Added some files necessary for the Face Stylizer implementation
This commit is contained in:
parent
5398b8881d
commit
7463e48fd4
|
@ -94,6 +94,7 @@ cc_library(
|
|||
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
|
||||
"//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph",
|
||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||
"//mediapipe/tasks/cc/vision/face_stylizer:face_stylizer_graph",
|
||||
] + select({
|
||||
# TODO: Build text_classifier_graph and text_embedder_graph on Windows.
|
||||
"//mediapipe:windows": [],
|
||||
|
|
|
@ -114,3 +114,20 @@ py_test(
|
|||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "face_stylizer_test",
|
||||
srcs = ["face_stylizer_test.py"],
|
||||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:face_stylizer",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
|
118
mediapipe/tasks/python/test/vision/face_stylizer_test.py
Normal file
118
mediapipe/tasks/python/test/vision/face_stylizer_test.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for face stylizer."""
|
||||
|
||||
import enum
|
||||
import os
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import face_stylizer
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Image = image_module.Image
|
||||
_FaceStylizer = face_stylizer.FaceStylizer
|
||||
_FaceStylizerOptions = face_stylizer.FaceStylizerOptions
|
||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
|
||||
_MODEL = 'face_stylizer_model_placeholder.tflite'
|
||||
_IMAGE = 'cats_and_dogs.jpg'
|
||||
_STYLIZED_IMAGE = 'stylized_image_placeholder.jpg'
|
||||
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
FILE_CONTENT = 1
|
||||
FILE_NAME = 2
|
||||
|
||||
|
||||
class FaceStylizerTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _IMAGE)))
|
||||
self.model_path = test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _MODEL))
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
with _FaceStylizer.create_from_model_path(self.model_path) as stylizer:
|
||||
self.assertIsInstance(stylizer, _FaceStylizer)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||
# Creates with options containing model file successfully.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _FaceStylizerOptions(base_options=base_options)
|
||||
with _FaceStylizer.create_from_options(options) as stylizer:
|
||||
self.assertIsInstance(stylizer, _FaceStylizer)
|
||||
|
||||
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
|
||||
base_options = _BaseOptions(
|
||||
model_asset_path='/path/to/invalid/model.tflite')
|
||||
options = _FaceStylizerOptions(base_options=base_options)
|
||||
_FaceStylizer.create_from_options(options)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||
# Creates with options containing model content successfully.
|
||||
with open(self.model_path, 'rb') as f:
|
||||
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||
options = _FaceStylizerOptions(base_options=base_options)
|
||||
stylizer = _FaceStylizer.create_from_options(options)
|
||||
self.assertIsInstance(stylizer, _FaceStylizer)
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME, _STYLIZED_IMAGE),
|
||||
(ModelFileType.FILE_CONTENT, _STYLIZED_IMAGE))
|
||||
def test_stylize(self, model_file_type, expected_detection_result_file):
|
||||
# Creates stylizer.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _FaceStylizerOptions(base_options=base_options)
|
||||
stylizer = _FaceStylizer.create_from_options(options)
|
||||
|
||||
# Performs face stylization on the input.
|
||||
stylized_image = stylizer.detect(self.test_image)
|
||||
# Comparing results.
|
||||
self.assertTrue(
|
||||
np.array_equal(stylized_image.numpy_view(),
|
||||
self.test_image.numpy_view()))
|
||||
# Closes the stylizer explicitly when the stylizer is not used in
|
||||
# a context.
|
||||
stylizer.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
|
@ -152,3 +152,22 @@ py_library(
|
|||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "face_stylizer",
|
||||
srcs = [
|
||||
"face_stylizer.py",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/python:packet_creator",
|
||||
"//mediapipe/python:packet_getter",
|
||||
"//mediapipe/tasks/cc/vision/image_segmenter/proto:face_stylizer_graph_options_py_pb2",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
"//mediapipe/tasks/python/core:task_info",
|
||||
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
|
254
mediapipe/tasks/python/vision/face_stylizer.py
Normal file
254
mediapipe/tasks/python/vision/face_stylizer.py
Normal file
|
@ -0,0 +1,254 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MediaPipe face stylizer task."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Callable, Mapping, Optional
|
||||
|
||||
from mediapipe.python import packet_creator
|
||||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet as packet_module
|
||||
from mediapipe.tasks.cc.vision.face_stylizer.proto import face_stylizer_graph_options_pb2
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_FaceStylizerGraphOptionsProto = face_stylizer_graph_options_pb2.FaceStylizerGraphOptions
|
||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
|
||||
_STYLIZED_IMAGE_NAME = 'stylized_image'
|
||||
_STYLIZED_IMAGE_TAG = 'STYLIZED_IMAGE'
|
||||
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||
_NORM_RECT_TAG = 'NORM_RECT'
|
||||
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||
_IMAGE_TAG = 'IMAGE'
|
||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.face_stylizer.FaceStylizerGraph'
|
||||
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class FaceStylizerOptions:
|
||||
"""Options for the face stylizer task.
|
||||
|
||||
Attributes:
|
||||
base_options: Base options for the face stylizer task.
|
||||
running_mode: The running mode of the task. Default to the image mode.
|
||||
Face stylizer task has three running modes:
|
||||
1) The image mode for stylizing faces on single image inputs.
|
||||
2) The video mode for stylizing faces on the decoded frames of a video.
|
||||
3) The live stream mode for stylizing faces on a live stream of input
|
||||
data, such as from camera.
|
||||
result_callback: The user-defined result callback for processing live stream
|
||||
data. The result callback should only be specified when the running mode
|
||||
is set to the live stream mode.
|
||||
"""
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
result_callback: Optional[
|
||||
Callable[[image_module.Image, image_module.Image, int],
|
||||
None]] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _FaceStylizerGraphOptionsProto:
|
||||
"""Generates an FaceStylizerOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||
return _FaceStylizerGraphOptionsProto(base_options=base_options_proto)
|
||||
|
||||
|
||||
class FaceStylizer(base_vision_task_api.BaseVisionTaskApi):
|
||||
"""Class that performs face stylization on images."""
|
||||
|
||||
@classmethod
|
||||
def create_from_model_path(cls, model_path: str) -> 'FaceStylizer':
|
||||
"""Creates an `FaceStylizer` object from a TensorFlow Lite model and the default `FaceStylizerOptions`.
|
||||
|
||||
Note that the created `FaceDetector` instance is in image mode, for
|
||||
stylizing faces on single image inputs.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model.
|
||||
|
||||
Returns:
|
||||
`FaceStylizer` object that's created from the model file and the default
|
||||
`FaceStylizerOptions`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceStylizer` object from the provided
|
||||
file such as invalid file path.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
options = FaceStylizerOptions(
|
||||
base_options=base_options, running_mode=_RunningMode.IMAGE)
|
||||
return cls.create_from_options(options)
|
||||
|
||||
@classmethod
|
||||
def create_from_options(cls,
|
||||
options: FaceStylizerOptions) -> 'FaceStylizer':
|
||||
"""Creates the `FaceStylizer` object from face stylizer options.
|
||||
|
||||
Args:
|
||||
options: Options for the face stylizer task.
|
||||
|
||||
Returns:
|
||||
`FaceStylizer` object that's created from `options`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `FaceStylizer` object from
|
||||
`FaceStylizerOptions` such as missing the model.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
|
||||
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
||||
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||
return
|
||||
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
||||
stylized_image_packet = output_packets[_STYLIZED_IMAGE_NAME]
|
||||
options.result_callback(
|
||||
stylized_image_packet, image,
|
||||
stylized_image_packet.timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
|
||||
|
||||
task_info = _TaskInfo(
|
||||
task_graph=_TASK_GRAPH_NAME,
|
||||
input_streams=[
|
||||
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||
],
|
||||
output_streams=[
|
||||
':'.join([_STYLIZED_IMAGE_TAG, _STYLIZED_IMAGE_NAME]),
|
||||
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME])
|
||||
],
|
||||
task_options=options)
|
||||
return cls(
|
||||
task_info.generate_graph_config(
|
||||
enable_flow_limiting=options.running_mode ==
|
||||
_RunningMode.LIVE_STREAM), options.running_mode,
|
||||
packets_callback if options.result_callback else None)
|
||||
|
||||
def stylize(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> image_module.Image:
|
||||
"""Performs face stylization on the provided MediaPipe Image.
|
||||
|
||||
Only use this method when the FaceStylizer is created with the image
|
||||
running mode.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The stylized image.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If face stylization failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||
output_packets = self._process_image_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2())
|
||||
})
|
||||
return output_packets[_STYLIZED_IMAGE_NAME]
|
||||
|
||||
def stylize_for_video(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> image_module.Image:
|
||||
"""Performs face stylization on the provided video frames.
|
||||
|
||||
Only use this method when the FaceStylizer is created with the video
|
||||
running mode. It's required to provide the video frame's timestamp (in
|
||||
milliseconds) along with the video frame. The input timestamps should be
|
||||
monotonically increasing for adjacent calls of this method.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The stylized image.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If face stylization failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||
output_packets = self._process_video_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||
})
|
||||
return output_packets[_STYLIZED_IMAGE_NAME]
|
||||
|
||||
def stylize_async(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||
) -> None:
|
||||
"""Sends live image data (an Image with a unique timestamp) to perform face stylization.
|
||||
|
||||
Only use this method when the FaceStylizer is created with the live stream
|
||||
running mode. The input timestamps should be monotonically increasing for
|
||||
adjacent calls of this method. This method will return immediately after the
|
||||
input image is accepted. The results will be available via the
|
||||
`result_callback` provided in the `FaceStylizerOptions`. The
|
||||
`stylize_async` method is designed to process live stream data such as camera
|
||||
input. To lower the overall latency, face stylizer may drop the input
|
||||
images if needed. In other words, it's not guaranteed to have output per
|
||||
input image.
|
||||
|
||||
The `result_callback` provides:
|
||||
- The stylized image.
|
||||
- The input image that the face stylizer runs on.
|
||||
- The input timestamp in milliseconds.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Raises:
|
||||
ValueError: If the current input timestamp is smaller than what the face
|
||||
stylizer has already processed.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||
self._send_live_stream_data({
|
||||
_IMAGE_IN_STREAM_NAME:
|
||||
packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
_NORM_RECT_STREAM_NAME:
|
||||
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||
})
|
Loading…
Reference in New Issue
Block a user