Merge branch 'google:master' into language-detector-python
This commit is contained in:
commit
76c8251faf
34
.github/stale.yml
vendored
34
.github/stale.yml
vendored
|
@ -1,34 +0,0 @@
|
|||
# Copyright 2021 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
#
|
||||
# This file was assembled from multiple pieces, whose use is documented
|
||||
# throughout. Please refer to the TensorFlow dockerfiles documentation
|
||||
# for more information.
|
||||
|
||||
# Number of days of inactivity before an Issue or Pull Request becomes stale
|
||||
daysUntilStale: 7
|
||||
# Number of days of inactivity before a stale Issue or Pull Request is closed
|
||||
daysUntilClose: 7
|
||||
# Only issues or pull requests with all of these labels are checked if stale. Defaults to `[]` (disabled)
|
||||
onlyLabels:
|
||||
- stat:awaiting response
|
||||
# Comment to post when marking as stale. Set to `false` to disable
|
||||
markComment: >
|
||||
This issue has been automatically marked as stale because it has not had
|
||||
recent activity. It will be closed if no further activity occurs. Thank you.
|
||||
# Comment to post when removing the stale label. Set to `false` to disable
|
||||
unmarkComment: false
|
||||
closeComment: >
|
||||
Closing as stale. Please reopen if you'd like to work on this further.
|
66
.github/workflows/stale.yaml
vendored
Normal file
66
.github/workflows/stale.yaml
vendored
Normal file
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
# This workflow alerts and then closes the stale issues/PRs after specific time
|
||||
# You can adjust the behavior by modifying this file.
|
||||
# For more information, see:
|
||||
# https://github.com/actions/stale
|
||||
|
||||
name: 'Close stale issues and PRs'
|
||||
"on":
|
||||
schedule:
|
||||
- cron: "30 1 * * *"
|
||||
permissions:
|
||||
contents: read
|
||||
issues: write
|
||||
pull-requests: write
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: 'actions/stale@v7'
|
||||
with:
|
||||
# Comma separated list of labels that can be assigned to issues to exclude them from being marked as stale.
|
||||
exempt-issue-labels: 'override-stale'
|
||||
# Comma separated list of labels that can be assigned to PRs to exclude them from being marked as stale.
|
||||
exempt-pr-labels: "override-stale"
|
||||
# Limit the No. of API calls in one run default value is 30.
|
||||
operations-per-run: 500
|
||||
# Prevent to remove stale label when PRs or issues are updated.
|
||||
remove-stale-when-updated: false
|
||||
# comment on issue if not active for more then 7 days.
|
||||
stale-issue-message: 'This issue has been marked stale because it has no recent activity since 7 days. It will be closed if no further activity occurs. Thank you.'
|
||||
# comment on PR if not active for more then 14 days.
|
||||
stale-pr-message: 'This PR has been marked stale because it has no recent activity since 14 days. It will be closed if no further activity occurs. Thank you.'
|
||||
# comment on issue if stale for more then 7 days.
|
||||
close-issue-message: This issue was closed due to lack of activity after being marked stale for past 7 days.
|
||||
# comment on PR if stale for more then 14 days.
|
||||
close-pr-message: This PR was closed due to lack of activity after being marked stale for past 14 days.
|
||||
# Number of days of inactivity before an Issue Request becomes stale
|
||||
days-before-issue-stale: 7
|
||||
# Number of days of inactivity before a stale Issue is closed
|
||||
days-before-issue-close: 7
|
||||
# reason for closed the issue default value is not_planned
|
||||
close-issue-reason: completed
|
||||
# Number of days of inactivity before a stale PR is closed
|
||||
days-before-pr-close: 14
|
||||
# Number of days of inactivity before an PR Request becomes stale
|
||||
days-before-pr-stale: 14
|
||||
# Check for label to stale or close the issue/PR
|
||||
any-of-labels: 'stat:awaiting response'
|
||||
# override stale to stalled for PR
|
||||
stale-pr-label: 'stale'
|
||||
# override stale to stalled for Issue
|
||||
stale-issue-label: "stale"
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -433,9 +433,9 @@ absl::Status SpectrogramCalculator::ProcessVectorToOutput(
|
|||
absl::Status SpectrogramCalculator::ProcessVector(const Matrix& input_stream,
|
||||
CalculatorContext* cc) {
|
||||
switch (output_type_) {
|
||||
// These blocks deliberately ignore clang-format to preserve the
|
||||
// "silhouette" of the different cases.
|
||||
// clang-format off
|
||||
// These blocks deliberately ignore clang-format to preserve the
|
||||
// "silhouette" of the different cases.
|
||||
// clang-format off
|
||||
case SpectrogramCalculatorOptions::COMPLEX: {
|
||||
return ProcessVectorToOutput(
|
||||
input_stream,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -18,6 +18,9 @@ package mediapipe;
|
|||
|
||||
import "mediapipe/framework/calculator.proto";
|
||||
|
||||
option java_package = "com.google.mediapipe.calculator.proto";
|
||||
option java_outer_classname = "LogicCalculatorOptionsProto";
|
||||
|
||||
message LogicCalculatorOptions {
|
||||
extend CalculatorOptions {
|
||||
optional LogicCalculatorOptions ext = 338731246;
|
||||
|
|
|
@ -467,6 +467,11 @@ class SideFallbackT : public Base {
|
|||
// CalculatorContext (e.g. kOut(cc)), and provides a type-safe interface to
|
||||
// OutputStreamShard. Like that class, this class will not be usually named in
|
||||
// calculator code, but used as a temporary object (e.g. kOut(cc).Send(...)).
|
||||
//
|
||||
// If not connected (!IsConnected()) SetNextTimestampBound is safe to call and
|
||||
// does nothing.
|
||||
// All the sub-classes that define Send should implement it to be safe to to
|
||||
// call if not connected and do nothing in such case.
|
||||
class OutputShardAccessBase {
|
||||
public:
|
||||
OutputShardAccessBase(const CalculatorContext& cc, OutputStreamShard* output)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -60,7 +60,7 @@ std::string GetUnusedSidePacketName(
|
|||
}
|
||||
std::string candidate = input_side_packet_name_base;
|
||||
int iter = 2;
|
||||
while (mediapipe::ContainsKey(input_side_packets, candidate)) {
|
||||
while (input_side_packets.contains(candidate)) {
|
||||
candidate = absl::StrCat(input_side_packet_name_base, "_",
|
||||
absl::StrFormat("%02d", iter));
|
||||
++iter;
|
||||
|
|
|
@ -101,7 +101,7 @@ void TestSuccessTagMap(const std::vector<std::string>& tag_index_names,
|
|||
EXPECT_EQ(tags.size(), tag_map->Mapping().size())
|
||||
<< "Parameters: in " << tag_map->DebugString();
|
||||
for (int i = 0; i < tags.size(); ++i) {
|
||||
EXPECT_TRUE(mediapipe::ContainsKey(tag_map->Mapping(), tags[i]))
|
||||
EXPECT_TRUE(tag_map->Mapping().contains(tags[i]))
|
||||
<< "Parameters: Trying to find \"" << tags[i] << "\" in\n"
|
||||
<< tag_map->DebugString();
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2023 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -14,8 +14,10 @@
|
|||
|
||||
package com.google.mediapipe.components;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
|
||||
/** Lightweight abstraction for an object that can produce audio data. */
|
||||
public interface AudioDataProducer {
|
||||
/** Set the consumer that receives the audio data from this producer. */
|
||||
void setAudioConsumer(AudioDataConsumer consumer);
|
||||
void setAudioConsumer(@Nullable AudioDataConsumer consumer);
|
||||
}
|
||||
|
|
|
@ -71,7 +71,10 @@ android_library(
|
|||
"AudioDataProducer.java",
|
||||
],
|
||||
visibility = ["//visibility:public"],
|
||||
deps = ["@maven//:com_google_guava_guava"],
|
||||
deps = [
|
||||
"@maven//:com_google_code_findbugs_jsr305",
|
||||
"@maven//:com_google_guava_guava",
|
||||
],
|
||||
)
|
||||
|
||||
# MicrophoneHelper that provides access to audio data from a microphone
|
||||
|
|
|
@ -231,7 +231,7 @@ public class GlSurfaceViewRenderer implements GLSurfaceView.Renderer {
|
|||
}
|
||||
|
||||
/** Returns the texture left, right, bottom, and top visible boundaries. */
|
||||
protected float[] calculateTextureBoundary() {
|
||||
public float[] calculateTextureBoundary() {
|
||||
// TODO: compute scale from surfaceTexture size.
|
||||
float scaleWidth = frameWidth > 0 ? (float) surfaceWidth / (float) frameWidth : 1.0f;
|
||||
float scaleHeight = frameHeight > 0 ? (float) surfaceHeight / (float) frameHeight : 1.0f;
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The MediaPipe Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019-2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2019-2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the 'License');
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the 'License');
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -67,11 +67,18 @@ py_library(
|
|||
name = "loss_functions",
|
||||
srcs = ["loss_functions.py"],
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
":file_util",
|
||||
":model_util",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "loss_functions_test",
|
||||
srcs = ["loss_functions_test.py"],
|
||||
tags = [
|
||||
"requires-net:external",
|
||||
],
|
||||
deps = [":loss_functions"],
|
||||
)
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -13,10 +13,21 @@
|
|||
# limitations under the License.
|
||||
"""Loss function utility library."""
|
||||
|
||||
from typing import Optional, Sequence
|
||||
import abc
|
||||
from typing import Mapping, Sequence
|
||||
import dataclasses
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from mediapipe.model_maker.python.core.utils import file_util
|
||||
from mediapipe.model_maker.python.core.utils import model_util
|
||||
from official.modeling import tf_utils
|
||||
|
||||
|
||||
_VGG_IMAGENET_PERCEPTUAL_MODEL_URL = 'https://storage.googleapis.com/mediapipe-assets/vgg_feature_extractor.tar.gz'
|
||||
|
||||
|
||||
class FocalLoss(tf.keras.losses.Loss):
|
||||
"""Implementation of focal loss (https://arxiv.org/pdf/1708.02002.pdf).
|
||||
|
@ -45,7 +56,6 @@ class FocalLoss(tf.keras.losses.Loss):
|
|||
```python
|
||||
model.compile(optimizer='sgd', loss=FocalLoss(gamma))
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, gamma, class_weight: Optional[Sequence[float]] = None):
|
||||
|
@ -103,3 +113,252 @@ class FocalLoss(tf.keras.losses.Loss):
|
|||
# By default, this function uses "sum_over_batch_size" reduction for the
|
||||
# loss per batch.
|
||||
return tf.reduce_sum(losses) / batch_size
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class PerceptualLossWeight:
|
||||
"""The weight for each perceptual loss.
|
||||
|
||||
Attributes:
|
||||
l1: weight for L1 loss.
|
||||
content: weight for content loss.
|
||||
style: weight for style loss.
|
||||
"""
|
||||
|
||||
l1: float = 1.0
|
||||
content: float = 1.0
|
||||
style: float = 1.0
|
||||
|
||||
|
||||
class ImagePerceptualQualityLoss(tf.keras.losses.Loss):
|
||||
"""Image perceptual quality loss.
|
||||
|
||||
It obtains a weighted loss between the VGGPerceptualLoss and L1 loss.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
loss_weight: Optional[PerceptualLossWeight] = None,
|
||||
reduction: tf.keras.losses.Reduction = tf.keras.losses.Reduction.NONE,
|
||||
):
|
||||
"""Initializes ImagePerceptualQualityLoss."""
|
||||
self._loss_weight = loss_weight
|
||||
self._losses = {}
|
||||
self._vgg_loss = VGGPerceptualLoss(self._loss_weight)
|
||||
self._reduction = reduction
|
||||
|
||||
def _l1_loss(
|
||||
self,
|
||||
reduction: tf.keras.losses.Reduction = tf.keras.losses.Reduction.NONE,
|
||||
) -> Any:
|
||||
"""Calculates L1 loss."""
|
||||
return tf.keras.losses.MeanAbsoluteError(reduction)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
img1: tf.Tensor,
|
||||
img2: tf.Tensor,
|
||||
) -> tf.Tensor:
|
||||
"""Computes image perceptual quality loss."""
|
||||
loss_value = []
|
||||
if self._loss_weight is None:
|
||||
self._loss_weight = PerceptualLossWeight()
|
||||
|
||||
if self._loss_weight.content > 0 or self._loss_weight.style > 0:
|
||||
vgg_loss = self._vgg_loss(img1, img2)
|
||||
vgg_loss_value = tf.math.add_n(vgg_loss.values())
|
||||
loss_value.append(vgg_loss_value)
|
||||
if self._loss_weight.l1 > 0:
|
||||
l1_loss = self._l1_loss(reduction=self._reduction)(img1, img2)
|
||||
l1_loss_value = tf_utils.safe_mean(l1_loss * self._loss_weight.l1)
|
||||
loss_value.append(l1_loss_value)
|
||||
total_loss = tf.math.add_n(loss_value)
|
||||
return total_loss
|
||||
|
||||
|
||||
class PerceptualLoss(tf.keras.Model, metaclass=abc.ABCMeta):
|
||||
"""Base class for perceptual loss model."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
feature_weight: Optional[Sequence[float]] = None,
|
||||
loss_weight: Optional[PerceptualLossWeight] = None,
|
||||
):
|
||||
"""Instantiates perceptual loss.
|
||||
|
||||
Args:
|
||||
feature_weight: The weight coeffcients of multiple model extracted
|
||||
features used for calculating the perceptual loss.
|
||||
loss_weight: The weight coefficients between `style_loss` and
|
||||
`content_loss`.
|
||||
"""
|
||||
super().__init__()
|
||||
self._loss_op = lambda x, y: tf.math.reduce_mean(tf.abs(x - y))
|
||||
self._loss_style = tf.constant(0.0)
|
||||
self._loss_content = tf.constant(0.0)
|
||||
self._feature_weight = feature_weight
|
||||
self._loss_weight = loss_weight
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
img1: tf.Tensor,
|
||||
img2: tf.Tensor,
|
||||
) -> Mapping[str, tf.Tensor]:
|
||||
"""Computes perceptual loss between two images.
|
||||
|
||||
Args:
|
||||
img1: First batch of images. The pixel values should be normalized to [-1,
|
||||
1].
|
||||
img2: Second batch of images. The pixel values should be normalized to
|
||||
[-1, 1].
|
||||
|
||||
Returns:
|
||||
A mapping between loss name and loss tensors.
|
||||
"""
|
||||
x_features = self._compute_features(img1)
|
||||
y_features = self._compute_features(img2)
|
||||
|
||||
if self._loss_weight is None:
|
||||
self._loss_weight = PerceptualLossWeight()
|
||||
|
||||
# If the _feature_weight is not initialized, then initialize it as a list of
|
||||
# all the element equals to 1.0.
|
||||
if self._feature_weight is None:
|
||||
self._feature_weight = [1.0] * len(x_features)
|
||||
|
||||
# If the length of _feature_weight smallert than the length of the feature,
|
||||
# raise a ValueError. Otherwise, only use the first len(x_features) weight
|
||||
# for computing the loss.
|
||||
if len(self._feature_weight) < len(x_features):
|
||||
raise ValueError(
|
||||
f'Input feature weight length {len(self._feature_weight)} is smaller'
|
||||
f' than feature length {len(x_features)}'
|
||||
)
|
||||
|
||||
if self._loss_weight.style > 0.0:
|
||||
self._loss_style = tf_utils.safe_mean(
|
||||
self._loss_weight.style
|
||||
* self._get_style_loss(x_feats=x_features, y_feats=y_features)
|
||||
)
|
||||
if self._loss_weight.content > 0.0:
|
||||
self._loss_content = tf_utils.safe_mean(
|
||||
self._loss_weight.content
|
||||
* self._get_content_loss(x_feats=x_features, y_feats=y_features)
|
||||
)
|
||||
|
||||
return {'style_loss': self._loss_style, 'content_loss': self._loss_content}
|
||||
|
||||
@abc.abstractmethod
|
||||
def _compute_features(self, img: tf.Tensor) -> Sequence[tf.Tensor]:
|
||||
"""Computes features from the given image tensor.
|
||||
|
||||
Args:
|
||||
img: Image tensor.
|
||||
|
||||
Returns:
|
||||
A list of multi-scale feature maps.
|
||||
"""
|
||||
|
||||
def _get_content_loss(
|
||||
self, x_feats: Sequence[tf.Tensor], y_feats: Sequence[tf.Tensor]
|
||||
) -> tf.Tensor:
|
||||
"""Gets weighted multi-scale content loss.
|
||||
|
||||
Args:
|
||||
x_feats: Reconstructed face image.
|
||||
y_feats: Target face image.
|
||||
|
||||
Returns:
|
||||
A scalar tensor for the content loss.
|
||||
"""
|
||||
content_losses = []
|
||||
for coef, x_feat, y_feat in zip(self._feature_weight, x_feats, y_feats):
|
||||
content_loss = self._loss_op(x_feat, y_feat) * coef
|
||||
content_losses.append(content_loss)
|
||||
return tf.math.reduce_sum(content_losses)
|
||||
|
||||
def _get_style_loss(
|
||||
self, x_feats: Sequence[tf.Tensor], y_feats: Sequence[tf.Tensor]
|
||||
) -> tf.Tensor:
|
||||
"""Gets weighted multi-scale style loss.
|
||||
|
||||
Args:
|
||||
x_feats: Reconstructed face image.
|
||||
y_feats: Target face image.
|
||||
|
||||
Returns:
|
||||
A scalar tensor for the style loss.
|
||||
"""
|
||||
style_losses = []
|
||||
i = 0
|
||||
for coef, x_feat, y_feat in zip(self._feature_weight, x_feats, y_feats):
|
||||
x_feat_g = _compute_gram_matrix(x_feat)
|
||||
y_feat_g = _compute_gram_matrix(y_feat)
|
||||
style_loss = self._loss_op(x_feat_g, y_feat_g) * coef
|
||||
style_losses.append(style_loss)
|
||||
i = i + 1
|
||||
|
||||
return tf.math.reduce_sum(style_loss)
|
||||
|
||||
|
||||
class VGGPerceptualLoss(PerceptualLoss):
|
||||
"""Perceptual loss based on VGG19 pretrained on the ImageNet dataset.
|
||||
|
||||
Reference:
|
||||
- [Perceptual Losses for Real-Time Style Transfer and Super-Resolution](
|
||||
https://arxiv.org/abs/1603.08155) (ECCV 2016)
|
||||
|
||||
Perceptual loss measures high-level perceptual and semantic differences
|
||||
between images.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
loss_weight: Optional[PerceptualLossWeight] = None,
|
||||
):
|
||||
"""Initializes image quality loss essentials.
|
||||
|
||||
Args:
|
||||
loss_weight: Loss weight coefficients.
|
||||
"""
|
||||
super().__init__(
|
||||
feature_weight=np.array([0.1, 0.1, 1.0, 1.0, 1.0]),
|
||||
loss_weight=loss_weight,
|
||||
)
|
||||
|
||||
rgb_mean = tf.constant([0.485, 0.456, 0.406])
|
||||
rgb_std = tf.constant([0.229, 0.224, 0.225])
|
||||
|
||||
self._rgb_mean = tf.reshape(rgb_mean, (1, 1, 1, 3))
|
||||
self._rgb_std = tf.reshape(rgb_std, (1, 1, 1, 3))
|
||||
|
||||
model_path = file_util.DownloadedFiles(
|
||||
'vgg_feature_extractor',
|
||||
_VGG_IMAGENET_PERCEPTUAL_MODEL_URL,
|
||||
is_folder=True,
|
||||
)
|
||||
self._vgg19 = model_util.load_keras_model(model_path.get_path())
|
||||
|
||||
def _compute_features(self, img: tf.Tensor) -> Sequence[tf.Tensor]:
|
||||
"""Computes VGG19 features."""
|
||||
img = (img + 1) / 2.0
|
||||
norm_img = (img - self._rgb_mean) / self._rgb_std
|
||||
# no grad, as it only serves as a frozen feature extractor.
|
||||
return self._vgg19(norm_img)
|
||||
|
||||
|
||||
def _compute_gram_matrix(feature: tf.Tensor) -> tf.Tensor:
|
||||
"""Computes gram matrix for the feature map.
|
||||
|
||||
Args:
|
||||
feature: [B, H, W, C] feature map.
|
||||
|
||||
Returns:
|
||||
[B, C, C] gram matrix.
|
||||
"""
|
||||
h, w, c = feature.shape[1:].as_list()
|
||||
feat_reshaped = tf.reshape(feature, shape=(-1, h * w, c))
|
||||
feat_gram = tf.matmul(
|
||||
tf.transpose(feat_reshaped, perm=[0, 2, 1]), feat_reshaped
|
||||
)
|
||||
return feat_gram / (c * h * w)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -13,7 +13,9 @@
|
|||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
import tempfile
|
||||
from typing import Dict, Optional, Sequence
|
||||
from unittest import mock as unittest_mock
|
||||
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
|
@ -21,7 +23,7 @@ import tensorflow as tf
|
|||
from mediapipe.model_maker.python.core.utils import loss_functions
|
||||
|
||||
|
||||
class LossFunctionsTest(tf.test.TestCase, parameterized.TestCase):
|
||||
class FocalLossTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
@parameterized.named_parameters(
|
||||
dict(testcase_name='no_sample_weight', sample_weight=None),
|
||||
|
@ -99,5 +101,228 @@ class LossFunctionsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.assertNear(loss, expected_loss, 1e-4)
|
||||
|
||||
|
||||
class MockPerceptualLoss(loss_functions.PerceptualLoss):
|
||||
"""A mock class with implementation of abstract methods for testing."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
use_mock_loss_op: bool = False,
|
||||
feature_weight: Optional[Sequence[float]] = None,
|
||||
loss_weight: Optional[loss_functions.PerceptualLossWeight] = None,
|
||||
):
|
||||
super().__init__(feature_weight=feature_weight, loss_weight=loss_weight)
|
||||
if use_mock_loss_op:
|
||||
self._loss_op = lambda x, y: tf.math.reduce_mean(x - y)
|
||||
|
||||
def _compute_features(self, img: tf.Tensor) -> Sequence[tf.Tensor]:
|
||||
return [tf.random.normal(shape=(1, 8, 8, 3))] * 5
|
||||
|
||||
|
||||
class PerceptualLossTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self._img1 = tf.fill(dims=(8, 8), value=0.2)
|
||||
self._img2 = tf.fill(dims=(8, 8), value=0.8)
|
||||
|
||||
def test_invalid_feature_weight_raise_value_error(self):
|
||||
with self.assertRaisesRegex(
|
||||
ValueError,
|
||||
'Input feature weight length 2 is smaller than feature length 5',
|
||||
):
|
||||
MockPerceptualLoss(feature_weight=[1.0, 2.0])(
|
||||
img1=self._img1, img2=self._img2
|
||||
)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
dict(
|
||||
testcase_name='default_loss_weight_and_loss_op',
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=None,
|
||||
loss_weight=None,
|
||||
loss_values={
|
||||
'style_loss': 0.032839,
|
||||
'content_loss': 5.639870,
|
||||
},
|
||||
),
|
||||
dict(
|
||||
testcase_name='style_loss_weight_is_0_default_loss_op',
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=None,
|
||||
loss_weight=loss_functions.PerceptualLossWeight(style=0),
|
||||
loss_values={
|
||||
'style_loss': 0,
|
||||
'content_loss': 5.639870,
|
||||
},
|
||||
),
|
||||
dict(
|
||||
testcase_name='content_loss_weight_is_0_default_loss_op',
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=None,
|
||||
loss_weight=loss_functions.PerceptualLossWeight(content=0),
|
||||
loss_values={
|
||||
'style_loss': 0.032839,
|
||||
'content_loss': 0,
|
||||
},
|
||||
),
|
||||
dict(
|
||||
testcase_name='customized_loss_weight_default_loss_op',
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=None,
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
style=1.0, content=2.0
|
||||
),
|
||||
loss_values={'style_loss': 0.032839, 'content_loss': 11.279739},
|
||||
),
|
||||
dict(
|
||||
testcase_name=(
|
||||
'customized_feature_weight_and_loss_weight_default_loss_op'
|
||||
),
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=[1.0, 2.0, 3.0, 4.0, 5.0],
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
style=1.0, content=2.0
|
||||
),
|
||||
loss_values={'style_loss': 0.164193, 'content_loss': 33.839218},
|
||||
),
|
||||
dict(
|
||||
testcase_name='no_loss_change_if_extra_feature_weight_provided',
|
||||
use_mock_loss_op=False,
|
||||
feature_weight=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0],
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
style=1.0, content=2.0
|
||||
),
|
||||
loss_values={
|
||||
'style_loss': 0.164193,
|
||||
'content_loss': 33.839218,
|
||||
},
|
||||
),
|
||||
dict(
|
||||
testcase_name='customized_loss_weight_custom_loss_op',
|
||||
use_mock_loss_op=True,
|
||||
feature_weight=None,
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
style=1.0, content=2.0
|
||||
),
|
||||
loss_values={'style_loss': 0.000395, 'content_loss': -1.533469},
|
||||
),
|
||||
)
|
||||
def test_weighted_perceptul_loss(
|
||||
self,
|
||||
use_mock_loss_op: bool,
|
||||
feature_weight: Sequence[float],
|
||||
loss_weight: loss_functions.PerceptualLossWeight,
|
||||
loss_values: Dict[str, float],
|
||||
):
|
||||
perceptual_loss = MockPerceptualLoss(
|
||||
use_mock_loss_op=use_mock_loss_op,
|
||||
feature_weight=feature_weight,
|
||||
loss_weight=loss_weight,
|
||||
)
|
||||
loss = perceptual_loss(img1=self._img1, img2=self._img2)
|
||||
self.assertEqual(list(loss.keys()), ['style_loss', 'content_loss'])
|
||||
self.assertNear(loss['style_loss'], loss_values['style_loss'], 1e-4)
|
||||
self.assertNear(loss['content_loss'], loss_values['content_loss'], 1e-4)
|
||||
|
||||
|
||||
class VGGPerceptualLossTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Mock tempfile.gettempdir() to be unique for each test to avoid race
|
||||
# condition when downloading model since these tests may run in parallel.
|
||||
mock_gettempdir = unittest_mock.patch.object(
|
||||
tempfile,
|
||||
'gettempdir',
|
||||
return_value=self.create_tempdir(),
|
||||
autospec=True,
|
||||
)
|
||||
self.mock_gettempdir = mock_gettempdir.start()
|
||||
self.addCleanup(mock_gettempdir.stop)
|
||||
self._img1 = tf.fill(dims=(1, 256, 256, 3), value=0.1)
|
||||
self._img2 = tf.fill(dims=(1, 256, 256, 3), value=0.9)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
dict(
|
||||
testcase_name='default_loss_weight',
|
||||
loss_weight=None,
|
||||
loss_values={
|
||||
'style_loss': 5.8363257e-06,
|
||||
'content_loss': 1.7016045,
|
||||
},
|
||||
),
|
||||
dict(
|
||||
testcase_name='customized_loss_weight',
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
style=10.0, content=20.0
|
||||
),
|
||||
loss_values={
|
||||
'style_loss': 5.8363257e-05,
|
||||
'content_loss': 34.03208,
|
||||
},
|
||||
),
|
||||
)
|
||||
def test_vgg_perceptual_loss(self, loss_weight, loss_values):
|
||||
vgg_loss = loss_functions.VGGPerceptualLoss(loss_weight=loss_weight)
|
||||
loss = vgg_loss(img1=self._img1, img2=self._img2)
|
||||
self.assertEqual(list(loss.keys()), ['style_loss', 'content_loss'])
|
||||
self.assertNear(
|
||||
loss['style_loss'],
|
||||
loss_values['style_loss'],
|
||||
loss_values['style_loss'] / 1e5,
|
||||
)
|
||||
self.assertNear(
|
||||
loss['content_loss'],
|
||||
loss_values['content_loss'],
|
||||
loss_values['content_loss'] / 1e5,
|
||||
)
|
||||
|
||||
|
||||
class ImagePerceptualQualityLossTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Mock tempfile.gettempdir() to be unique for each test to avoid race
|
||||
# condition when downloading model since these tests may run in parallel.
|
||||
mock_gettempdir = unittest_mock.patch.object(
|
||||
tempfile,
|
||||
'gettempdir',
|
||||
return_value=self.create_tempdir(),
|
||||
autospec=True,
|
||||
)
|
||||
self.mock_gettempdir = mock_gettempdir.start()
|
||||
self.addCleanup(mock_gettempdir.stop)
|
||||
self._img1 = tf.fill(dims=(1, 256, 256, 3), value=0.1)
|
||||
self._img2 = tf.fill(dims=(1, 256, 256, 3), value=0.9)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
dict(
|
||||
testcase_name='default_loss_weight',
|
||||
loss_weight=None,
|
||||
loss_value=2.501612,
|
||||
),
|
||||
dict(
|
||||
testcase_name='customized_loss_weight_zero_l1',
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
l1=0.0, style=10.0, content=20.0
|
||||
),
|
||||
loss_value=34.032139,
|
||||
),
|
||||
dict(
|
||||
testcase_name='customized_loss_weight_nonzero_l1',
|
||||
loss_weight=loss_functions.PerceptualLossWeight(
|
||||
l1=10.0, style=10.0, content=20.0
|
||||
),
|
||||
loss_value=42.032139,
|
||||
),
|
||||
)
|
||||
def test_image_perceptual_quality_loss(self, loss_weight, loss_value):
|
||||
image_quality_loss = loss_functions.ImagePerceptualQualityLoss(
|
||||
loss_weight=loss_weight
|
||||
)
|
||||
loss = image_quality_loss(img1=self._img1, img2=self._img2)
|
||||
self.assertNear(loss, loss_value, 1e-4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
# Copyright 2022 The MediaPipe Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user