Merge branch 'google:master' into gesture-recognizer-python

This commit is contained in:
Kinar R 2022-10-30 20:55:53 +05:30 committed by GitHub
commit 6f485ae3dd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 563 additions and 25 deletions

View File

@ -75,6 +75,7 @@ constexpr char kTestGraphConfig2[] = R"pb(
output_stream: "FEDERATED_GAZE_OUTPUT:federated_gaze_output"
options {
[mediapipe.SwitchContainerOptions.ext] {
async_selection: true
contained_node: { calculator: "AppearancesPassThroughSubgraph" }
}
}
@ -101,6 +102,7 @@ constexpr char kTestGraphConfig3[] = R"pb(
output_stream: "FEDERATED_GAZE_OUTPUT:federated_gaze_output"
options {
[mediapipe.SwitchContainerOptions.ext] {
async_selection: true
contained_node: {
calculator: "BypassCalculator"
node_options: {

View File

@ -50,7 +50,7 @@ namespace mediapipe {
// calculator: "EndLoopWithOutputCalculator"
// input_stream: "ITEM:output_of_loop_body" # ItemU @loop_internal_ts
// input_stream: "BATCH_END:ext_ts" # Timestamp @loop_internal_ts
// output_stream: "OUTPUT:aggregated_result" # IterableU @ext_ts
// output_stream: "ITERABLE:aggregated_result" # IterableU @ext_ts
// }
template <typename IterableT>
class EndLoopCalculator : public CalculatorBase {

View File

@ -109,6 +109,56 @@ cc_test(
],
)
mediapipe_proto_library(
name = "tensors_to_audio_calculator_proto",
srcs = ["tensors_to_audio_calculator.proto"],
visibility = [
"//mediapipe/framework:mediapipe_internal",
],
deps = [
"//mediapipe/framework:calculator_options_proto",
"//mediapipe/framework:calculator_proto",
],
)
cc_library(
name = "tensors_to_audio_calculator",
srcs = ["tensors_to_audio_calculator.cc"],
visibility = [
"//mediapipe/framework:mediapipe_internal",
],
deps = [
":tensors_to_audio_calculator_cc_proto",
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework/api2:node",
"//mediapipe/framework/formats:matrix",
"//mediapipe/framework/formats:tensor",
"//mediapipe/framework/port:ret_check",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/status",
"@com_google_audio_tools//audio/dsp:window_functions",
"@pffft",
],
alwayslink = 1,
)
cc_test(
name = "tensors_to_audio_calculator_test",
srcs = ["tensors_to_audio_calculator_test.cc"],
deps = [
":audio_to_tensor_calculator",
":audio_to_tensor_calculator_cc_proto",
":tensors_to_audio_calculator",
":tensors_to_audio_calculator_cc_proto",
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework/formats:matrix",
"//mediapipe/framework/port:gtest_main",
"//mediapipe/framework/port:parse_text_proto",
"@com_google_absl//absl/status",
"@com_google_absl//absl/strings",
],
)
mediapipe_proto_library(
name = "feedback_tensors_calculator_proto",
srcs = ["feedback_tensors_calculator.proto"],

View File

@ -133,7 +133,7 @@ bool IsValidFftSize(int size) {
// invocation. In the non-streaming mode, the vector contains all of the
// output timestamps for an input audio buffer.
// DC_AND_NYQUIST - std::pair<float, float> @Optional.
// A pair of dc component and nyquest component. Only can be connected when
// A pair of dc component and nyquist component. Only can be connected when
// the calculator performs fft (the fft_size is set in the calculator
// options).
//

View File

@ -0,0 +1,197 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cmath>
#include <cstring>
#include <new>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/status/status.h"
#include "audio/dsp/window_functions.h"
#include "mediapipe/calculators/tensor/tensors_to_audio_calculator.pb.h"
#include "mediapipe/framework/api2/node.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/matrix.h"
#include "mediapipe/framework/formats/tensor.h"
#include "mediapipe/framework/port/ret_check.h"
#include "pffft.h"
namespace mediapipe {
namespace api2 {
namespace {
std::vector<float> HannWindow(int window_size, bool sqrt_hann) {
std::vector<float> hann_window(window_size);
audio_dsp::HannWindow().GetPeriodicSamples(window_size, &hann_window);
if (sqrt_hann) {
absl::c_transform(hann_window, hann_window.begin(),
[](double x) { return std::sqrt(x); });
}
return hann_window;
}
// Note that the InvHannWindow function may only work for 50% overlapping case.
std::vector<float> InvHannWindow(int window_size, bool sqrt_hann) {
std::vector<float> window = HannWindow(window_size, sqrt_hann);
std::vector<float> inv_window(window.size());
if (sqrt_hann) {
absl::c_copy(window, inv_window.begin());
} else {
const int kHalfWindowSize = window.size() / 2;
absl::c_transform(window, inv_window.begin(),
[](double x) { return x * x; });
for (int i = 0; i < kHalfWindowSize; ++i) {
double sum = inv_window[i] + inv_window[kHalfWindowSize + i];
inv_window[i] = window[i] / sum;
inv_window[kHalfWindowSize + i] = window[kHalfWindowSize + i] / sum;
}
}
return inv_window;
}
// PFFFT only supports transforms for inputs of length N of the form
// N = (2^a)*(3^b)*(5^c) where b >=0 and c >= 0 and a >= 5 for the real FFT.
bool IsValidFftSize(int size) {
if (size <= 0) {
return false;
}
constexpr int kFactors[] = {2, 3, 5};
int factorization[] = {0, 0, 0};
int n = static_cast<int>(size);
for (int i = 0; i < 3; ++i) {
while (n % kFactors[i] == 0) {
n = n / kFactors[i];
++factorization[i];
}
}
return factorization[0] >= 5 && n == 1;
}
} // namespace
// Converts 2D MediaPipe float Tensors to audio buffers.
// The calculator will perform ifft on the complex DFT and apply the window
// function (Inverse Hann) afterwards. The input 2D MediaPipe Tensor must
// have the DFT real parts in its first row and the DFT imagery parts in its
// second row. A valid "fft_size" must be set in the CalculatorOptions.
//
// Inputs:
// TENSORS - std::vector<Tensor>
// Vector containing a single Tensor that represents the audio's complex DFT
// results.
// DC_AND_NYQUIST - std::pair<float, float>
// A pair of dc component and nyquist component.
//
// Outputs:
// AUDIO - mediapipe::Matrix
// The audio data represented as mediapipe::Matrix.
//
// Example:
// node {
// calculator: "TensorsToAudioCalculator"
// input_stream: "TENSORS:tensors"
// input_stream: "DC_AND_NYQUIST:dc_and_nyquist"
// output_stream: "AUDIO:audio"
// options {
// [mediapipe.AudioToTensorCalculatorOptions.ext] {
// fft_size: 256
// }
// }
// }
class TensorsToAudioCalculator : public Node {
public:
static constexpr Input<std::vector<Tensor>> kTensorsIn{"TENSORS"};
static constexpr Input<std::pair<float, float>> kDcAndNyquistIn{
"DC_AND_NYQUIST"};
static constexpr Output<Matrix> kAudioOut{"AUDIO"};
MEDIAPIPE_NODE_CONTRACT(kTensorsIn, kDcAndNyquistIn, kAudioOut);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
// The internal state of the FFT library.
PFFFT_Setup* fft_state_ = nullptr;
int fft_size_ = 0;
float inverse_fft_size_ = 0;
std::vector<float, Eigen::aligned_allocator<float>> input_dft_;
std::vector<float> inv_fft_window_;
std::vector<float, Eigen::aligned_allocator<float>> fft_input_buffer_;
// pffft requires memory to work with to avoid using the stack.
std::vector<float, Eigen::aligned_allocator<float>> fft_workplace_;
std::vector<float, Eigen::aligned_allocator<float>> fft_output_;
};
absl::Status TensorsToAudioCalculator::Open(CalculatorContext* cc) {
const auto& options =
cc->Options<mediapipe::TensorsToAudioCalculatorOptions>();
RET_CHECK(options.has_fft_size()) << "FFT size must be specified.";
RET_CHECK(IsValidFftSize(options.fft_size()))
<< "FFT size must be of the form fft_size = (2^a)*(3^b)*(5^c) where b "
">=0 and c >= 0 and a >= 5, the requested fft size is "
<< options.fft_size();
fft_size_ = options.fft_size();
inverse_fft_size_ = 1.0f / fft_size_;
fft_state_ = pffft_new_setup(fft_size_, PFFFT_REAL);
input_dft_.resize(fft_size_);
inv_fft_window_ = InvHannWindow(fft_size_, /* sqrt_hann = */ false);
fft_input_buffer_.resize(fft_size_);
fft_workplace_.resize(fft_size_);
fft_output_.resize(fft_size_);
return absl::OkStatus();
}
absl::Status TensorsToAudioCalculator::Process(CalculatorContext* cc) {
if (kTensorsIn(cc).IsEmpty() || kDcAndNyquistIn(cc).IsEmpty()) {
return absl::OkStatus();
}
const auto& input_tensors = *kTensorsIn(cc);
RET_CHECK_EQ(input_tensors.size(), 1);
RET_CHECK(input_tensors[0].element_type() == Tensor::ElementType::kFloat32);
auto view = input_tensors[0].GetCpuReadView();
// DC's real part.
input_dft_[0] = kDcAndNyquistIn(cc)->first;
// Nyquist's real part is the penultimate element of the tensor buffer.
// pffft ignores the Nyquist's imagery part. No need to fetch the last value
// from the tensor buffer.
input_dft_[1] = *(view.buffer<float>() + (fft_size_ - 2));
std::memcpy(input_dft_.data() + 2, view.buffer<float>(),
(fft_size_ - 2) * sizeof(float));
pffft_transform_ordered(fft_state_, input_dft_.data(), fft_output_.data(),
fft_workplace_.data(), PFFFT_BACKWARD);
// Applies the inverse window function.
std::transform(
fft_output_.begin(), fft_output_.end(), inv_fft_window_.begin(),
fft_output_.begin(),
[this](float a, float b) { return a * b * inverse_fft_size_; });
Matrix matrix = Eigen::Map<Matrix>(fft_output_.data(), 1, fft_output_.size());
kAudioOut(cc).Send(std::move(matrix));
return absl::OkStatus();
}
absl::Status TensorsToAudioCalculator::Close(CalculatorContext* cc) {
if (fft_state_) {
pffft_destroy_setup(fft_state_);
}
return absl::OkStatus();
}
MEDIAPIPE_REGISTER_NODE(TensorsToAudioCalculator);
} // namespace api2
} // namespace mediapipe

View File

@ -0,0 +1,29 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package mediapipe;
import "mediapipe/framework/calculator.proto";
message TensorsToAudioCalculatorOptions {
extend mediapipe.CalculatorOptions {
optional TensorsToAudioCalculatorOptions ext = 484297136;
}
// Size of the fft in number of bins. If set, the calculator will do ifft
// on the input tensor.
optional int64 fft_size = 1;
}

View File

@ -0,0 +1,149 @@
// Copyright 2022 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <new>
#include <string>
#include <vector>
#include "absl/status/status.h"
#include "absl/strings/substitute.h"
#include "mediapipe/calculators/tensor/audio_to_tensor_calculator.pb.h"
#include "mediapipe/calculators/tensor/tensors_to_audio_calculator.pb.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/matrix.h"
#include "mediapipe/framework/port/gtest.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status_matchers.h"
namespace mediapipe {
namespace {
class TensorsToAudioCalculatorFftTest : public ::testing::Test {
protected:
// Creates an audio matrix containing a single sample of 1.0 at a specified
// offset.
Matrix CreateImpulseSignalData(int64 num_samples, int impulse_offset_idx) {
Matrix impulse = Matrix::Zero(1, num_samples);
impulse(0, impulse_offset_idx) = 1.0;
return impulse;
}
void ConfigGraph(int num_samples, double sample_rate, int fft_size) {
graph_config_ = ParseTextProtoOrDie<CalculatorGraphConfig>(
absl::Substitute(R"(
input_stream: "audio_in"
input_stream: "sample_rate"
output_stream: "audio_out"
node {
calculator: "AudioToTensorCalculator"
input_stream: "AUDIO:audio_in"
input_stream: "SAMPLE_RATE:sample_rate"
output_stream: "TENSORS:tensors"
output_stream: "DC_AND_NYQUIST:dc_and_nyquist"
options {
[mediapipe.AudioToTensorCalculatorOptions.ext] {
num_channels: 1
num_samples: $0
num_overlapping_samples: 0
target_sample_rate: $1
fft_size: $2
}
}
}
node {
calculator: "TensorsToAudioCalculator"
input_stream: "TENSORS:tensors"
input_stream: "DC_AND_NYQUIST:dc_and_nyquist"
output_stream: "AUDIO:audio_out"
options {
[mediapipe.TensorsToAudioCalculatorOptions.ext] {
fft_size: $2
}
}
}
)",
/*$0=*/num_samples,
/*$1=*/sample_rate,
/*$2=*/fft_size));
tool::AddVectorSink("audio_out", &graph_config_, &audio_out_packets_);
}
void RunGraph(const Matrix& input_data, double sample_rate) {
MP_ASSERT_OK(graph_.Initialize(graph_config_));
MP_ASSERT_OK(graph_.StartRun({}));
MP_ASSERT_OK(graph_.AddPacketToInputStream(
"sample_rate", MakePacket<double>(sample_rate).At(Timestamp(0))));
MP_ASSERT_OK(graph_.AddPacketToInputStream(
"audio_in", MakePacket<Matrix>(input_data).At(Timestamp(0))));
MP_ASSERT_OK(graph_.CloseAllInputStreams());
MP_ASSERT_OK(graph_.WaitUntilDone());
}
std::vector<Packet> audio_out_packets_;
CalculatorGraphConfig graph_config_;
CalculatorGraph graph_;
};
TEST_F(TensorsToAudioCalculatorFftTest, TestInvalidFftSize) {
ConfigGraph(320, 16000, 103);
MP_ASSERT_OK(graph_.Initialize(graph_config_));
MP_ASSERT_OK(graph_.StartRun({}));
auto status = graph_.WaitUntilIdle();
EXPECT_EQ(status.code(), absl::StatusCode::kInternal);
EXPECT_THAT(status.message(),
::testing::HasSubstr("FFT size must be of the form"));
}
TEST_F(TensorsToAudioCalculatorFftTest, TestImpulseSignalAtTheCenter) {
constexpr int sample_size = 320;
constexpr double sample_rate = 16000;
ConfigGraph(sample_size, sample_rate, 320);
Matrix impulse_data = CreateImpulseSignalData(sample_size, sample_size / 2);
RunGraph(impulse_data, sample_rate);
ASSERT_EQ(1, audio_out_packets_.size());
MP_ASSERT_OK(audio_out_packets_[0].ValidateAsType<Matrix>());
// The impulse signal at the center is not affected by the window function.
EXPECT_EQ(audio_out_packets_[0].Get<Matrix>(), impulse_data);
}
TEST_F(TensorsToAudioCalculatorFftTest, TestWindowedImpulseSignal) {
constexpr int sample_size = 320;
constexpr double sample_rate = 16000;
ConfigGraph(sample_size, sample_rate, 320);
Matrix impulse_data = CreateImpulseSignalData(sample_size, sample_size / 4);
RunGraph(impulse_data, sample_rate);
ASSERT_EQ(1, audio_out_packets_.size());
MP_ASSERT_OK(audio_out_packets_[0].ValidateAsType<Matrix>());
// As the impulse signal sits at the 1/4 of the hann window, the inverse
// window function reduces it by half.
EXPECT_EQ(audio_out_packets_[0].Get<Matrix>(), impulse_data / 2);
}
TEST_F(TensorsToAudioCalculatorFftTest, TestImpulseSignalAtBeginning) {
constexpr int sample_size = 320;
constexpr double sample_rate = 16000;
ConfigGraph(sample_size, sample_rate, 320);
Matrix impulse_data = CreateImpulseSignalData(sample_size, 0);
RunGraph(impulse_data, sample_rate);
ASSERT_EQ(1, audio_out_packets_.size());
MP_ASSERT_OK(audio_out_packets_[0].ValidateAsType<Matrix>());
// As the impulse signal sits at the beginning of the hann window, the inverse
// window function completely removes it.
EXPECT_EQ(audio_out_packets_[0].Get<Matrix>(), Matrix::Zero(1, sample_size));
}
} // namespace
} // namespace mediapipe

View File

@ -105,10 +105,10 @@ CalculatorGraphConfig::Node* BuildMuxNode(
// Returns a PacketSequencerCalculator node.
CalculatorGraphConfig::Node* BuildTimestampNode(CalculatorGraphConfig* config,
bool synchronize_io) {
bool async_selection) {
CalculatorGraphConfig::Node* result = config->add_node();
*result->mutable_calculator() = "PacketSequencerCalculator";
if (synchronize_io) {
if (!async_selection) {
*result->mutable_input_stream_handler()->mutable_input_stream_handler() =
"DefaultInputStreamHandler";
}
@ -239,6 +239,15 @@ bool HasTag(const proto_ns::RepeatedPtrField<std::string>& streams,
return tags.count({tag, 0}) > 0;
}
// Returns true if a set of "TAG::index" includes a TagIndex.
bool ContainsTag(const proto_ns::RepeatedPtrField<std::string>& tags,
TagIndex item) {
for (const std::string& t : tags) {
if (ParseTagIndex(t) == item) return true;
}
return false;
}
absl::StatusOr<CalculatorGraphConfig> SwitchContainer::GetConfig(
const Subgraph::SubgraphOptions& options) {
CalculatorGraphConfig config;
@ -263,17 +272,17 @@ absl::StatusOr<CalculatorGraphConfig> SwitchContainer::GetConfig(
std::string enable_stream = "ENABLE:gate_enable";
// Add a PacketSequencerCalculator node for "SELECT" or "ENABLE" streams.
bool synchronize_io =
Subgraph::GetOptions<mediapipe::SwitchContainerOptions>(options)
.synchronize_io();
const auto& switch_options =
Subgraph::GetOptions<mediapipe::SwitchContainerOptions>(options);
bool async_selection = switch_options.async_selection();
if (HasTag(container_node.input_stream(), "SELECT")) {
select_node = BuildTimestampNode(&config, synchronize_io);
select_node = BuildTimestampNode(&config, async_selection);
select_node->add_input_stream("INPUT:gate_select");
select_node->add_output_stream("OUTPUT:gate_select_timed");
select_stream = "SELECT:gate_select_timed";
}
if (HasTag(container_node.input_stream(), "ENABLE")) {
enable_node = BuildTimestampNode(&config, synchronize_io);
enable_node = BuildTimestampNode(&config, async_selection);
enable_node->add_input_stream("INPUT:gate_enable");
enable_node->add_output_stream("OUTPUT:gate_enable_timed");
enable_stream = "ENABLE:gate_enable_timed";
@ -296,7 +305,7 @@ absl::StatusOr<CalculatorGraphConfig> SwitchContainer::GetConfig(
mux->add_input_side_packet("SELECT:gate_select");
mux->add_input_side_packet("ENABLE:gate_enable");
// Add input streams for graph and demux and the timestamper.
// Add input streams for graph and demux.
config.add_input_stream("SELECT:gate_select");
config.add_input_stream("ENABLE:gate_enable");
config.add_input_side_packet("SELECT:gate_select");
@ -306,6 +315,12 @@ absl::StatusOr<CalculatorGraphConfig> SwitchContainer::GetConfig(
std::string stream = CatStream(p.first, p.second);
config.add_input_stream(stream);
demux->add_input_stream(stream);
}
// Add input streams for the timestamper.
auto& tick_streams = switch_options.tick_input_stream();
for (const auto& p : input_tags) {
if (!tick_streams.empty() && !ContainsTag(tick_streams, p.first)) continue;
TagIndex tick_tag{"TICK", tick_index++};
if (select_node) {
select_node->add_input_stream(CatStream(tick_tag, p.second));

View File

@ -25,6 +25,14 @@ message SwitchContainerOptions {
// Activates channel 1 for enable = true, channel 0 otherwise.
optional bool enable = 4;
// Use DefaultInputStreamHandler for muxing & demuxing.
// Use DefaultInputStreamHandler for demuxing.
optional bool synchronize_io = 5;
// Use ImmediateInputStreamHandler for channel selection.
optional bool async_selection = 6;
// Specifies an input stream, "TAG:index", that defines the processed
// timestamps. SwitchContainer awaits output at the last processed
// timestamp before advancing from one selected channel to the next.
repeated string tick_input_stream = 7;
}

View File

@ -252,6 +252,9 @@ TEST(SwitchContainerTest, ApplyToSubnodes) {
input_stream: "INPUT:enable"
input_stream: "TICK:foo"
output_stream: "OUTPUT:switchcontainer__gate_enable_timed"
input_stream_handler {
input_stream_handler: "DefaultInputStreamHandler"
}
}
node {
name: "switchcontainer__SwitchDemuxCalculator"
@ -306,7 +309,8 @@ TEST(SwitchContainerTest, ApplyToSubnodes) {
// Shows the SwitchContainer container runs with a pair of simple subnodes.
TEST(SwitchContainerTest, RunsWithSubnodes) {
EXPECT_TRUE(SubgraphRegistry::IsRegistered("SwitchContainer"));
CalculatorGraphConfig supergraph = SubnodeContainerExample();
CalculatorGraphConfig supergraph =
SubnodeContainerExample("async_selection: true");
MP_EXPECT_OK(tool::ExpandSubgraphs(&supergraph));
RunTestContainer(supergraph);
}

View File

@ -14,6 +14,7 @@
#include <algorithm>
#include <memory>
#include <queue>
#include <set>
#include <string>
@ -54,21 +55,47 @@ namespace mediapipe {
// contained subgraph or calculator nodes.
//
class SwitchDemuxCalculator : public CalculatorBase {
static constexpr char kSelectTag[] = "SELECT";
static constexpr char kEnableTag[] = "ENABLE";
public:
static absl::Status GetContract(CalculatorContract* cc);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
private:
absl::Status RecordPackets(CalculatorContext* cc);
int ChannelIndex(Timestamp timestamp);
absl::Status SendActivePackets(CalculatorContext* cc);
private:
int channel_index_;
std::set<std::string> channel_tags_;
using PacketQueue = std::map<CollectionItemId, std::queue<Packet>>;
PacketQueue input_queue_;
std::map<Timestamp, int> channel_history_;
};
REGISTER_CALCULATOR(SwitchDemuxCalculator);
namespace {
static constexpr char kSelectTag[] = "SELECT";
static constexpr char kEnableTag[] = "ENABLE";
// Returns the last received timestamp for an input stream.
inline Timestamp SettledTimestamp(const InputStreamShard& input) {
return input.Value().Timestamp();
}
// Returns the last received timestamp for channel selection.
inline Timestamp ChannelSettledTimestamp(CalculatorContext* cc) {
Timestamp result = Timestamp::Done();
if (cc->Inputs().HasTag(kEnableTag)) {
result = SettledTimestamp(cc->Inputs().Tag(kEnableTag));
} else if (cc->Inputs().HasTag(kSelectTag)) {
result = SettledTimestamp(cc->Inputs().Tag(kSelectTag));
}
return result;
}
} // namespace
absl::Status SwitchDemuxCalculator::GetContract(CalculatorContract* cc) {
// Allow any one of kSelectTag, kEnableTag.
cc->Inputs().Tag(kSelectTag).Set<int>().Optional();
@ -125,6 +152,7 @@ absl::Status SwitchDemuxCalculator::GetContract(CalculatorContract* cc) {
absl::Status SwitchDemuxCalculator::Open(CalculatorContext* cc) {
channel_index_ = tool::GetChannelIndex(*cc, channel_index_);
channel_tags_ = ChannelTags(cc->Outputs().TagMap());
channel_history_[Timestamp::Unstarted()] = channel_index_;
// Relay side packets to all channels.
// Note: This is necessary because Calculator::Open only proceeds when every
@ -164,21 +192,77 @@ absl::Status SwitchDemuxCalculator::Open(CalculatorContext* cc) {
}
absl::Status SwitchDemuxCalculator::Process(CalculatorContext* cc) {
// Update the input channel index if specified.
channel_index_ = tool::GetChannelIndex(*cc, channel_index_);
MP_RETURN_IF_ERROR(RecordPackets(cc));
MP_RETURN_IF_ERROR(SendActivePackets(cc));
return absl::OkStatus();
}
// Relay packets and timestamps only to channel_index_.
// Enqueue all arriving packets and bounds.
absl::Status SwitchDemuxCalculator::RecordPackets(CalculatorContext* cc) {
// Enqueue any new arriving packets.
for (const std::string& tag : channel_tags_) {
for (int index = 0; index < cc->Inputs().NumEntries(tag); ++index) {
auto& input = cc->Inputs().Get(tag, index);
std::string output_tag = tool::ChannelTag(tag, channel_index_);
auto output_id = cc->Outputs().GetId(output_tag, index);
if (output_id.IsValid()) {
auto& output = cc->Outputs().Get(output_tag, index);
tool::Relay(input, &output);
auto input_id = cc->Inputs().GetId(tag, index);
Packet packet = cc->Inputs().Get(input_id).Value();
if (packet.Timestamp() == cc->InputTimestamp()) {
input_queue_[input_id].push(packet);
}
}
}
// Enque any new input channel and its activation timestamp.
Timestamp channel_settled = ChannelSettledTimestamp(cc);
int new_channel_index = tool::GetChannelIndex(*cc, channel_index_);
if (channel_settled == cc->InputTimestamp() &&
new_channel_index != channel_index_) {
channel_index_ = new_channel_index;
channel_history_[channel_settled] = channel_index_;
}
return absl::OkStatus();
}
// Returns the channel index for a Timestamp.
int SwitchDemuxCalculator::ChannelIndex(Timestamp timestamp) {
auto it = std::prev(channel_history_.upper_bound(timestamp));
return it->second;
}
// Dispatches all queued input packets with known channels.
absl::Status SwitchDemuxCalculator::SendActivePackets(CalculatorContext* cc) {
// Dispatch any queued input packets with a defined channel_index.
Timestamp channel_settled = ChannelSettledTimestamp(cc);
for (const std::string& tag : channel_tags_) {
for (int index = 0; index < cc->Inputs().NumEntries(tag); ++index) {
auto input_id = cc->Inputs().GetId(tag, index);
auto& queue = input_queue_[input_id];
while (!queue.empty() && queue.front().Timestamp() <= channel_settled) {
int channel_index = ChannelIndex(queue.front().Timestamp());
std::string output_tag = tool::ChannelTag(tag, channel_index);
auto output_id = cc->Outputs().GetId(output_tag, index);
if (output_id.IsValid()) {
cc->Outputs().Get(output_id).AddPacket(queue.front());
}
queue.pop();
}
}
}
// Discard all select packets not needed for any remaining input packets.
Timestamp input_settled = Timestamp::Done();
for (const std::string& tag : channel_tags_) {
for (int index = 0; index < cc->Inputs().NumEntries(tag); ++index) {
auto input_id = cc->Inputs().GetId(tag, index);
Timestamp stream_settled = SettledTimestamp(cc->Inputs().Get(input_id));
if (!input_queue_[input_id].empty()) {
Timestamp stream_bound = input_queue_[input_id].front().Timestamp();
stream_settled =
std::min(stream_settled, stream_bound.PreviousAllowedInStream());
}
}
}
Timestamp input_bound = input_settled.NextAllowedInStream();
auto history_bound = std::prev(channel_history_.upper_bound(input_bound));
channel_history_.erase(channel_history_.begin(), history_bound);
return absl::OkStatus();
}

View File

@ -164,7 +164,7 @@ absl::Status SwitchMuxCalculator::Open(CalculatorContext* cc) {
options_ = cc->Options<mediapipe::SwitchContainerOptions>();
channel_index_ = tool::GetChannelIndex(*cc, channel_index_);
channel_tags_ = ChannelTags(cc->Inputs().TagMap());
channel_history_[Timestamp::Unset()] = channel_index_;
channel_history_[Timestamp::Unstarted()] = channel_index_;
// Relay side packets only from channel_index_.
for (const std::string& tag : ChannelTags(cc->InputSidePackets().TagMap())) {