Code cleanup
This commit is contained in:
parent
500ad5a7f0
commit
660a88b7ea
|
@ -17,7 +17,6 @@ import enum
|
|||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.python.components import segmenter_options
|
||||
|
@ -30,6 +29,7 @@ _BaseOptions = base_options_module.BaseOptions
|
|||
_Image = image_module.Image
|
||||
_OutputType = segmenter_options.OutputType
|
||||
_Activation = segmenter_options.Activation
|
||||
_SegmenterOptions = segmenter_options.SegmenterOptions
|
||||
_ImageSegmenter = image_segmenter.ImageSegmenter
|
||||
_ImageSegmenterOptions = image_segmenter.ImageSegmenterOptions
|
||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||
|
@ -99,17 +99,14 @@ class ImageSegmenterTest(parameterized.TestCase):
|
|||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
segmenter_options = _SegmenterOptions(output_type=_OutputType.CATEGORY_MASK)
|
||||
options = _ImageSegmenterOptions(base_options=base_options,
|
||||
output_type=_OutputType.CATEGORY_MASK)
|
||||
segmenter_options=segmenter_options)
|
||||
segmenter = _ImageSegmenter.create_from_options(options)
|
||||
|
||||
# Performs image segmentation on the input.
|
||||
category_masks = segmenter.segment(self.test_image)
|
||||
|
||||
# Comparing results.
|
||||
print(len(category_masks))
|
||||
s
|
||||
|
||||
# Closes the segmenter explicitly when the segmenter is not used in
|
||||
# a context.
|
||||
segmenter.close()
|
||||
|
|
|
@ -57,16 +57,14 @@ class ImageSegmenterOptions:
|
|||
2) The video mode for detecting objects on the decoded frames of a video.
|
||||
3) The live stream mode for detecting objects on a live stream of input
|
||||
data, such as from camera.
|
||||
output_type: Optional output mask type.
|
||||
activation: Activation function to apply to input tensor.
|
||||
segmenter_options: Options for the image segmenter task.
|
||||
result_callback: The user-defined result callback for processing live stream
|
||||
data. The result callback should only be specified when the running mode
|
||||
is set to the live stream mode.
|
||||
"""
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
output_type: Optional[segmenter_options.OutputType] = segmenter_options.OutputType.CATEGORY_MASK
|
||||
activation: Optional[segmenter_options.Activation] = segmenter_options.Activation.NONE
|
||||
segmenter_options: _SegmenterOptions = _SegmenterOptions()
|
||||
result_callback: Optional[
|
||||
Callable[[List[image_module.Image], image_module.Image, int],
|
||||
None]] = None
|
||||
|
@ -76,15 +74,11 @@ class ImageSegmenterOptions:
|
|||
"""Generates an ImageSegmenterOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||
|
||||
segmenter_options = _SegmenterOptions(
|
||||
output_type=self.output_type,
|
||||
activation=self.activation
|
||||
)
|
||||
segmenter_options_proto = self.segmenter_options.to_pb2()
|
||||
|
||||
return _ImageSegmenterOptionsProto(
|
||||
base_options=base_options_proto,
|
||||
segmenter_options=segmenter_options.to_pb2()
|
||||
segmenter_options=segmenter_options_proto
|
||||
)
|
||||
|
||||
|
||||
|
@ -176,30 +170,3 @@ class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
|
|||
segmentation_result = packet_getter.get_proto_list(
|
||||
output_packets[_SEGMENTATION_OUT_STREAM_NAME])
|
||||
return segmentation_result
|
||||
|
||||
# def segment_async(self, image: image_module.Image, timestamp_ms: int) -> None:
|
||||
# """Sends live image data (an Image with a unique timestamp) to perform image segmentation.
|
||||
#
|
||||
# This method will return immediately after the input image is accepted. The
|
||||
# results will be available via the `result_callback` provided in the
|
||||
# `ImageSegmenterOptions`. The `segment_async` method is designed to process
|
||||
# live stream data such as camera input. To lower the overall latency, image
|
||||
# segmenter may drop the input images if needed. In other words, it's not
|
||||
# guaranteed to have output per input image. The `result_callback` provides:
|
||||
# - A segmentation result object that contains a list of segmentation masks
|
||||
# as images.
|
||||
# - The input image that the image segmenter runs on.
|
||||
# - The input timestamp in milliseconds.
|
||||
#
|
||||
# Args:
|
||||
# image: MediaPipe Image.
|
||||
# timestamp_ms: The timestamp of the input image in milliseconds.
|
||||
#
|
||||
# Raises:
|
||||
# ValueError: If the current input timestamp is smaller than what the object
|
||||
# detector has already processed.
|
||||
# """
|
||||
# self._send_live_stream_data({
|
||||
# _IMAGE_IN_STREAM_NAME:
|
||||
# packet_creator.create_image(image).at(timestamp_ms)
|
||||
# })
|
||||
|
|
Loading…
Reference in New Issue
Block a user