Code cleanup

This commit is contained in:
kinaryml 2022-09-21 04:06:12 -07:00
parent 500ad5a7f0
commit 660a88b7ea
2 changed files with 7 additions and 43 deletions

View File

@ -17,7 +17,6 @@ import enum
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from mediapipe.python._framework_bindings import image as image_module
from mediapipe.tasks.python.components import segmenter_options
@ -30,6 +29,7 @@ _BaseOptions = base_options_module.BaseOptions
_Image = image_module.Image
_OutputType = segmenter_options.OutputType
_Activation = segmenter_options.Activation
_SegmenterOptions = segmenter_options.SegmenterOptions
_ImageSegmenter = image_segmenter.ImageSegmenter
_ImageSegmenterOptions = image_segmenter.ImageSegmenterOptions
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
@ -99,17 +99,14 @@ class ImageSegmenterTest(parameterized.TestCase):
# Should never happen
raise ValueError('model_file_type is invalid.')
segmenter_options = _SegmenterOptions(output_type=_OutputType.CATEGORY_MASK)
options = _ImageSegmenterOptions(base_options=base_options,
output_type=_OutputType.CATEGORY_MASK)
segmenter_options=segmenter_options)
segmenter = _ImageSegmenter.create_from_options(options)
# Performs image segmentation on the input.
category_masks = segmenter.segment(self.test_image)
# Comparing results.
print(len(category_masks))
s
# Closes the segmenter explicitly when the segmenter is not used in
# a context.
segmenter.close()

View File

@ -57,16 +57,14 @@ class ImageSegmenterOptions:
2) The video mode for detecting objects on the decoded frames of a video.
3) The live stream mode for detecting objects on a live stream of input
data, such as from camera.
output_type: Optional output mask type.
activation: Activation function to apply to input tensor.
segmenter_options: Options for the image segmenter task.
result_callback: The user-defined result callback for processing live stream
data. The result callback should only be specified when the running mode
is set to the live stream mode.
"""
base_options: _BaseOptions
running_mode: _RunningMode = _RunningMode.IMAGE
output_type: Optional[segmenter_options.OutputType] = segmenter_options.OutputType.CATEGORY_MASK
activation: Optional[segmenter_options.Activation] = segmenter_options.Activation.NONE
segmenter_options: _SegmenterOptions = _SegmenterOptions()
result_callback: Optional[
Callable[[List[image_module.Image], image_module.Image, int],
None]] = None
@ -76,15 +74,11 @@ class ImageSegmenterOptions:
"""Generates an ImageSegmenterOptions protobuf object."""
base_options_proto = self.base_options.to_pb2()
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
segmenter_options = _SegmenterOptions(
output_type=self.output_type,
activation=self.activation
)
segmenter_options_proto = self.segmenter_options.to_pb2()
return _ImageSegmenterOptionsProto(
base_options=base_options_proto,
segmenter_options=segmenter_options.to_pb2()
segmenter_options=segmenter_options_proto
)
@ -176,30 +170,3 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
segmentation_result = packet_getter.get_proto_list(
output_packets[_SEGMENTATION_OUT_STREAM_NAME])
return segmentation_result
# def segment_async(self, image: image_module.Image, timestamp_ms: int) -> None:
# """Sends live image data (an Image with a unique timestamp) to perform image segmentation.
#
# This method will return immediately after the input image is accepted. The
# results will be available via the `result_callback` provided in the
# `ImageSegmenterOptions`. The `segment_async` method is designed to process
# live stream data such as camera input. To lower the overall latency, image
# segmenter may drop the input images if needed. In other words, it's not
# guaranteed to have output per input image. The `result_callback` provides:
# - A segmentation result object that contains a list of segmentation masks
# as images.
# - The input image that the image segmenter runs on.
# - The input timestamp in milliseconds.
#
# Args:
# image: MediaPipe Image.
# timestamp_ms: The timestamp of the input image in milliseconds.
#
# Raises:
# ValueError: If the current input timestamp is smaller than what the object
# detector has already processed.
# """
# self._send_live_stream_data({
# _IMAGE_IN_STREAM_NAME:
# packet_creator.create_image(image).at(timestamp_ms)
# })