Internal change

PiperOrigin-RevId: 481515490
This commit is contained in:
Yuqi Li 2022-10-16 17:20:52 -07:00 committed by Copybara-Service
parent 2def7c8203
commit 660f1812c2
5 changed files with 939 additions and 0 deletions

View File

@ -19,3 +19,21 @@ py_library(
"//mediapipe/tasks/metadata:schema_py", "//mediapipe/tasks/metadata:schema_py",
], ],
) )
py_library(
name = "metadata_writer",
srcs = ["metadata_writer.py"],
deps = [
":metadata_info",
":writer_utils",
"//mediapipe/tasks/metadata:metadata_schema_py",
"//mediapipe/tasks/python/metadata",
"@flatbuffers//:runtime_py",
],
)
py_library(
name = "writer_utils",
srcs = ["writer_utils.py"],
deps = ["//mediapipe/tasks/metadata:schema_py"],
)

View File

@ -0,0 +1,468 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic metadata writer."""
import collections
import dataclasses
import os
import tempfile
from typing import List, Optional, Tuple
import flatbuffers
from mediapipe.tasks.metadata import metadata_schema_py_generated as _metadata_fb
from mediapipe.tasks.python.metadata import metadata as _metadata
from mediapipe.tasks.python.metadata.metadata_writers import metadata_info
from mediapipe.tasks.python.metadata.metadata_writers import writer_utils
_INPUT_IMAGE_NAME = 'image'
_INPUT_IMAGE_DESCRIPTION = 'Input image to be processed.'
@dataclasses.dataclass
class CalibrationParameter:
"""Parameters for score calibration [1].
Score calibration is performed on an output tensor through sigmoid functions.
One of the main purposes of score calibration is to make scores across classes
comparable, so that a common threshold can be used for all output classes.
For each index in the output tensor, this applies:
* `f(x) = scale / (1 + e^-(slope * g(x) + offset))` if `x > min_score` or if
no `min_score` has been specified.
* `f(x) = default_score` otherwise or if no scale, slope and offset have
been specified.
[1]:
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L434
"""
scale: float
slope: float
offset: float
min_score: Optional[float] = None
@dataclasses.dataclass
class LabelItem:
"""Label item for labels per locale.
Attributes:
filename: The file name to save the labels.
names: A list of label names.
locale: The specified locale for labels.
"""
filename: str
names: List[str]
locale: Optional[str] = None
class Labels(object):
"""Simple container holding classification labels of a particular tensor.
Example usage:
# The first added label list can be used as category names as needed.
labels = Labels()
.add(['/m/011l78', '/m/031d23'])
.add(['cat', 'dog], 'en')
.add(['chat', 'chien], 'fr')
"""
def __init__(self) -> None:
self._labels = [] # [LabelItem]
@property
def labels(self) -> List[LabelItem]:
return self._labels
def add(self,
labels: List[str],
locale: Optional[str] = None,
exported_filename: Optional[str] = None) -> 'Labels':
"""Adds labels in the container.
Args:
labels: A list of label names, e.g. ['apple', 'pear', 'banana'].
locale: The specified locale for labels.
exported_filename: The file name to export the labels. If not set,
filename defaults to 'labels.txt'.
Returns:
The Labels instance, can be used for chained operation.
"""
if not labels:
raise ValueError('The list of labels is empty.')
# Prepare the new item to be inserted
if not exported_filename:
exported_filename = 'labels'
if locale:
exported_filename += f'_{locale}'
exported_filename += '.txt'
item = LabelItem(filename=exported_filename, names=labels, locale=locale)
# Insert the new element at the end of the list
self._labels.append(item)
return self
def add_from_file(self,
label_filepath: str,
locale: Optional[str] = None,
exported_filename: Optional[str] = None) -> 'Labels':
"""Adds a label file in the container.
Args:
label_filepath: File path to read labels. Each line is a label name in the
file.
locale: The specified locale for labels.
exported_filename: The file name to export the labels. If not set,
filename defaults to 'labels.txt'.
Returns:
The Labels instance, can be used for chained operation.
"""
with open(label_filepath, 'r') as f:
labels = f.read().split('\n')
return self.add(labels, locale, exported_filename)
class ScoreCalibration:
"""Simple container holding score calibration related parameters."""
# A shortcut to avoid client side code importing _metadata_fb
transformation_types = _metadata_fb.ScoreTransformationType
def __init__(self,
transformation_type: _metadata_fb.ScoreTransformationType,
parameters: List[CalibrationParameter],
default_score: int = 0):
self.transformation_type = transformation_type
self.parameters = parameters
self.default_score = default_score
def _fill_default_tensor_names(
tensor_metadata: List[_metadata_fb.TensorMetadataT],
tensor_names_from_model: List[str]):
"""Fills the default tensor names."""
# If tensor name in metadata is empty, default to the tensor name saved in
# the model.
for metadata, name in zip(tensor_metadata, tensor_names_from_model):
metadata.name = metadata.name or name
def _pair_tensor_metadata(
tensor_md: List[metadata_info.TensorMd],
tensor_names_from_model: List[str]) -> List[metadata_info.TensorMd]:
"""Pairs tensor_md according to the tensor names from the model."""
tensor_names_from_arg = [
md.tensor_name for md in tensor_md or [] if md.tensor_name is not None
]
if not tensor_names_from_arg:
return tensor_md
if collections.Counter(tensor_names_from_arg) != collections.Counter(
tensor_names_from_model):
raise ValueError(
'The tensor names from arguments ({}) do not match the tensor names'
' read from the model ({}).'.format(tensor_names_from_arg,
tensor_names_from_model))
pairs_tensor_md = []
name_md_dict = dict(zip(tensor_names_from_arg, tensor_md))
for name in tensor_names_from_model:
pairs_tensor_md.append(name_md_dict[name])
return pairs_tensor_md
def _create_metadata_buffer(
model_buffer: bytearray,
general_md: Optional[metadata_info.GeneralMd] = None,
input_md: Optional[List[metadata_info.TensorMd]] = None,
output_md: Optional[List[metadata_info.TensorMd]] = None) -> bytearray:
"""Creates a buffer of the metadata.
Args:
model_buffer: valid buffer of the model file.
general_md: general information about the model.
input_md: metadata information of the input tensors.
output_md: metadata information of the output tensors.
Returns:
A buffer of the metadata.
Raises:
ValueError: if the tensor names from `input_md` and `output_md` do not
match the tensor names read from the model.
"""
# Create input metadata from `input_md`.
if input_md:
input_md = _pair_tensor_metadata(
input_md, writer_utils.get_input_tensor_names(model_buffer))
input_metadata = [m.create_metadata() for m in input_md]
else:
num_input_tensors = writer_utils.get_subgraph(model_buffer).InputsLength()
input_metadata = [_metadata_fb.TensorMetadataT()] * num_input_tensors
_fill_default_tensor_names(input_metadata,
writer_utils.get_input_tensor_names(model_buffer))
# Create output metadata from `output_md`.
if output_md:
output_md = _pair_tensor_metadata(
output_md, writer_utils.get_output_tensor_names(model_buffer))
output_metadata = [m.create_metadata() for m in output_md]
else:
num_output_tensors = writer_utils.get_subgraph(model_buffer).OutputsLength()
output_metadata = [_metadata_fb.TensorMetadataT()] * num_output_tensors
_fill_default_tensor_names(output_metadata,
writer_utils.get_output_tensor_names(model_buffer))
# Create the subgraph metadata.
subgraph_metadata = _metadata_fb.SubGraphMetadataT()
subgraph_metadata.inputTensorMetadata = input_metadata
subgraph_metadata.outputTensorMetadata = output_metadata
# Create the whole model metadata.
if general_md is None:
general_md = metadata_info.GeneralMd()
model_metadata = general_md.create_metadata()
model_metadata.subgraphMetadata = [subgraph_metadata]
# Get the metadata flatbuffer.
b = flatbuffers.Builder(0)
b.Finish(
model_metadata.Pack(b),
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
return b.Output()
class MetadataWriter(object):
"""Generic Metadata writer.
Example usage:
For an example model which requires two inputs: image and general feature
inputs, and generates one output: classification.
with open(model_path, 'rb') as f:
writer = MetadataWriter.create(f.read())
model_content, metadata_json_content = writer
.add_genernal_info('model_name', 'model description')
.add_image_input()
.add_feature_input()
.add_classification_output(Labels().add(['A', 'B']))
.populate()
"""
@classmethod
def create(cls, model_buffer: bytearray) -> 'MetadataWriter':
return cls(model_buffer)
def __init__(self, model_buffer: bytearray) -> None:
self._model_buffer = model_buffer
self._general_md = None
self._input_mds = []
self._output_mds = []
self._associated_files = []
self._temp_folder = tempfile.TemporaryDirectory()
def __del__(self):
if os.path.exists(self._temp_folder.name):
self._temp_folder.cleanup()
def add_genernal_info(
self,
model_name: str,
model_description: Optional[str] = None) -> 'MetadataWriter':
"""Adds a genernal info metadata for the general metadata informantion."""
# Will overwrite the previous `self._general_md` if exists.
self._general_md = metadata_info.GeneralMd(
name=model_name, description=model_description)
return self
color_space_types = _metadata_fb.ColorSpaceType
def add_feature_input(self,
name: Optional[str] = None,
description: Optional[str] = None) -> 'MetadataWriter':
"""Adds an input tensor metadata for the general basic feature input."""
input_md = metadata_info.TensorMd(name=name, description=description)
self._input_mds.append(input_md)
return self
def add_image_input(
self,
norm_mean: List[float],
norm_std: List[float],
color_space_type: Optional[int] = _metadata_fb.ColorSpaceType.RGB,
name: str = _INPUT_IMAGE_NAME,
description: str = _INPUT_IMAGE_DESCRIPTION) -> 'MetadataWriter':
"""Adds an input image metadata for the image input.
Args:
norm_mean: The mean value used to normalize each input channel. If there
is only one element in the list, its value will be broadcasted to all
channels. Also note that norm_mean and norm_std should have the same
number of elements. [1]
norm_std: The std value used to normalize each input channel. If there is
only one element in the list, its value will be broadcasted to all
channels. [1]
color_space_type: The color space type of the input image. [2]
name: Name of the input tensor.
description: Description of the input tensor.
Returns:
The MetaWriter instance, can be used for chained operation.
[1]:
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L389
[2]:
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L198
"""
input_md = metadata_info.InputImageTensorMd(
name=name,
description=description,
norm_mean=norm_mean,
norm_std=norm_std,
color_space_type=color_space_type,
tensor_type=self._input_tensor_type(len(self._input_mds)))
self._input_mds.append(input_md)
return self
_OUTPUT_CLASSIFICATION_NAME = 'score'
_OUTPUT_CLASSIFICATION_DESCRIPTION = 'Score of the labels respectively'
def add_classification_output(
self,
labels: Optional[Labels] = None,
score_calibration: Optional[ScoreCalibration] = None,
name: str = _OUTPUT_CLASSIFICATION_NAME,
description: str = _OUTPUT_CLASSIFICATION_DESCRIPTION
) -> 'MetadataWriter':
"""Add a classification head metadata for classification output tensor.
Example usage:
writer.add_classification_output(
Labels()
.add(['/m/011l78', '/m/031d23'])
.add(['cat', 'dog], 'en')
.add(['chat', 'chien], 'fr')
)
Args:
labels: an instance of Labels helper class.
score_calibration: an instance of ScoreCalibration helper class.
name: Metadata name of the tensor. Note that this is different from tensor
name in the flatbuffer.
description: human readable description of what the output is.
Returns:
The current Writer instance to allow chained operation.
"""
calibration_md = None
if score_calibration:
calibration_md = metadata_info.ScoreCalibrationMd(
score_transformation_type=score_calibration.transformation_type,
default_score=score_calibration.default_score,
file_path=self._export_calibration_file('score_calibration.txt',
score_calibration.parameters))
label_files = None
if labels:
label_files = []
for item in labels.labels:
label_files.append(
metadata_info.LabelFileMd(
self._export_labels(item.filename, item.names),
locale=item.locale))
output_md = metadata_info.ClassificationTensorMd(
name=name,
description=description,
label_files=label_files,
tensor_type=self._output_tensor_type(len(self._output_mds)),
score_calibration_md=calibration_md,
)
self._output_mds.append(output_md)
return self
def add_feature_output(self,
name: Optional[str] = None,
description: Optional[str] = None) -> 'MetadataWriter':
"""Adds an output tensor metadata for the general basic feature output."""
output_md = metadata_info.TensorMd(name=name, description=description)
self._output_mds.append(output_md)
return self
def populate(self) -> Tuple[bytearray, str]:
"""Populates metadata into the TFLite file.
Note that only the output tflite is used for deployment. The output JSON
content is used to interpret the metadata content.
Returns:
A tuple of (model_with_metadata_in_bytes, metdata_json_content)
"""
# Populates metadata and associated files into TFLite model buffer.
populator = _metadata.MetadataPopulator.with_model_buffer(
self._model_buffer)
metadata_buffer = _create_metadata_buffer(
model_buffer=self._model_buffer,
general_md=self._general_md,
input_md=self._input_mds,
output_md=self._output_mds)
populator.load_metadata_buffer(metadata_buffer)
if self._associated_files:
populator.load_associated_files(self._associated_files)
populator.populate()
tflite_content = populator.get_model_buffer()
displayer = _metadata.MetadataDisplayer.with_model_buffer(tflite_content)
metadata_json_content = displayer.get_metadata_json()
return tflite_content, metadata_json_content
def _input_tensor_type(self, idx):
return writer_utils.get_input_tensor_types(self._model_buffer)[idx]
def _output_tensor_type(self, idx):
return writer_utils.get_output_tensor_types(self._model_buffer)[idx]
def _export_labels(self, filename: str, index_to_label: List[str]) -> str:
filepath = os.path.join(self._temp_folder.name, filename)
with open(filepath, 'w') as f:
f.write('\n'.join(index_to_label))
self._associated_files.append(filepath)
return filepath
def _export_calibration_file(self, filename: str,
calibrations: List[CalibrationParameter]) -> str:
"""Stores calibration parameters in a csv file."""
filepath = os.path.join(self._temp_folder.name, filename)
with open(filepath, 'w') as f:
for idx, item in enumerate(calibrations):
if idx != 0:
f.write('\n')
if item:
if item.scale is None or item.slope is None or item.offset is None:
raise ValueError('scale, slope and offset values can not be set to '
'None.')
elif item.min_score is not None:
f.write(f'{item.scale},{item.slope},{item.offset},{item.min_score}')
else:
f.write(f'{item.scale},{item.slope},{item.offset}')
self._associated_files.append(filepath)
return filepath

View File

@ -0,0 +1,85 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper methods for writing metadata into TFLite models."""
from typing import List
from mediapipe.tasks.metadata import schema_py_generated as _schema_fb
def get_input_tensor_names(model_buffer: bytearray) -> List[str]:
"""Gets a list of the input tensor names."""
subgraph = get_subgraph(model_buffer)
tensor_names = []
for i in range(subgraph.InputsLength()):
index = subgraph.Inputs(i)
tensor_names.append(subgraph.Tensors(index).Name().decode("utf-8"))
return tensor_names
def get_output_tensor_names(model_buffer: bytearray) -> List[str]:
"""Gets a list of the output tensor names."""
subgraph = get_subgraph(model_buffer)
tensor_names = []
for i in range(subgraph.OutputsLength()):
index = subgraph.Outputs(i)
tensor_names.append(subgraph.Tensors(index).Name().decode("utf-8"))
return tensor_names
def get_input_tensor_types(
model_buffer: bytearray) -> List[_schema_fb.TensorType]:
"""Gets a list of the input tensor types."""
subgraph = get_subgraph(model_buffer)
tensor_types = []
for i in range(subgraph.InputsLength()):
index = subgraph.Inputs(i)
tensor_types.append(subgraph.Tensors(index).Type())
return tensor_types
def get_output_tensor_types(
model_buffer: bytearray) -> List[_schema_fb.TensorType]:
"""Gets a list of the output tensor types."""
subgraph = get_subgraph(model_buffer)
tensor_types = []
for i in range(subgraph.OutputsLength()):
index = subgraph.Outputs(i)
tensor_types.append(subgraph.Tensors(index).Type())
return tensor_types
def get_subgraph(model_buffer: bytearray) -> _schema_fb.SubGraph:
"""Gets the subgraph of the model.
TFLite does not support multi-subgraph. A model should have exactly one
subgraph.
Args:
model_buffer: valid buffer of the model file.
Returns:
The subgraph of the model.
Raises:
ValueError: if the model has more than one subgraph or has no subgraph.
"""
model = _schema_fb.Model.GetRootAsModel(model_buffer, 0)
# Use the first subgraph as default. TFLite Interpreter doesn't support
# multiple subgraphs yet, but models with mini-benchmark may have multiple
# subgraphs for acceleration evaluation purpose.
return model.Subgraphs(0)

View File

@ -24,3 +24,13 @@ py_test(
"@flatbuffers//:runtime_py", "@flatbuffers//:runtime_py",
], ],
) )
py_test(
name = "metadata_writer_test",
srcs = ["metadata_writer_test.py"],
data = ["//mediapipe/tasks/testdata/metadata:model_files"],
deps = [
"//mediapipe/tasks/python/metadata/metadata_writers:metadata_writer",
"//mediapipe/tasks/python/test:test_utils",
],
)

View File

@ -0,0 +1,358 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for metadata writer classes."""
from absl.testing import absltest
from mediapipe.tasks.python.metadata.metadata_writers import metadata_writer
from mediapipe.tasks.python.test import test_utils
_IMAGE_CLASSIFIER_MODEL = test_utils.get_test_data_path(
'mobilenet_v1_0.25_224_1_default_1.tflite')
class LabelsTest(absltest.TestCase):
def test_category_name(self):
labels = metadata_writer.Labels()
self.assertEqual(
labels.add(['a', 'b'])._labels, [
metadata_writer.LabelItem(
filename='labels.txt', names=['a', 'b'], locale=None)
])
def test_locale(self):
labels = metadata_writer.Labels()
# Add from file.
en_filepath = self.create_tempfile().full_path
with open(en_filepath, 'w') as f:
f.write('a\nb')
labels.add_from_file(en_filepath, 'en')
# Customized file name.
labels.add(['A', 'B'], 'fr', exported_filename='my_file.txt')
self.assertEqual(labels._labels, [
metadata_writer.LabelItem('labels_en.txt', ['a', 'b'], 'en'),
metadata_writer.LabelItem('my_file.txt', ['A', 'B'], 'fr'),
])
class MetadataWriterForTaskTest(absltest.TestCase):
def setUp(self):
super().setUp()
with open(_IMAGE_CLASSIFIER_MODEL, 'rb') as f:
self.image_classifier_model_buffer = f.read()
def test_initialize_and_populate(self):
writer = metadata_writer.MetadataWriter.create(
self.image_classifier_model_buffer)
writer.add_genernal_info(
model_name='my_image_model', model_description='my_description')
tflite_model, metadata_json = writer.populate()
self.assertLen(tflite_model, 1882986)
self.assertJsonEqual(
metadata_json, """{
"name": "my_image_model",
"description": "my_description",
"subgraph_metadata": [
{
"input_tensor_metadata": [
{
"name": "input"
}
],
"output_tensor_metadata": [
{
"name": "MobilenetV1/Predictions/Reshape_1"
}
]
}
],
"min_parser_version": "1.0.0"
}
""")
def test_add_feature_input_output(self):
writer = metadata_writer.MetadataWriter.create(
self.image_classifier_model_buffer)
writer.add_genernal_info(
model_name='my_model', model_description='my_description')
writer.add_feature_input(
name='input_tesnor', description='a feature input tensor')
writer.add_feature_output(
name='output_tesnor', description='a feature output tensor')
_, metadata_json = writer.populate()
self.assertJsonEqual(
metadata_json, """{
"name": "my_model",
"description": "my_description",
"subgraph_metadata": [
{
"input_tensor_metadata": [
{
"name": "input_tesnor",
"description": "a feature input tensor",
"content": {
"content_properties_type": "FeatureProperties",
"content_properties": {
}
},
"stats": {
}
}
],
"output_tensor_metadata": [
{
"name": "output_tesnor",
"description": "a feature output tensor",
"content": {
"content_properties_type": "FeatureProperties",
"content_properties": {
}
},
"stats": {
}
}
]
}
],
"min_parser_version": "1.0.0"
}
""")
def test_image_classifier(self):
writer = metadata_writer.MetadataWriter.create(
self.image_classifier_model_buffer)
writer.add_genernal_info(
model_name='image_classifier',
model_description='Imagenet classification model')
writer.add_image_input(
norm_mean=[127.5, 127.5, 127.5],
norm_std=[127.5, 127.5, 127.5],
color_space_type=metadata_writer.MetadataWriter.color_space_types.RGB)
writer.add_classification_output(metadata_writer.Labels().add(
['a', 'b', 'c']))
_, metadata_json = writer.populate()
self.assertJsonEqual(
metadata_json, """{
"name": "image_classifier",
"description": "Imagenet classification model",
"subgraph_metadata": [
{
"input_tensor_metadata": [
{
"name": "image",
"description": "Input image to be processed.",
"content": {
"content_properties_type": "ImageProperties",
"content_properties": {
"color_space": "RGB"
}
},
"process_units": [
{
"options_type": "NormalizationOptions",
"options": {
"mean": [
127.5,
127.5,
127.5
],
"std": [
127.5,
127.5,
127.5
]
}
}
],
"stats": {
"max": [
1.0,
1.0,
1.0
],
"min": [
-1.0,
-1.0,
-1.0
]
}
}
],
"output_tensor_metadata": [
{
"name": "score",
"description": "Score of the labels respectively",
"content": {
"content_properties_type": "FeatureProperties",
"content_properties": {
}
},
"stats": {
"max": [
1.0
],
"min": [
0.0
]
},
"associated_files": [
{
"name": "labels.txt",
"description": "Labels for categories that the model can recognize.",
"type": "TENSOR_AXIS_LABELS"
}
]
}
]
}
],
"min_parser_version": "1.0.0"
}
""")
def test_image_classifier_with_locale_and_score_calibration(self):
writer = metadata_writer.MetadataWriter(self.image_classifier_model_buffer)
writer.add_genernal_info(
model_name='image_classifier',
model_description='Classify the input image.')
writer.add_image_input(
norm_mean=[127.5, 127.5, 127.5],
norm_std=[127.5, 127.5, 127.5],
color_space_type=metadata_writer.MetadataWriter.color_space_types.RGB)
writer.add_classification_output(
metadata_writer.Labels().add(['/id1',
'/id2']).add(['tulip', 'lily'],
'en').add(['tulipe', 'lis'],
'fr'),
score_calibration=metadata_writer.ScoreCalibration(
metadata_writer.ScoreCalibration.transformation_types
.INVERSE_LOGISTIC, [
metadata_writer.CalibrationParameter(1., 2., 3., None),
metadata_writer.CalibrationParameter(1., 2., 3., 4.),
],
default_score=0.5))
_, metadata_json = writer.populate()
self.assertJsonEqual(
metadata_json, """{
"name": "image_classifier",
"description": "Classify the input image.",
"subgraph_metadata": [
{
"input_tensor_metadata": [
{
"name": "image",
"description": "Input image to be processed.",
"content": {
"content_properties_type": "ImageProperties",
"content_properties": {
"color_space": "RGB"
}
},
"process_units": [
{
"options_type": "NormalizationOptions",
"options": {
"mean": [
127.5,
127.5,
127.5
],
"std": [
127.5,
127.5,
127.5
]
}
}
],
"stats": {
"max": [
1.0,
1.0,
1.0
],
"min": [
-1.0,
-1.0,
-1.0
]
}
}
],
"output_tensor_metadata": [
{
"name": "score",
"description": "Score of the labels respectively",
"content": {
"content_properties_type": "FeatureProperties",
"content_properties": {
}
},
"process_units": [
{
"options_type": "ScoreCalibrationOptions",
"options": {
"score_transformation": "INVERSE_LOGISTIC",
"default_score": 0.5
}
}
],
"stats": {
"max": [
1.0
],
"min": [
0.0
]
},
"associated_files": [
{
"name": "labels.txt",
"description": "Labels for categories that the model can recognize.",
"type": "TENSOR_AXIS_LABELS"
},
{
"name": "labels_en.txt",
"description": "Labels for categories that the model can recognize.",
"type": "TENSOR_AXIS_LABELS",
"locale": "en"
},
{
"name": "labels_fr.txt",
"description": "Labels for categories that the model can recognize.",
"type": "TENSOR_AXIS_LABELS",
"locale": "fr"
},
{
"name": "score_calibration.txt",
"description": "Contains sigmoid-based score calibration parameters. The main purposes of score calibration is to make scores across classes comparable, so that a common threshold can be used for all output classes.",
"type": "TENSOR_AXIS_SCORE_CALIBRATION"
}
]
}
]
}
],
"min_parser_version": "1.0.0"
}
""")
if __name__ == '__main__':
absltest.main()