0; i < gpu_data_out_.size(); ++i) {
|
||||
MP_RETURN_IF_ERROR(tflite_gpu_runner_->BindSSBOToOutputTensor(
|
||||
gpu_data_out_[i]->buffer.id(), i));
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}));
|
||||
#endif
|
||||
} else if (gpu_input_) {
|
||||
// Read GPU input into SSBO.
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Get<std::vector<GpuTensor>>();
|
||||
RET_CHECK_GT(input_tensors.size(), 0);
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
||||
[this, &input_tensors]() -> ::mediapipe::Status {
|
||||
|
@ -386,7 +440,7 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
}));
|
||||
#elif defined(MEDIAPIPE_IOS)
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS_GPU").Get<std::vector<GpuTensor>>();
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Get<std::vector<GpuTensor>>();
|
||||
RET_CHECK_GT(input_tensors.size(), 0);
|
||||
// Explicit copy input with conversion float 32 bits to 16 bits.
|
||||
gpu_data_in_.resize(input_tensors.size());
|
||||
|
@ -413,7 +467,7 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
} else {
|
||||
// Read CPU input into tensors.
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS").Get<std::vector<TfLiteTensor>>();
|
||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<TfLiteTensor>>();
|
||||
RET_CHECK_GT(input_tensors.size(), 0);
|
||||
for (int i = 0; i < input_tensors.size(); ++i) {
|
||||
const TfLiteTensor* input_tensor = &input_tensors[i];
|
||||
|
@ -437,7 +491,11 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
MP_RETURN_IF_ERROR(
|
||||
gpu_helper_.RunInGlContext([this]() -> ::mediapipe::Status {
|
||||
if (use_advanced_gpu_api_) {
|
||||
RET_CHECK(tflite_gpu_runner_->Invoke().ok());
|
||||
} else {
|
||||
RET_CHECK_EQ(interpreter_->Invoke(), kTfLiteOk);
|
||||
}
|
||||
return ::mediapipe::OkStatus();
|
||||
}));
|
||||
#elif defined(MEDIAPIPE_IOS)
|
||||
|
@ -448,7 +506,18 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
}
|
||||
|
||||
// 3. Output processed tensors.
|
||||
if (gpu_output_) {
|
||||
if (use_advanced_gpu_api_) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
auto output_tensors = absl::make_unique<std::vector<GpuTensor>>();
|
||||
output_tensors->resize(gpu_data_out_.size());
|
||||
for (int i = 0; i < gpu_data_out_.size(); ++i) {
|
||||
output_tensors->at(i) = gpu_data_out_[0]->buffer.MakeRef();
|
||||
}
|
||||
cc->Outputs()
|
||||
.Tag("TENSORS_GPU")
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
#endif
|
||||
} else if (gpu_output_) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
// Output result tensors (GPU).
|
||||
auto output_tensors = absl::make_unique<std::vector<GpuTensor>>();
|
||||
|
@ -464,7 +533,7 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
return ::mediapipe::OkStatus();
|
||||
}));
|
||||
cc->Outputs()
|
||||
.Tag("TENSORS_GPU")
|
||||
.Tag(kTensorsGpuTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
#elif defined(MEDIAPIPE_IOS)
|
||||
// Output result tensors (GPU).
|
||||
|
@ -488,7 +557,7 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
[convert_command endEncoding];
|
||||
[command_buffer commit];
|
||||
cc->Outputs()
|
||||
.Tag("TENSORS_GPU")
|
||||
.Tag(kTensorsGpuTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
#else
|
||||
RET_CHECK_FAIL() << "GPU processing not enabled.";
|
||||
|
@ -501,8 +570,9 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
TfLiteTensor* tensor = interpreter_->tensor(tensor_indexes[i]);
|
||||
output_tensors->emplace_back(*tensor);
|
||||
}
|
||||
cc->Outputs().Tag("TENSORS").Add(output_tensors.release(),
|
||||
cc->InputTimestamp());
|
||||
cc->Outputs()
|
||||
.Tag(kTensorsTag)
|
||||
.Add(output_tensors.release(), cc->InputTimestamp());
|
||||
}
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
|
@ -557,6 +627,20 @@ REGISTER_CALCULATOR(TfLiteInferenceCalculator);
|
|||
.Tag("CUSTOM_OP_RESOLVER")
|
||||
.Get<tflite::ops::builtin::BuiltinOpResolver>();
|
||||
}
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
if (use_advanced_gpu_api_) {
|
||||
tflite::gpu::InferenceOptions options;
|
||||
options.priority1 = tflite::gpu::InferencePriority::MIN_LATENCY;
|
||||
options.priority2 = tflite::gpu::InferencePriority::AUTO;
|
||||
options.priority3 = tflite::gpu::InferencePriority::AUTO;
|
||||
options.usage = tflite::gpu::InferenceUsage::SUSTAINED_SPEED;
|
||||
tflite_gpu_runner_ =
|
||||
std::make_unique<tflite::gpu::TFLiteGPURunner>(options);
|
||||
return tflite_gpu_runner_->InitializeWithModel(model);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(MEDIAPIPE_EDGE_TPU)
|
||||
interpreter_ =
|
||||
BuildEdgeTpuInterpreter(model, &op_resolver, edgetpu_context_.get());
|
||||
|
|
|
@ -42,7 +42,11 @@ message TfLiteInferenceCalculatorOptions {
|
|||
message TfLite {}
|
||||
// Delegate to run GPU inference depending on the device.
|
||||
// (Can use OpenGl, OpenCl, Metal depending on the device.)
|
||||
message Gpu {}
|
||||
message Gpu {
|
||||
// Experimental, Android/Linux only. Use TFLite GPU delegate API2 for
|
||||
// the NN inference.
|
||||
optional bool use_advanced_gpu_api = 1 [default = false];
|
||||
}
|
||||
// Android only.
|
||||
message Nnapi {}
|
||||
message Xnnpack {
|
||||
|
|
|
@ -47,10 +47,11 @@
|
|||
#endif // iOS
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr int kNumInputTensorsWithAnchors = 3;
|
||||
constexpr int kNumCoordsPerBox = 4;
|
||||
|
||||
constexpr char kTensorsTag[] = "TENSORS";
|
||||
constexpr char kTensorsGpuTag[] = "TENSORS_GPU";
|
||||
} // namespace
|
||||
|
||||
namespace mediapipe {
|
||||
|
@ -200,13 +201,13 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
|
||||
bool use_gpu = false;
|
||||
|
||||
if (cc->Inputs().HasTag("TENSORS")) {
|
||||
cc->Inputs().Tag("TENSORS").Set<std::vector<TfLiteTensor>>();
|
||||
if (cc->Inputs().HasTag(kTensorsTag)) {
|
||||
cc->Inputs().Tag(kTensorsTag).Set<std::vector<TfLiteTensor>>();
|
||||
}
|
||||
|
||||
#if !defined(MEDIAPIPE_DISABLE_GPU) && !defined(__EMSCRIPTEN__)
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
cc->Inputs().Tag("TENSORS_GPU").Set<std::vector<GpuTensor>>();
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Set<std::vector<GpuTensor>>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -236,7 +237,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
CalculatorContext* cc) {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
gpu_input_ = true;
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
||||
|
@ -258,8 +259,8 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteTensorsToDetectionsCalculator::Process(
|
||||
CalculatorContext* cc) {
|
||||
if ((!gpu_input_ && cc->Inputs().Tag("TENSORS").IsEmpty()) ||
|
||||
(gpu_input_ && cc->Inputs().Tag("TENSORS_GPU").IsEmpty())) {
|
||||
if ((!gpu_input_ && cc->Inputs().Tag(kTensorsTag).IsEmpty()) ||
|
||||
(gpu_input_ && cc->Inputs().Tag(kTensorsGpuTag).IsEmpty())) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
|
@ -284,7 +285,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
::mediapipe::Status TfLiteTensorsToDetectionsCalculator::ProcessCPU(
|
||||
CalculatorContext* cc, std::vector<Detection>* output_detections) {
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS").Get<std::vector<TfLiteTensor>>();
|
||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<TfLiteTensor>>();
|
||||
|
||||
if (input_tensors.size() == 2 ||
|
||||
input_tensors.size() == kNumInputTensorsWithAnchors) {
|
||||
|
@ -402,7 +403,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
CalculatorContext* cc, std::vector<Detection>* output_detections) {
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS_GPU").Get<std::vector<GpuTensor>>();
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Get<std::vector<GpuTensor>>();
|
||||
RET_CHECK_GE(input_tensors.size(), 2);
|
||||
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this, &input_tensors, &cc,
|
||||
|
@ -466,7 +467,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToDetectionsCalculator);
|
|||
#elif defined(MEDIAPIPE_IOS)
|
||||
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS_GPU").Get<std::vector<GpuTensor>>();
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Get<std::vector<GpuTensor>>();
|
||||
RET_CHECK_GE(input_tensors.size(), 2);
|
||||
|
||||
// Copy inputs.
|
||||
|
|
|
@ -49,6 +49,16 @@ int NumGroups(const int size, const int group_size) { // NOLINT
|
|||
float Clamp(float val, float min, float max) {
|
||||
return std::min(std::max(val, min), max);
|
||||
}
|
||||
|
||||
constexpr char kTensorsTag[] = "TENSORS";
|
||||
constexpr char kTensorsGpuTag[] = "TENSORS_GPU";
|
||||
constexpr char kSizeImageTag[] = "REFERENCE_IMAGE";
|
||||
constexpr char kSizeImageGpuTag[] = "REFERENCE_IMAGE_GPU";
|
||||
constexpr char kMaskTag[] = "MASK";
|
||||
constexpr char kMaskGpuTag[] = "MASK_GPU";
|
||||
constexpr char kPrevMaskTag[] = "PREV_MASK";
|
||||
constexpr char kPrevMaskGpuTag[] = "PREV_MASK_GPU";
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace mediapipe {
|
||||
|
@ -148,39 +158,39 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
bool use_gpu = false;
|
||||
|
||||
// Inputs CPU.
|
||||
if (cc->Inputs().HasTag("TENSORS")) {
|
||||
cc->Inputs().Tag("TENSORS").Set<std::vector<TfLiteTensor>>();
|
||||
if (cc->Inputs().HasTag(kTensorsTag)) {
|
||||
cc->Inputs().Tag(kTensorsTag).Set<std::vector<TfLiteTensor>>();
|
||||
}
|
||||
if (cc->Inputs().HasTag("PREV_MASK")) {
|
||||
cc->Inputs().Tag("PREV_MASK").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kPrevMaskTag)) {
|
||||
cc->Inputs().Tag(kPrevMaskTag).Set<ImageFrame>();
|
||||
}
|
||||
if (cc->Inputs().HasTag("REFERENCE_IMAGE")) {
|
||||
cc->Inputs().Tag("REFERENCE_IMAGE").Set<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kSizeImageTag)) {
|
||||
cc->Inputs().Tag(kSizeImageTag).Set<ImageFrame>();
|
||||
}
|
||||
|
||||
// Inputs GPU.
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
cc->Inputs().Tag("TENSORS_GPU").Set<std::vector<GlBuffer>>();
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Set<std::vector<GlBuffer>>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
if (cc->Inputs().HasTag("PREV_MASK_GPU")) {
|
||||
cc->Inputs().Tag("PREV_MASK_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kPrevMaskGpuTag)) {
|
||||
cc->Inputs().Tag(kPrevMaskGpuTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
if (cc->Inputs().HasTag("REFERENCE_IMAGE_GPU")) {
|
||||
cc->Inputs().Tag("REFERENCE_IMAGE_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Inputs().HasTag(kSizeImageGpuTag)) {
|
||||
cc->Inputs().Tag(kSizeImageGpuTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
||||
// Outputs.
|
||||
if (cc->Outputs().HasTag("MASK")) {
|
||||
cc->Outputs().Tag("MASK").Set<ImageFrame>();
|
||||
if (cc->Outputs().HasTag(kMaskTag)) {
|
||||
cc->Outputs().Tag(kMaskTag).Set<ImageFrame>();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
if (cc->Outputs().HasTag("MASK_GPU")) {
|
||||
cc->Outputs().Tag("MASK_GPU").Set<mediapipe::GpuBuffer>();
|
||||
if (cc->Outputs().HasTag(kMaskGpuTag)) {
|
||||
cc->Outputs().Tag(kMaskGpuTag).Set<mediapipe::GpuBuffer>();
|
||||
use_gpu |= true;
|
||||
}
|
||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||
|
@ -197,7 +207,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
CalculatorContext* cc) {
|
||||
cc->SetOffset(TimestampDiff(0));
|
||||
|
||||
if (cc->Inputs().HasTag("TENSORS_GPU")) {
|
||||
if (cc->Inputs().HasTag(kTensorsGpuTag)) {
|
||||
use_gpu_ = true;
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
||||
|
@ -255,23 +265,22 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
|
||||
::mediapipe::Status TfLiteTensorsToSegmentationCalculator::ProcessCpu(
|
||||
CalculatorContext* cc) {
|
||||
if (cc->Inputs().Tag("TENSORS").IsEmpty()) {
|
||||
if (cc->Inputs().Tag(kTensorsTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
||||
// Get input streams.
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS").Get<std::vector<TfLiteTensor>>();
|
||||
const bool has_prev_mask = cc->Inputs().HasTag("PREV_MASK") &&
|
||||
!cc->Inputs().Tag("PREV_MASK").IsEmpty();
|
||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<TfLiteTensor>>();
|
||||
const bool has_prev_mask = cc->Inputs().HasTag(kPrevMaskTag) &&
|
||||
!cc->Inputs().Tag(kPrevMaskTag).IsEmpty();
|
||||
const ImageFrame placeholder;
|
||||
const auto& input_mask = has_prev_mask
|
||||
? cc->Inputs().Tag("PREV_MASK").Get<ImageFrame>()
|
||||
const auto& input_mask =
|
||||
has_prev_mask ? cc->Inputs().Tag(kPrevMaskTag).Get<ImageFrame>()
|
||||
: placeholder;
|
||||
int output_width = tensor_width_, output_height = tensor_height_;
|
||||
if (cc->Inputs().HasTag("REFERENCE_IMAGE")) {
|
||||
const auto& input_image =
|
||||
cc->Inputs().Tag("REFERENCE_IMAGE").Get<ImageFrame>();
|
||||
if (cc->Inputs().HasTag(kSizeImageTag)) {
|
||||
const auto& input_image = cc->Inputs().Tag(kSizeImageTag).Get<ImageFrame>();
|
||||
output_width = input_image.Width();
|
||||
output_height = input_image.Height();
|
||||
}
|
||||
|
@ -353,7 +362,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
ImageFormat::SRGBA, output_width, output_height);
|
||||
cv::Mat output_mat = formats::MatView(output_mask.get());
|
||||
large_mask_mat.copyTo(output_mat);
|
||||
cc->Outputs().Tag("MASK").Add(output_mask.release(), cc->InputTimestamp());
|
||||
cc->Outputs().Tag(kMaskTag).Add(output_mask.release(), cc->InputTimestamp());
|
||||
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
|
@ -364,23 +373,23 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
// 3. upsample small mask into output mask to be same size as input image
|
||||
::mediapipe::Status TfLiteTensorsToSegmentationCalculator::ProcessGpu(
|
||||
CalculatorContext* cc) {
|
||||
if (cc->Inputs().Tag("TENSORS_GPU").IsEmpty()) {
|
||||
if (cc->Inputs().Tag(kTensorsGpuTag).IsEmpty()) {
|
||||
return ::mediapipe::OkStatus();
|
||||
}
|
||||
#if !defined(MEDIAPIPE_DISABLE_GL_COMPUTE)
|
||||
// Get input streams.
|
||||
const auto& input_tensors =
|
||||
cc->Inputs().Tag("TENSORS_GPU").Get<std::vector<GlBuffer>>();
|
||||
const bool has_prev_mask = cc->Inputs().HasTag("PREV_MASK_GPU") &&
|
||||
!cc->Inputs().Tag("PREV_MASK_GPU").IsEmpty();
|
||||
cc->Inputs().Tag(kTensorsGpuTag).Get<std::vector<GlBuffer>>();
|
||||
const bool has_prev_mask = cc->Inputs().HasTag(kPrevMaskGpuTag) &&
|
||||
!cc->Inputs().Tag(kPrevMaskGpuTag).IsEmpty();
|
||||
const auto& input_mask =
|
||||
has_prev_mask
|
||||
? cc->Inputs().Tag("PREV_MASK_GPU").Get<mediapipe::GpuBuffer>()
|
||||
? cc->Inputs().Tag(kPrevMaskGpuTag).Get<mediapipe::GpuBuffer>()
|
||||
: mediapipe::GpuBuffer();
|
||||
int output_width = tensor_width_, output_height = tensor_height_;
|
||||
if (cc->Inputs().HasTag("REFERENCE_IMAGE_GPU")) {
|
||||
if (cc->Inputs().HasTag(kSizeImageGpuTag)) {
|
||||
const auto& input_image =
|
||||
cc->Inputs().Tag("REFERENCE_IMAGE_GPU").Get<mediapipe::GpuBuffer>();
|
||||
cc->Inputs().Tag(kSizeImageGpuTag).Get<mediapipe::GpuBuffer>();
|
||||
output_width = input_image.width();
|
||||
output_height = input_image.height();
|
||||
}
|
||||
|
@ -441,7 +450,7 @@ REGISTER_CALCULATOR(TfLiteTensorsToSegmentationCalculator);
|
|||
// Send out image as GPU packet.
|
||||
auto output_image = output_texture.GetFrame<mediapipe::GpuBuffer>();
|
||||
cc->Outputs()
|
||||
.Tag("MASK_GPU")
|
||||
.Tag(kMaskGpuTag)
|
||||
.Add(output_image.release(), cc->InputTimestamp());
|
||||
|
||||
// Cleanup
|
||||
|
|
|
@ -121,6 +121,14 @@ and model details are described in the
|
|||
|
||||
* [Android](./hair_segmentation_mobile_gpu.md)
|
||||
|
||||
### Template Matching using KNIFT with CPU
|
||||
|
||||
[Template Matching using KNIFT on Mobile](./template_matching_mobile_cpu.md)
|
||||
shows how to use MediaPipe with TFLite model for template matching using Knift
|
||||
on mobile using CPU.
|
||||
|
||||
* [Android](./template_matching_mobile_cpu.md)
|
||||
|
||||
## Desktop
|
||||
|
||||
### Hello World for C++
|
||||
|
@ -171,7 +179,6 @@ on desktop with webcam input.
|
|||
* [Desktop GPU](./face_mesh_desktop.md)
|
||||
* [Desktop CPU](./face_mesh_desktop.md)
|
||||
|
||||
|
||||
### Hand Tracking on Desktop with Webcam
|
||||
|
||||
[Hand Tracking on Desktop with Webcam](./hand_tracking_desktop.md) shows how to
|
||||
|
@ -198,7 +205,7 @@ GPU with live video from a webcam.
|
|||
|
||||
* [Desktop GPU](./hair_segmentation_desktop.md)
|
||||
|
||||
## Google Coral (machine learning acceleration with Google EdgeTPU)
|
||||
## Google Coral (ML acceleration with Google EdgeTPU)
|
||||
|
||||
Below are code samples on how to run MediaPipe on Google Coral Dev Board.
|
||||
|
||||
|
|
BIN
mediapipe/docs/images/mobile/template_matching_android_cpu.gif
Normal file
BIN
mediapipe/docs/images/mobile/template_matching_android_cpu.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.6 MiB |
Binary file not shown.
After Width: | Height: | Size: 1.1 MiB |
BIN
mediapipe/docs/images/mobile/template_matching_mobile_graph.png
Normal file
BIN
mediapipe/docs/images/mobile/template_matching_mobile_graph.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 37 KiB |
Binary file not shown.
After Width: | Height: | Size: 51 KiB |
31
mediapipe/docs/template_matching_desktop_cpu.md
Normal file
31
mediapipe/docs/template_matching_desktop_cpu.md
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Template Matching using KNIFT on Desktop
|
||||
|
||||
This doc focuses on the
|
||||
[example graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/template_matching/template_matching_desktop.pbtxt)
|
||||
that performs template matching with KNIFT (Keypoint Neural Invariant Feature
|
||||
Transform) on desktop CPU.
|
||||
|
||||
If you are interested in more detail about KNIFT or running the example on
|
||||
mobile, please see
|
||||
[Template Matching using KNIFT on Mobile (CPU)](template_matching_mobile_cpu.md).
|
||||
|
||||
To build the desktop app, run:
|
||||
|
||||
```bash
|
||||
$ bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \
|
||||
mediapipe/examples/desktop/template_matching:template_matching_tflite
|
||||
```
|
||||
|
||||
To run the desktop app, please specify a template index file
|
||||
([example](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_index.pb)) and a
|
||||
video to be matched. For how to build your own index file, please see
|
||||
[here](template_matching_mobile_cpu.md#build-index-file).
|
||||
|
||||
```bash
|
||||
$ GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/template_matching/template_matching_tflite \
|
||||
--calculator_graph_config_file=mediapipe/graphs/template_matching/template_matching_desktop.pbtxt --input_side_packets="input_video_path=<input video path>,output_video_path=<output video path>"
|
||||
```
|
||||
|
||||
## Graph
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/template_matching/template_matching_desktop.pbtxt)
|
94
mediapipe/docs/template_matching_mobile_cpu.md
Normal file
94
mediapipe/docs/template_matching_mobile_cpu.md
Normal file
|
@ -0,0 +1,94 @@
|
|||
# Template Matching using KNIFT on Mobile (CPU)
|
||||
|
||||
This doc focuses on the
|
||||
[example graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/template_matching/template_matching_mobile_cpu.pbtxt)
|
||||
that performs template matching with KNIFT (Keypoint Neural Invariant Feature
|
||||
Transform) on mobile CPU.
|
||||
|
||||
![template_matching_mobile_cpu.gif](images/mobile/template_matching_android_cpu.gif)
|
||||
|
||||
In the visualization above, the green dots represent detected keypoints on each
|
||||
frame and the red box represents the targets matched by templates using KNIFT
|
||||
features (see also [model card](https://mediapipe.page.link/knift-mc)). For more
|
||||
information, please see
|
||||
[Google Developers Blog](https://mediapipe.page.link/knift-blog).
|
||||
|
||||
## Build Index Files
|
||||
|
||||
In MediaPipe, we've already provided a file in
|
||||
[knift_index.pb](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_index.pb),
|
||||
pre-computed from the 3 template images (of USD bills) shown below. If you'd
|
||||
like to use your own template images, please follow the steps below, or
|
||||
otherwise you can jump directly to [Android](#android).
|
||||
|
||||
![template_matching_mobile_template.jpg](images/mobile/template_matching_mobile_template.jpg)
|
||||
|
||||
### Step 1:
|
||||
|
||||
Put all template images in a single directory.
|
||||
|
||||
### Step 2:
|
||||
|
||||
To build the index file for all templates in the directory, run:
|
||||
|
||||
```bash
|
||||
$ bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \
|
||||
mediapipe/examples/desktop/template_matching:template_matching_tflite
|
||||
$ bazel-bin/mediapipe/examples/desktop/template_matching/template_matching_tflite \
|
||||
--calculator_graph_config_file=mediapipe/graphs/template_matching/index_building.pbtxt \
|
||||
--input_side_packets="file_directory=<template image directory>,file_suffix='png',output_index_filename=<output index filename>"
|
||||
```
|
||||
|
||||
The output index file includes the extracted KNIFT features.
|
||||
|
||||
### Step 3:
|
||||
|
||||
Replace
|
||||
[mediapipe/models/knift_index.pb](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_index.pb)
|
||||
with the index file you generated, and update
|
||||
[mediapipe/models/knift_labelmap.txt](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_labelmap.txt)
|
||||
with your own template names.
|
||||
|
||||
## Android
|
||||
|
||||
[Source](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/templatematchingcpu)
|
||||
|
||||
A prebuilt arm64 APK can be
|
||||
[downloaded here](https://drive.google.com/open?id=1tSWRfes9rAM4NrzmJBplguNQQvaeBZSa).
|
||||
|
||||
To build and install the app yourself, run:
|
||||
|
||||
Note: MediaPipe uses OpenCV 3 by default. However, because of
|
||||
[issues](https://github.com/opencv/opencv/issues/11488) between NDK 17+ and
|
||||
OpenCV 3 when using
|
||||
[knnMatch](https://docs.opencv.org/3.4/db/d39/classcv_1_1DescriptorMatcher.html#a378f35c9b1a5dfa4022839a45cdf0e89),
|
||||
please use the following commands to temporarily switch to OpenCV 4 for the
|
||||
template matching exmaple on Android, and switch back to OpenCV 3 afterwards.
|
||||
|
||||
```bash
|
||||
# Switch to OpenCV 4
|
||||
sed -i -e 's:3.4.3/opencv-3.4.3:4.0.1/opencv-4.0.1:g' WORKSPACE
|
||||
sed -i -e 's:libopencv_java3:libopencv_java4:g' third_party/opencv_android.BUILD
|
||||
|
||||
# Build and install app
|
||||
bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/templatematchingcpu:templatematchingcpu
|
||||
adb install -r bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/templatematchingcpu/templatematchingcpu.apk
|
||||
|
||||
# Switch back to OpenCV 3
|
||||
sed -i -e 's:4.0.1/opencv-4.0.1:3.4.3/opencv-3.4.3:g' WORKSPACE
|
||||
sed -i -e 's:libopencv_java4:libopencv_java3:g' third_party/opencv_android.BUILD
|
||||
```
|
||||
|
||||
## Use XNNPACK Delegate
|
||||
|
||||
The example uses XNNPACK delegate by default. Users can change the
|
||||
[option in TfLiteInferenceCalculator](https://github.com/google/mediapipe/tree/master/mediapipe/calculators/tflite/tflite_inference_calculator.proto)
|
||||
to use default TF Lite inference.
|
||||
|
||||
## Graph
|
||||
|
||||
### Main Graph
|
||||
|
||||
![template_matching_mobile_graph](images/mobile/template_matching_mobile_graph.png)
|
||||
|
||||
[Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/template_matching/template_matching_mobile_cpu.pbtxt)
|
|
@ -0,0 +1,33 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="com.google.mediapipe.apps.templatematchingcpu">
|
||||
|
||||
<uses-sdk
|
||||
android:minSdkVersion="21"
|
||||
android:targetSdkVersion="27" />
|
||||
|
||||
<!-- For using the camera -->
|
||||
<uses-permission android:name="android.permission.CAMERA" />
|
||||
<uses-feature android:name="android.hardware.camera" />
|
||||
<uses-feature android:name="android.hardware.camera.autofocus" />
|
||||
<!-- For MediaPipe -->
|
||||
<uses-feature android:glEsVersion="0x00020000" android:required="true" />
|
||||
|
||||
|
||||
<application
|
||||
android:allowBackup="true"
|
||||
android:label="@string/app_name"
|
||||
android:supportsRtl="true"
|
||||
android:theme="@style/AppTheme">
|
||||
<activity
|
||||
android:name=".MainActivity"
|
||||
android:exported="true"
|
||||
android:screenOrientation="portrait">
|
||||
<intent-filter>
|
||||
<action android:name="android.intent.action.MAIN" />
|
||||
<category android:name="android.intent.category.LAUNCHER" />
|
||||
</intent-filter>
|
||||
</activity>
|
||||
</application>
|
||||
|
||||
</manifest>
|
|
@ -0,0 +1,82 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:private"])
|
||||
|
||||
cc_binary(
|
||||
name = "libmediapipe_jni.so",
|
||||
linkshared = 1,
|
||||
linkstatic = 1,
|
||||
deps = [
|
||||
"//mediapipe/graphs/template_matching:mobile_calculators",
|
||||
"//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "mediapipe_jni_lib",
|
||||
srcs = [":libmediapipe_jni.so"],
|
||||
alwayslink = 1,
|
||||
)
|
||||
|
||||
# Maps the binary graph to an alias (e.g., the app name) for convenience so that the alias can be
|
||||
# easily incorporated into the app via, for example,
|
||||
# MainActivity.BINARY_GRAPH_NAME = "appname.binarypb".
|
||||
genrule(
|
||||
name = "binary_graph",
|
||||
srcs = ["//mediapipe/graphs/template_matching:mobile_cpu_binary_graph"],
|
||||
outs = ["templatematching.binarypb"],
|
||||
cmd = "cp $< $@",
|
||||
)
|
||||
|
||||
android_library(
|
||||
name = "mediapipe_lib",
|
||||
srcs = glob(["*.java"]),
|
||||
assets = [
|
||||
":binary_graph",
|
||||
"//mediapipe/models:knift_index.pb",
|
||||
"//mediapipe/models:knift_float.tflite",
|
||||
"//mediapipe/models:knift_labelmap.txt",
|
||||
],
|
||||
assets_dir = "",
|
||||
manifest = "AndroidManifest.xml",
|
||||
resource_files = glob(["res/**"]),
|
||||
deps = [
|
||||
":mediapipe_jni_lib",
|
||||
"//mediapipe/java/com/google/mediapipe/components:android_camerax_helper",
|
||||
"//mediapipe/java/com/google/mediapipe/components:android_components",
|
||||
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
|
||||
"//mediapipe/java/com/google/mediapipe/glutil",
|
||||
"//third_party:androidx_appcompat",
|
||||
"//third_party:androidx_constraint_layout",
|
||||
"//third_party:androidx_legacy_support_v4",
|
||||
"//third_party:androidx_recyclerview",
|
||||
"//third_party:opencv",
|
||||
"@maven//:androidx_concurrent_concurrent_futures",
|
||||
"@maven//:androidx_lifecycle_lifecycle_common",
|
||||
"@maven//:com_google_guava_guava",
|
||||
],
|
||||
)
|
||||
|
||||
android_binary(
|
||||
name = "templatematchingcpu",
|
||||
manifest = "AndroidManifest.xml",
|
||||
manifest_values = {"applicationId": "com.google.mediapipe.apps.templatematchingcpu"},
|
||||
multidex = "native",
|
||||
deps = [
|
||||
":mediapipe_lib",
|
||||
],
|
||||
)
|
|
@ -0,0 +1,170 @@
|
|||
// Copyright 2019 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package com.google.mediapipe.apps.templatematchingcpu;
|
||||
|
||||
import android.graphics.SurfaceTexture;
|
||||
import android.os.Bundle;
|
||||
import androidx.appcompat.app.AppCompatActivity;
|
||||
import android.util.Size;
|
||||
import android.view.SurfaceHolder;
|
||||
import android.view.SurfaceView;
|
||||
import android.view.View;
|
||||
import android.view.ViewGroup;
|
||||
import com.google.mediapipe.components.CameraHelper;
|
||||
import com.google.mediapipe.components.CameraXPreviewHelper;
|
||||
import com.google.mediapipe.components.ExternalTextureConverter;
|
||||
import com.google.mediapipe.components.FrameProcessor;
|
||||
import com.google.mediapipe.components.PermissionHelper;
|
||||
import com.google.mediapipe.framework.AndroidAssetUtil;
|
||||
import com.google.mediapipe.glutil.EglManager;
|
||||
|
||||
/** Main activity of MediaPipe example apps. */
|
||||
public class MainActivity extends AppCompatActivity {
|
||||
private static final String TAG = "MainActivity";
|
||||
|
||||
private static final String BINARY_GRAPH_NAME = "templatematching.binarypb";
|
||||
private static final String INPUT_VIDEO_STREAM_NAME = "input_video";
|
||||
private static final String OUTPUT_VIDEO_STREAM_NAME = "output_video";
|
||||
private static final CameraHelper.CameraFacing CAMERA_FACING = CameraHelper.CameraFacing.BACK;
|
||||
|
||||
// Flips the camera-preview frames vertically before sending them into FrameProcessor to be
|
||||
// processed in a MediaPipe graph, and flips the processed frames back when they are displayed.
|
||||
// This is needed because OpenGL represents images assuming the image origin is at the bottom-left
|
||||
// corner, whereas MediaPipe in general assumes the image origin is at top-left.
|
||||
private static final boolean FLIP_FRAMES_VERTICALLY = true;
|
||||
|
||||
static {
|
||||
// Load all native libraries needed by the app.
|
||||
System.loadLibrary("mediapipe_jni");
|
||||
System.loadLibrary("opencv_java4");
|
||||
}
|
||||
|
||||
// {@link SurfaceTexture} where the camera-preview frames can be accessed.
|
||||
private SurfaceTexture previewFrameTexture;
|
||||
// {@link SurfaceView} that displays the camera-preview frames processed by a MediaPipe graph.
|
||||
private SurfaceView previewDisplayView;
|
||||
|
||||
// Creates and manages an {@link EGLContext}.
|
||||
private EglManager eglManager;
|
||||
// Sends camera-preview frames into a MediaPipe graph for processing, and displays the processed
|
||||
// frames onto a {@link Surface}.
|
||||
private FrameProcessor processor;
|
||||
// Converts the GL_TEXTURE_EXTERNAL_OES texture from Android camera into a regular texture to be
|
||||
// consumed by {@link FrameProcessor} and the underlying MediaPipe graph.
|
||||
private ExternalTextureConverter converter;
|
||||
|
||||
// Handles camera access via the {@link CameraX} Jetpack support library.
|
||||
private CameraXPreviewHelper cameraHelper;
|
||||
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_main);
|
||||
|
||||
previewDisplayView = new SurfaceView(this);
|
||||
setupPreviewDisplayView();
|
||||
|
||||
// Initialize asset manager so that MediaPipe native libraries can access the app assets, e.g.,
|
||||
// binary graphs.
|
||||
AndroidAssetUtil.initializeNativeAssetManager(this);
|
||||
|
||||
eglManager = new EglManager(null);
|
||||
processor =
|
||||
new FrameProcessor(
|
||||
this,
|
||||
eglManager.getNativeContext(),
|
||||
BINARY_GRAPH_NAME,
|
||||
INPUT_VIDEO_STREAM_NAME,
|
||||
OUTPUT_VIDEO_STREAM_NAME);
|
||||
processor.getVideoSurfaceOutput().setFlipY(FLIP_FRAMES_VERTICALLY);
|
||||
|
||||
PermissionHelper.checkAndRequestCameraPermissions(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void onResume() {
|
||||
super.onResume();
|
||||
converter = new ExternalTextureConverter(eglManager.getContext());
|
||||
converter.setFlipY(FLIP_FRAMES_VERTICALLY);
|
||||
converter.setConsumer(processor);
|
||||
if (PermissionHelper.cameraPermissionsGranted(this)) {
|
||||
startCamera();
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void onPause() {
|
||||
super.onPause();
|
||||
converter.close();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onRequestPermissionsResult(
|
||||
int requestCode, String[] permissions, int[] grantResults) {
|
||||
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
|
||||
PermissionHelper.onRequestPermissionsResult(requestCode, permissions, grantResults);
|
||||
}
|
||||
|
||||
private void setupPreviewDisplayView() {
|
||||
previewDisplayView.setVisibility(View.GONE);
|
||||
ViewGroup viewGroup = findViewById(R.id.preview_display_layout);
|
||||
viewGroup.addView(previewDisplayView);
|
||||
|
||||
previewDisplayView
|
||||
.getHolder()
|
||||
.addCallback(
|
||||
new SurfaceHolder.Callback() {
|
||||
@Override
|
||||
public void surfaceCreated(SurfaceHolder holder) {
|
||||
processor.getVideoSurfaceOutput().setSurface(holder.getSurface());
|
||||
}
|
||||
|
||||
@Override
|
||||
public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
|
||||
// (Re-)Compute the ideal size of the camera-preview display (the area that the
|
||||
// camera-preview frames get rendered onto, potentially with scaling and rotation)
|
||||
// based on the size of the SurfaceView that contains the display.
|
||||
Size viewSize = new Size(width, height);
|
||||
Size displaySize = cameraHelper.computeDisplaySizeFromViewSize(viewSize);
|
||||
boolean isCameraRotated = cameraHelper.isCameraRotated();
|
||||
|
||||
// Connect the converter to the camera-preview frames as its input (via
|
||||
// previewFrameTexture), and configure the output width and height as the computed
|
||||
// display size.
|
||||
converter.setSurfaceTextureAndAttachToGLContext(
|
||||
previewFrameTexture,
|
||||
isCameraRotated ? displaySize.getHeight() : displaySize.getWidth(),
|
||||
isCameraRotated ? displaySize.getWidth() : displaySize.getHeight());
|
||||
}
|
||||
|
||||
@Override
|
||||
public void surfaceDestroyed(SurfaceHolder holder) {
|
||||
processor.getVideoSurfaceOutput().setSurface(null);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
private void startCamera() {
|
||||
cameraHelper = new CameraXPreviewHelper();
|
||||
cameraHelper.setOnCameraStartedListener(
|
||||
surfaceTexture -> {
|
||||
previewFrameTexture = surfaceTexture;
|
||||
// Make the display view visible to start showing the preview. This triggers the
|
||||
// SurfaceHolder.Callback added to (the holder of) previewDisplayView.
|
||||
previewDisplayView.setVisibility(View.VISIBLE);
|
||||
});
|
||||
cameraHelper.startCamera(this, CAMERA_FACING, /*surfaceTexture=*/ null);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:app="http://schemas.android.com/apk/res-auto"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent">
|
||||
|
||||
<FrameLayout
|
||||
android:id="@+id/preview_display_layout"
|
||||
android:layout_width="fill_parent"
|
||||
android:layout_height="fill_parent"
|
||||
android:layout_weight="1">
|
||||
<TextView
|
||||
android:id="@+id/no_camera_access_view"
|
||||
android:layout_height="fill_parent"
|
||||
android:layout_width="fill_parent"
|
||||
android:gravity="center"
|
||||
android:text="@string/no_camera_access" />
|
||||
</FrameLayout>
|
||||
</androidx.constraintlayout.widget.ConstraintLayout>
|
|
@ -0,0 +1,6 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="colorPrimary">#008577</color>
|
||||
<color name="colorPrimaryDark">#00574B</color>
|
||||
<color name="colorAccent">#D81B60</color>
|
||||
</resources>
|
|
@ -0,0 +1,4 @@
|
|||
<resources>
|
||||
<string name="app_name" translatable="false">Template Matching CPU</string>
|
||||
<string name="no_camera_access" translatable="false">Please grant camera permissions.</string>
|
||||
</resources>
|
|
@ -0,0 +1,11 @@
|
|||
<resources>
|
||||
|
||||
<!-- Base application theme. -->
|
||||
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
|
||||
<!-- Customize your theme here. -->
|
||||
<item name="colorPrimary">@color/colorPrimary</item>
|
||||
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
|
||||
<item name="colorAccent">@color/colorAccent</item>
|
||||
</style>
|
||||
|
||||
</resources>
|
25
mediapipe/examples/desktop/template_matching/BUILD
Normal file
25
mediapipe/examples/desktop/template_matching/BUILD
Normal file
|
@ -0,0 +1,25 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//mediapipe/examples:__subpackages__"])
|
||||
|
||||
cc_binary(
|
||||
name = "template_matching_tflite",
|
||||
deps = [
|
||||
"//mediapipe/examples/desktop:simple_run_graph_main",
|
||||
"//mediapipe/graphs/template_matching:desktop_calculators",
|
||||
],
|
||||
)
|
|
@ -320,7 +320,7 @@ CalculatorGraph::~CalculatorGraph() {
|
|||
}
|
||||
|
||||
if (!::mediapipe::ContainsKey(executors_, "")) {
|
||||
MP_RETURN_IF_ERROR(InitializeDefaultExecutor(*default_executor_options,
|
||||
MP_RETURN_IF_ERROR(InitializeDefaultExecutor(default_executor_options,
|
||||
use_application_thread));
|
||||
}
|
||||
|
||||
|
@ -328,7 +328,7 @@ CalculatorGraph::~CalculatorGraph() {
|
|||
}
|
||||
|
||||
::mediapipe::Status CalculatorGraph::InitializeDefaultExecutor(
|
||||
const ThreadPoolExecutorOptions& default_executor_options,
|
||||
const ThreadPoolExecutorOptions* default_executor_options,
|
||||
bool use_application_thread) {
|
||||
// If specified, run synchronously on the calling thread.
|
||||
if (use_application_thread) {
|
||||
|
@ -341,7 +341,9 @@ CalculatorGraph::~CalculatorGraph() {
|
|||
}
|
||||
|
||||
// Check the number of threads specified in the proto.
|
||||
int num_threads = default_executor_options.num_threads();
|
||||
int num_threads = default_executor_options == nullptr
|
||||
? 0
|
||||
: default_executor_options->num_threads();
|
||||
|
||||
// If the default (0 or -1) was specified, pick a suitable number of threads
|
||||
// depending on the number of processors in this system and the number of
|
||||
|
@ -1215,12 +1217,14 @@ Packet CalculatorGraph::GetServicePacket(const GraphServiceBase& service) {
|
|||
}
|
||||
|
||||
::mediapipe::Status CalculatorGraph::CreateDefaultThreadPool(
|
||||
const ThreadPoolExecutorOptions& default_executor_options,
|
||||
const ThreadPoolExecutorOptions* default_executor_options,
|
||||
int num_threads) {
|
||||
MediaPipeOptions extendable_options;
|
||||
ThreadPoolExecutorOptions* options =
|
||||
extendable_options.MutableExtension(ThreadPoolExecutorOptions::ext);
|
||||
*options = default_executor_options;
|
||||
if (default_executor_options != nullptr) {
|
||||
options->CopyFrom(*default_executor_options);
|
||||
}
|
||||
options->set_num_threads(num_threads);
|
||||
// clang-format off
|
||||
ASSIGN_OR_RETURN(Executor* executor,
|
||||
|
|
|
@ -461,13 +461,13 @@ class CalculatorGraph {
|
|||
//
|
||||
// Only called by InitializeExecutors().
|
||||
::mediapipe::Status InitializeDefaultExecutor(
|
||||
const ThreadPoolExecutorOptions& default_executor_options,
|
||||
const ThreadPoolExecutorOptions* default_executor_options,
|
||||
bool use_application_thread);
|
||||
|
||||
// Creates a thread pool as the default executor. The num_threads argument
|
||||
// overrides the num_threads field in default_executor_options.
|
||||
::mediapipe::Status CreateDefaultThreadPool(
|
||||
const ThreadPoolExecutorOptions& default_executor_options,
|
||||
const ThreadPoolExecutorOptions* default_executor_options,
|
||||
int num_threads);
|
||||
|
||||
// Returns true if |name| is a reserved executor name.
|
||||
|
|
|
@ -274,6 +274,11 @@ bool GlContext::HasGlExtension(absl::string_view extension) const {
|
|||
}
|
||||
|
||||
return Run([this]() -> ::mediapipe::Status {
|
||||
// Clear any GL errors at this point: as this is a fresh context
|
||||
// there shouldn't be any, but if we adopted an existing context (e.g. in
|
||||
// some Emscripten cases), there might be some existing tripped error.
|
||||
ForceClearExistingGlErrors();
|
||||
|
||||
absl::string_view version_string(
|
||||
reinterpret_cast<const char*>(glGetString(GL_VERSION)));
|
||||
|
||||
|
@ -769,10 +774,18 @@ bool GlContext::SyncTokenIsReady(const std::shared_ptr<GlSyncPoint>& token) {
|
|||
return token->IsReady();
|
||||
}
|
||||
|
||||
bool GlContext::CheckForGlErrors() {
|
||||
void GlContext::ForceClearExistingGlErrors() {
|
||||
LogUncheckedGlErrors(CheckForGlErrors(/*force=*/true));
|
||||
}
|
||||
|
||||
bool GlContext::CheckForGlErrors() { return CheckForGlErrors(false); }
|
||||
|
||||
bool GlContext::CheckForGlErrors(bool force) {
|
||||
#if UNSAFE_EMSCRIPTEN_SKIP_GL_ERROR_HANDLING
|
||||
if (!force) {
|
||||
LOG_FIRST_N(WARNING, 1) << "MediaPipe OpenGL error checking is disabled";
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!HasContext()) return false;
|
||||
|
|
|
@ -348,7 +348,20 @@ class GlContext : public std::enable_shared_from_this<GlContext> {
|
|||
void DestroyContext();
|
||||
|
||||
bool HasContext() const;
|
||||
|
||||
// This function clears out any tripped gl Errors and just logs them. This
|
||||
// is used by code that needs to check glGetError() to know if it succeeded,
|
||||
// but can't rely on the existing state to be 'clean'.
|
||||
void ForceClearExistingGlErrors();
|
||||
|
||||
// Returns true if there were any GL errors. Note that this may be a no-op
|
||||
// for performance reasons in some contexts (specifically Emscripten opt).
|
||||
bool CheckForGlErrors();
|
||||
|
||||
// Same as `CheckForGLErrors()` but with the option of forcing the check
|
||||
// even if we would otherwise skip for performance reasons.
|
||||
bool CheckForGlErrors(bool force);
|
||||
|
||||
void LogUncheckedGlErrors(bool had_gl_errors);
|
||||
::mediapipe::Status GetGlExtensions();
|
||||
::mediapipe::Status GetGlExtensionsCompat();
|
||||
|
|
|
@ -36,9 +36,9 @@ namespace mediapipe {
|
|||
// - GlRender(), which is called for each frame.
|
||||
// - A destructor, to destroy the objects created in GlSetup.
|
||||
// Note that when GlSetup and GlRender are called, the GL context has already
|
||||
// been set, but in the destructor it has not. The destructor should have a
|
||||
// local variable set to ContextAutoSetter() to make sure it is doing the
|
||||
// destruction in the right GL context.
|
||||
// been set, but in the destructor it has not. The destructor should use the
|
||||
// RunInGlContext() helper to make sure it is doing the destruction in the right
|
||||
// GL context.
|
||||
//
|
||||
// Additionally, you can define a GlBind() method, which will be called to
|
||||
// enable shader programs, bind any additional textures you may need, etc.
|
||||
|
|
|
@ -87,11 +87,10 @@ bool GlTextureBuffer::CreateInternal(const void* data) {
|
|||
}
|
||||
|
||||
void GlTextureBuffer::Reuse() {
|
||||
WaitForConsumersOnGpu();
|
||||
// TODO: should we just do this inside WaitForConsumersOnGpu?
|
||||
// if we do that, WaitForConsumersOnGpu can be called only once.
|
||||
absl::MutexLock lock(&consumer_sync_mutex_);
|
||||
consumer_multi_sync_->WaitOnGpu();
|
||||
// Reset the sync points.
|
||||
consumer_multi_sync_ = absl::make_unique<GlMultiSyncPoint>();
|
||||
// Reset the token.
|
||||
producer_sync_ = nullptr;
|
||||
}
|
||||
|
||||
|
@ -102,11 +101,15 @@ void GlTextureBuffer::Updated(std::shared_ptr<GlSyncPoint> prod_token) {
|
|||
}
|
||||
|
||||
void GlTextureBuffer::DidRead(std::shared_ptr<GlSyncPoint> cons_token) {
|
||||
absl::MutexLock lock(&consumer_sync_mutex_);
|
||||
consumer_multi_sync_->Add(std::move(cons_token));
|
||||
}
|
||||
|
||||
GlTextureBuffer::~GlTextureBuffer() {
|
||||
if (deletion_callback_) {
|
||||
// Note: at this point there are no more consumers that could be added
|
||||
// to the consumer_multi_sync_, so it no longer needs to be protected
|
||||
// by out mutex when we hand it to the deletion callback.
|
||||
deletion_callback_(std::move(consumer_multi_sync_));
|
||||
}
|
||||
}
|
||||
|
@ -129,10 +132,17 @@ void GlTextureBuffer::WaitOnGpu() {
|
|||
}
|
||||
}
|
||||
|
||||
void GlTextureBuffer::WaitForConsumers() { consumer_multi_sync_->Wait(); }
|
||||
void GlTextureBuffer::WaitForConsumers() {
|
||||
absl::MutexLock lock(&consumer_sync_mutex_);
|
||||
consumer_multi_sync_->Wait();
|
||||
}
|
||||
|
||||
void GlTextureBuffer::WaitForConsumersOnGpu() {
|
||||
absl::MutexLock lock(&consumer_sync_mutex_);
|
||||
consumer_multi_sync_->WaitOnGpu();
|
||||
// TODO: should we clear the consumer_multi_sync_ here?
|
||||
// It would mean that WaitForConsumersOnGpu can be called only once, or more
|
||||
// precisely, on only one GL context.
|
||||
}
|
||||
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -121,15 +121,16 @@ class GlTextureBuffer {
|
|||
friend class GlCalculatorHelperImpl;
|
||||
|
||||
GLuint name_ = 0;
|
||||
int width_ = 0;
|
||||
int height_ = 0;
|
||||
GpuBufferFormat format_ = GpuBufferFormat::kUnknown;
|
||||
GLenum target_ = GL_TEXTURE_2D;
|
||||
const int width_ = 0;
|
||||
const int height_ = 0;
|
||||
const GpuBufferFormat format_ = GpuBufferFormat::kUnknown;
|
||||
const GLenum target_ = GL_TEXTURE_2D;
|
||||
// Token tracking changes to this texture. Used by WaitUntilComplete.
|
||||
std::shared_ptr<GlSyncPoint> producer_sync_;
|
||||
absl::Mutex consumer_sync_mutex_;
|
||||
// Tokens tracking the point when consumers finished using this texture.
|
||||
std::unique_ptr<GlMultiSyncPoint> consumer_multi_sync_ =
|
||||
absl::make_unique<GlMultiSyncPoint>();
|
||||
std::unique_ptr<GlMultiSyncPoint> consumer_multi_sync_ ABSL_GUARDED_BY(
|
||||
consumer_sync_mutex_) = absl::make_unique<GlMultiSyncPoint>();
|
||||
DeletionCallback deletion_callback_;
|
||||
};
|
||||
|
||||
|
|
67
mediapipe/graphs/template_matching/BUILD
Normal file
67
mediapipe/graphs/template_matching/BUILD
Normal file
|
@ -0,0 +1,67 @@
|
|||
# Copyright 2019 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
load(
|
||||
"//mediapipe/framework/tool:mediapipe_graph.bzl",
|
||||
"mediapipe_binary_graph",
|
||||
)
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
cc_library(
|
||||
name = "template_matching_deps",
|
||||
deps = [
|
||||
"//mediapipe/calculators/image:feature_detector_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||
"//mediapipe/calculators/tflite:tflite_converter_calculator",
|
||||
"//mediapipe/calculators/tflite:tflite_inference_calculator",
|
||||
"//mediapipe/calculators/tflite:tflite_tensors_to_floats_calculator",
|
||||
"//mediapipe/calculators/util:annotation_overlay_calculator",
|
||||
"//mediapipe/calculators/util:landmarks_to_render_data_calculator",
|
||||
"//mediapipe/calculators/util:timed_box_list_id_to_label_calculator",
|
||||
"//mediapipe/calculators/util:timed_box_list_to_render_data_calculator",
|
||||
"//mediapipe/calculators/video:box_detector_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "desktop_calculators",
|
||||
deps = [
|
||||
":template_matching_deps",
|
||||
"//mediapipe/calculators/image:opencv_encoded_image_to_image_frame_calculator",
|
||||
"//mediapipe/calculators/util:local_file_pattern_contents_calculator",
|
||||
"//mediapipe/calculators/video:opencv_video_decoder_calculator",
|
||||
"//mediapipe/calculators/video:opencv_video_encoder_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "mobile_calculators",
|
||||
deps = [
|
||||
":template_matching_deps",
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
mediapipe_binary_graph(
|
||||
name = "mobile_cpu_binary_graph",
|
||||
graph = "template_matching_mobile_cpu.pbtxt",
|
||||
output_name = "mobile_cpu.binarypb",
|
||||
deps = [":mobile_calculators"],
|
||||
)
|
79
mediapipe/graphs/template_matching/index_building.pbtxt
Normal file
79
mediapipe/graphs/template_matching/index_building.pbtxt
Normal file
|
@ -0,0 +1,79 @@
|
|||
# MediaPipe graph that build feature descriptors index for specific target.
|
||||
|
||||
# max_queue_size limits the number of packets enqueued on any input stream
|
||||
# by throttling inputs to the graph. This makes the graph only process one
|
||||
# frame per time.
|
||||
max_queue_size: 1
|
||||
|
||||
# Decodes an input video file into images and a video header.
|
||||
node {
|
||||
calculator: "LocalFilePatternContentsCalculator"
|
||||
input_side_packet: "FILE_DIRECTORY:file_directory"
|
||||
input_side_packet: "FILE_SUFFIX:file_suffix"
|
||||
output_stream: "CONTENTS:encoded_image"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "OpenCvEncodedImageToImageFrameCalculator"
|
||||
input_stream: "encoded_image"
|
||||
output_stream: "image_frame"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:image_frame"
|
||||
output_stream: "SIZE:input_video_size"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "FeatureDetectorCalculator"
|
||||
input_stream: "IMAGE:image_frame"
|
||||
output_stream: "FEATURES:features"
|
||||
output_stream: "LANDMARKS:landmarks"
|
||||
output_stream: "PATCHES:patches"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.FeatureDetectorCalculatorOptions] {
|
||||
max_features: 400
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# input tensors: 200*32*32*1 float
|
||||
# output tensors: 200*40 float, only first keypoint.size()*40 is knift features,
|
||||
# rest is padded by zero.
|
||||
node {
|
||||
calculator: "TfLiteInferenceCalculator"
|
||||
input_stream: "TENSORS:patches"
|
||||
output_stream: "TENSORS:knift_feature_tensors"
|
||||
input_stream_handler {
|
||||
input_stream_handler: "DefaultInputStreamHandler"
|
||||
}
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
||||
model_path: "mediapipe/models/knift_float_400.tflite"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TfLiteTensorsToFloatsCalculator"
|
||||
input_stream: "TENSORS:knift_feature_tensors"
|
||||
output_stream: "FLOATS:knift_feature_floats"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "BoxDetectorCalculator"
|
||||
input_side_packet: "OUTPUT_INDEX_FILENAME:output_index_filename"
|
||||
input_stream: "FEATURES:features"
|
||||
input_stream: "IMAGE_SIZE:input_video_size"
|
||||
input_stream: "DESCRIPTORS:knift_feature_floats"
|
||||
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] {
|
||||
detector_options {
|
||||
index_type: OPENCV_BF
|
||||
detect_every_n_frame: 1
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,128 @@
|
|||
# MediaPipe graph that performs object detection on desktop with TensorFlow Lite
|
||||
# on CPU.
|
||||
# Used in the example in
|
||||
# mediapipe/examples/desktop/template_matching:template_matching_tflite
|
||||
|
||||
# max_queue_size limits the number of packets enqueued on any input stream
|
||||
# by throttling inputs to the graph. This makes the graph only process one
|
||||
# frame per time.
|
||||
max_queue_size: 1
|
||||
|
||||
# Decodes an input video file into images and a video header.
|
||||
node {
|
||||
calculator: "OpenCvVideoDecoderCalculator"
|
||||
input_side_packet: "INPUT_FILE_PATH:input_video_path"
|
||||
output_stream: "VIDEO:input_video"
|
||||
output_stream: "VIDEO_PRESTREAM:input_video_header"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:input_video"
|
||||
output_stream: "SIZE:input_video_size"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "FeatureDetectorCalculator"
|
||||
input_stream: "IMAGE:input_video"
|
||||
output_stream: "FEATURES:features"
|
||||
output_stream: "LANDMARKS:landmarks"
|
||||
output_stream: "PATCHES:patches"
|
||||
}
|
||||
|
||||
# input tensors: 200*32*32*1 float
|
||||
# output tensors: 200*40 float, only first keypoint.size()*40 is knift features,
|
||||
# rest is padded by zero.
|
||||
node {
|
||||
calculator: "TfLiteInferenceCalculator"
|
||||
input_stream: "TENSORS:patches"
|
||||
output_stream: "TENSORS:knift_feature_tensors"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
||||
model_path: "mediapipe/models/knift_float.tflite"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TfLiteTensorsToFloatsCalculator"
|
||||
input_stream: "TENSORS:knift_feature_tensors"
|
||||
output_stream: "FLOATS:knift_feature_floats"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "BoxDetectorCalculator"
|
||||
input_stream: "FEATURES:features"
|
||||
input_stream: "IMAGE_SIZE:input_video_size"
|
||||
input_stream: "DESCRIPTORS:knift_feature_floats"
|
||||
output_stream: "BOXES:detections"
|
||||
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] {
|
||||
detector_options {
|
||||
index_type: OPENCV_BF
|
||||
detect_every_n_frame: 1
|
||||
}
|
||||
index_proto_filename: "mediapipe/models/knift_index.pb"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TimedBoxListIdToLabelCalculator"
|
||||
input_stream: "detections"
|
||||
output_stream: "labeled_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TimedBoxListIdToLabelCalculatorOptions] {
|
||||
label_map_path: "mediapipe/models/knift_labelmap.txt"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TimedBoxListToRenderDataCalculator"
|
||||
input_stream: "BOX_LIST:labeled_detections"
|
||||
output_stream: "RENDER_DATA:box_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TimedBoxListToRenderDataCalculatorOptions] {
|
||||
box_color { r: 255 g: 0 b: 0 }
|
||||
thickness: 5.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "LandmarksToRenderDataCalculator"
|
||||
input_stream: "NORM_LANDMARKS:landmarks"
|
||||
output_stream: "RENDER_DATA:landmarks_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
|
||||
landmark_color { r: 0 g: 255 b: 0 }
|
||||
thickness: 2.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Draws annotations and overlays them on top of the input images.
|
||||
node {
|
||||
calculator: "AnnotationOverlayCalculator"
|
||||
input_stream: "IMAGE:input_video"
|
||||
input_stream: "box_render_data"
|
||||
input_stream: "landmarks_render_data"
|
||||
output_stream: "IMAGE:output_video"
|
||||
}
|
||||
|
||||
# Encodes the annotated images into a video file, adopting properties specified
|
||||
# in the input video header, e.g., video framerate.
|
||||
node {
|
||||
calculator: "OpenCvVideoEncoderCalculator"
|
||||
input_stream: "VIDEO:output_video"
|
||||
input_stream: "VIDEO_PRESTREAM:input_video_header"
|
||||
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
|
||||
codec: "avc1"
|
||||
video_format: "mp4"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,136 @@
|
|||
# MediaPipe graph that performs template matching with TensorFlow Lite on CPU.
|
||||
# Used in the examples in
|
||||
# mediapipe/examples/android/src/java/com/mediapipe/apps/templatematchingcpu
|
||||
|
||||
# Images on GPU coming into and out of the graph.
|
||||
input_stream: "input_video"
|
||||
output_stream: "output_video"
|
||||
|
||||
# Throttles the images flowing downstream for flow control.
|
||||
node {
|
||||
calculator: "FlowLimiterCalculator"
|
||||
input_stream: "input_video"
|
||||
input_stream: "FINISHED:detections"
|
||||
input_stream_info: {
|
||||
tag_index: "FINISHED"
|
||||
back_edge: true
|
||||
}
|
||||
output_stream: "throttled_input_video"
|
||||
}
|
||||
|
||||
# Transfers the input image from GPU to CPU memory.
|
||||
node: {
|
||||
calculator: "GpuBufferToImageFrameCalculator"
|
||||
input_stream: "throttled_input_video"
|
||||
output_stream: "input_video_cpu"
|
||||
}
|
||||
|
||||
# Transforms the input image on CPU to a 480x640 image.
|
||||
node: {
|
||||
calculator: "ImageTransformationCalculator"
|
||||
input_stream: "IMAGE:input_video_cpu"
|
||||
output_stream: "IMAGE:transformed_input_video_cpu"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||
output_width: 480
|
||||
output_height: 640
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:transformed_input_video_cpu"
|
||||
output_stream: "SIZE:input_video_size"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "FeatureDetectorCalculator"
|
||||
input_stream: "IMAGE:transformed_input_video_cpu"
|
||||
output_stream: "FEATURES:features"
|
||||
output_stream: "LANDMARKS:landmarks"
|
||||
output_stream: "PATCHES:patches"
|
||||
}
|
||||
|
||||
# input tensors: 200*32*32*1 float
|
||||
# output tensors: 200*40 float, only first keypoint.size()*40 is knift features,
|
||||
# rest is padded by zero.
|
||||
node {
|
||||
calculator: "TfLiteInferenceCalculator"
|
||||
input_stream: "TENSORS:patches"
|
||||
output_stream: "TENSORS:knift_feature_tensors"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
||||
model_path: "mediapipe/models/knift_float.tflite"
|
||||
delegate { xnnpack {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TfLiteTensorsToFloatsCalculator"
|
||||
input_stream: "TENSORS:knift_feature_tensors"
|
||||
output_stream: "FLOATS:knift_feature_floats"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "BoxDetectorCalculator"
|
||||
input_stream: "FEATURES:features"
|
||||
input_stream: "IMAGE_SIZE:input_video_size"
|
||||
input_stream: "DESCRIPTORS:knift_feature_floats"
|
||||
output_stream: "BOXES:detections"
|
||||
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] {
|
||||
detector_options {
|
||||
index_type: OPENCV_BF
|
||||
detect_every_n_frame: 1
|
||||
}
|
||||
index_proto_filename: "mediapipe/models/knift_index.pb"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TimedBoxListIdToLabelCalculator"
|
||||
input_stream: "detections"
|
||||
output_stream: "labeled_detections"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TimedBoxListIdToLabelCalculatorOptions] {
|
||||
label_map_path: "mediapipe/models/knift_labelmap.txt"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TimedBoxListToRenderDataCalculator"
|
||||
input_stream: "BOX_LIST:labeled_detections"
|
||||
output_stream: "RENDER_DATA:box_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.TimedBoxListToRenderDataCalculatorOptions] {
|
||||
box_color { r: 255 g: 0 b: 0 }
|
||||
thickness: 5.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "LandmarksToRenderDataCalculator"
|
||||
input_stream: "NORM_LANDMARKS:landmarks"
|
||||
output_stream: "RENDER_DATA:landmarks_render_data"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
|
||||
landmark_color { r: 0 g: 255 b: 0 }
|
||||
thickness: 2.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Draws annotations and overlays them on top of the input images.
|
||||
node {
|
||||
calculator: "AnnotationOverlayCalculator"
|
||||
input_stream: "IMAGE_GPU:throttled_input_video"
|
||||
input_stream: "box_render_data"
|
||||
input_stream: "landmarks_render_data"
|
||||
output_stream: "IMAGE_GPU:output_video"
|
||||
}
|
|
@ -34,3 +34,10 @@ Here are the descriptions of the models used in the [example applications](../do
|
|||
* [Model page](https://sites.google.com/corp/view/perception-cv4arvr/hair-segmentation)
|
||||
* Paper: ["Real-time Hair segmentation and recoloring on Mobile GPUs"](https://arxiv.org/abs/1907.06740)
|
||||
* [Model card](https://drive.google.com/file/d/1lPwJ8BD_-3UUor4LayQ0xpa_RIC_hoRh/view)
|
||||
|
||||
### KNIFT (Keypoint Neural Invariant Feature Transform)
|
||||
* Up to 200 keypoints: [TFLite model](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_float.tflite)
|
||||
* Up to 400 keypoints: [TFLite model](https://github.com/google/mediapipe/tree/master/mediapipe/models/knift_float_400.tflite)
|
||||
* [Google Developers Blog post](https://mediapipe.page.link/knift)
|
||||
* [Model card](https://mediapipe.page.link/knift-mc)
|
||||
|
||||
|
|
BIN
mediapipe/models/knift_float.tflite
Normal file
BIN
mediapipe/models/knift_float.tflite
Normal file
Binary file not shown.
BIN
mediapipe/models/knift_float_400.tflite
Normal file
BIN
mediapipe/models/knift_float_400.tflite
Normal file
Binary file not shown.
BIN
mediapipe/models/knift_index.pb
Normal file
BIN
mediapipe/models/knift_index.pb
Normal file
Binary file not shown.
3
mediapipe/models/knift_labelmap.txt
Normal file
3
mediapipe/models/knift_labelmap.txt
Normal file
|
@ -0,0 +1,3 @@
|
|||
1USD
|
||||
20USD
|
||||
5USD
|
|
@ -75,3 +75,31 @@ cc_test(
|
|||
"//conditions:default": [],
|
||||
}),
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "tflite_gpu_runner",
|
||||
srcs = select({
|
||||
"//mediapipe:ios": [],
|
||||
"//mediapipe:macos": [],
|
||||
"//conditions:default": ["tflite_gpu_runner.cc"],
|
||||
}),
|
||||
hdrs = select({
|
||||
"//mediapipe:ios": [],
|
||||
"//mediapipe:macos": [],
|
||||
"//conditions:default": ["tflite_gpu_runner.h"],
|
||||
}),
|
||||
deps = select({
|
||||
"//mediapipe:ios": [],
|
||||
"//mediapipe:macos": [],
|
||||
"//conditions:default": [
|
||||
"@com_google_absl//absl/strings",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
"//mediapipe/framework/port:status",
|
||||
"//mediapipe/framework/port:statusor",
|
||||
"@org_tensorflow//tensorflow/lite:framework",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu:api",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu/common:model",
|
||||
"@org_tensorflow//tensorflow/lite/delegates/gpu/gl:api2",
|
||||
],
|
||||
}),
|
||||
)
|
||||
|
|
138
mediapipe/util/tflite/tflite_gpu_runner.cc
Normal file
138
mediapipe/util/tflite/tflite_gpu_runner.cc
Normal file
|
@ -0,0 +1,138 @@
|
|||
// Copyright 2020 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "mediapipe/util/tflite/tflite_gpu_runner.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/strings/substitute.h"
|
||||
#include "mediapipe/framework/port/canonical_errors.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
#include "mediapipe/framework/port/status_macros.h"
|
||||
#include "mediapipe/framework/port/statusor.h"
|
||||
#include "tensorflow/lite/delegates/gpu/api.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/model.h"
|
||||
#include "tensorflow/lite/delegates/gpu/gl/api2.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace gpu {
|
||||
namespace {
|
||||
|
||||
ObjectDef GetSSBOObjectDef(int channels) {
|
||||
ObjectDef gpu_object_def;
|
||||
gpu_object_def.data_type = DataType::FLOAT32;
|
||||
gpu_object_def.data_layout = DataLayout::BHWC;
|
||||
if (channels == 4) {
|
||||
gpu_object_def.data_layout = DataLayout::DHWC4;
|
||||
}
|
||||
gpu_object_def.object_type = ObjectType::OPENGL_SSBO;
|
||||
gpu_object_def.user_provided = true;
|
||||
return gpu_object_def;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::InitializeWithModel(
|
||||
const tflite::FlatBufferModel& flatbuffer) {
|
||||
for (const auto& input : graph_->inputs()) {
|
||||
input_shapes_.push_back(input->tensor.shape);
|
||||
}
|
||||
for (const auto& output : graph_->outputs()) {
|
||||
output_shapes_.push_back(output->tensor.shape);
|
||||
}
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
mediapipe::StatusOr<int64_t> TFLiteGPURunner::GetInputElements(int id) {
|
||||
if (id >= input_shapes_.size()) {
|
||||
return ::mediapipe::InternalError("Wrong input tensor id.");
|
||||
} else {
|
||||
return input_shapes_[id].DimensionsProduct();
|
||||
}
|
||||
}
|
||||
|
||||
mediapipe::StatusOr<int64_t> TFLiteGPURunner::GetOutputElements(int id) {
|
||||
if (id >= output_shapes_.size()) {
|
||||
return ::mediapipe::InternalError("Wrong output tensor id.");
|
||||
} else {
|
||||
return output_shapes_[id].DimensionsProduct();
|
||||
}
|
||||
}
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::Build() {
|
||||
// 1. Prepare inference builder.
|
||||
std::unique_ptr<InferenceBuilder> builder;
|
||||
MP_RETURN_IF_ERROR(InitializeOpenGL(&builder));
|
||||
|
||||
// 2. Describe output/input objects for created builder.
|
||||
for (int flow_index = 0; flow_index < input_shapes_.size(); ++flow_index) {
|
||||
if (input_ssbo_ids_.find(flow_index) == input_ssbo_ids_.end()) {
|
||||
return absl::AlreadyExistsError(absl::Substitute(
|
||||
"Couldn't find a OpenGL ssbo for input $0.", flow_index));
|
||||
}
|
||||
MP_RETURN_IF_ERROR(builder->SetInputObjectDef(
|
||||
flow_index, GetSSBOObjectDef(input_shapes_[flow_index].c)));
|
||||
}
|
||||
for (int flow_index = 0; flow_index < output_shapes_.size(); ++flow_index) {
|
||||
if (output_ssbo_ids_.find(flow_index) == output_ssbo_ids_.end()) {
|
||||
return absl::AlreadyExistsError(absl::Substitute(
|
||||
"Couldn't find a OpenGL ssbo for output $0.", flow_index));
|
||||
}
|
||||
MP_RETURN_IF_ERROR(builder->SetOutputObjectDef(
|
||||
flow_index, GetSSBOObjectDef(output_shapes_[flow_index].c)));
|
||||
}
|
||||
|
||||
// 3. Build inference runner with the created builder.
|
||||
return builder->Build(&runner_);
|
||||
}
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::BindSSBOToInputTensor(GLuint ssbo_id,
|
||||
int input_id) {
|
||||
OpenGlBuffer buffer;
|
||||
buffer.id = ssbo_id;
|
||||
return runner_->SetInputObject(input_id, std::move(buffer));
|
||||
}
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::BindSSBOToOutputTensor(GLuint ssbo_id,
|
||||
int output_id) {
|
||||
OpenGlBuffer buffer;
|
||||
buffer.id = ssbo_id;
|
||||
return runner_->SetOutputObject(output_id, std::move(buffer));
|
||||
}
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::Invoke() { return runner_->Run(); }
|
||||
|
||||
mediapipe::Status TFLiteGPURunner::InitializeOpenGL(
|
||||
std::unique_ptr<InferenceBuilder>* builder) {
|
||||
gl::InferenceEnvironmentOptions env_options;
|
||||
gl::InferenceEnvironmentProperties properties;
|
||||
gl::InferenceOptions gl_options;
|
||||
gl_options.priority1 = options_.priority1;
|
||||
gl_options.priority2 = options_.priority2;
|
||||
gl_options.priority3 = options_.priority3;
|
||||
gl_options.usage = options_.usage;
|
||||
MP_RETURN_IF_ERROR(
|
||||
NewInferenceEnvironment(env_options, &gl_environment_, &properties));
|
||||
MP_RETURN_IF_ERROR(gl_environment_->NewInferenceBuilder(std::move(*graph_),
|
||||
gl_options, builder));
|
||||
graph_.release();
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
} // namespace gpu
|
||||
} // namespace tflite
|
90
mediapipe/util/tflite/tflite_gpu_runner.h
Normal file
90
mediapipe/util/tflite/tflite_gpu_runner.h
Normal file
|
@ -0,0 +1,90 @@
|
|||
// Copyright 2020 The MediaPipe Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|
||||
#define MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
#include "mediapipe/framework/port/statusor.h"
|
||||
#include "tensorflow/lite/delegates/gpu/api.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/model.h"
|
||||
#include "tensorflow/lite/delegates/gpu/gl/api2.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace gpu {
|
||||
|
||||
// Executes GPU based inference using the TFLite GPU delegate api2.
|
||||
// Currently supports only GPU inputs/outputs.
|
||||
//
|
||||
// Typical order of execution:
|
||||
// 1. Initialize with the flatbuffer model using InitializeWithModel().
|
||||
// 2. Bind OpenGL SSBO objects as inputs and outputs using
|
||||
// BindSSBOToInputTensor() and BindSSBOToOutputTensor().
|
||||
// 3. Build the inference runner with Build() method.
|
||||
// 4. Invoke() executes the inference, where inputs and outputs are those which
|
||||
// were specified earlier. Invoke() may be called in the loop.
|
||||
//
|
||||
// Note: All of these need to happen inside MediaPipe's RunInGlContext to make
|
||||
// sure that all steps from inference construction to execution are made using
|
||||
// same OpenGL context.
|
||||
class TFLiteGPURunner {
|
||||
public:
|
||||
explicit TFLiteGPURunner(const InferenceOptions& options)
|
||||
: options_(options) {}
|
||||
|
||||
mediapipe::Status InitializeWithModel(
|
||||
const tflite::FlatBufferModel& flatbuffer);
|
||||
mediapipe::Status BindSSBOToInputTensor(GLuint ssbo_id, int input_id);
|
||||
mediapipe::Status BindSSBOToOutputTensor(GLuint ssbo_id, int output_id);
|
||||
|
||||
int inputs_size() const { return input_shapes_.size(); }
|
||||
int outputs_size() const { return output_shapes_.size(); }
|
||||
|
||||
mediapipe::StatusOr<int64_t> GetInputElements(int id);
|
||||
mediapipe::StatusOr<int64_t> GetOutputElements(int id);
|
||||
|
||||
mediapipe::Status Build();
|
||||
mediapipe::Status Invoke();
|
||||
|
||||
private:
|
||||
mediapipe::Status InitializeOpenGL(
|
||||
std::unique_ptr<InferenceBuilder>* builder);
|
||||
|
||||
InferenceOptions options_;
|
||||
std::unique_ptr<gl::InferenceEnvironment> gl_environment_;
|
||||
|
||||
// graph_ is maintained temporarily and becomes invalid after runner_ is ready
|
||||
std::unique_ptr<GraphFloat32> graph_;
|
||||
std::unique_ptr<InferenceRunner> runner_;
|
||||
|
||||
// Store registered OpenGL ssbo ids for the corresponding input/output tensor.
|
||||
// key: io tensor position, value: OpenGL ssbo id.
|
||||
std::unordered_map<int, GLuint> input_ssbo_ids_;
|
||||
std::unordered_map<int, GLuint> output_ssbo_ids_;
|
||||
|
||||
// We keep information about input/output shapes, because they are needed
|
||||
// after graph_ becomes "converted" into runner_.
|
||||
std::vector<BHWC> input_shapes_;
|
||||
std::vector<BHWC> output_shapes_;
|
||||
};
|
||||
|
||||
} // namespace gpu
|
||||
} // namespace tflite
|
||||
|
||||
#endif // MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|
|
@ -68,10 +68,10 @@ message BoxDetectorOptions {
|
|||
optional int32 min_num_correspondence = 6 [default = 5];
|
||||
|
||||
// Reprojection threshold for RANSAC to find inliers.
|
||||
optional float ransac_reprojection_threshold = 7 [default = 0.02];
|
||||
optional float ransac_reprojection_threshold = 7 [default = 0.005];
|
||||
|
||||
// Max distance to match 2 NIMBY features.
|
||||
optional float max_match_distance = 8 [default = 0.8];
|
||||
optional float max_match_distance = 8 [default = 0.9];
|
||||
|
||||
// Max persepective change factor.
|
||||
optional float max_perspective_factor = 9 [default = 0.1];
|
||||
|
|
Loading…
Reference in New Issue
Block a user