Merge pull request #4241 from kinaryml:interactive-segmenter-python
PiperOrigin-RevId: 522470912
This commit is contained in:
commit
6495f8624b
|
@ -99,6 +99,7 @@ cc_library(
|
|||
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
||||
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
|
||||
"//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph",
|
||||
"//mediapipe/tasks/cc/vision/interactive_segmenter:interactive_segmenter_graph",
|
||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||
],
|
||||
)
|
||||
|
|
332
mediapipe/tasks/python/test/vision/interactive_segmenter_test.py
Normal file
332
mediapipe/tasks/python/test/vision/interactive_segmenter_test.py
Normal file
|
@ -0,0 +1,332 @@
|
|||
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for interactive segmenter."""
|
||||
|
||||
import enum
|
||||
import os
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import image_frame
|
||||
from mediapipe.tasks.python.components.containers import keypoint as keypoint_module
|
||||
from mediapipe.tasks.python.components.containers import rect
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import interactive_segmenter
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Image = image_module.Image
|
||||
_ImageFormat = image_frame.ImageFormat
|
||||
_NormalizedKeypoint = keypoint_module.NormalizedKeypoint
|
||||
_Rect = rect.Rect
|
||||
_OutputType = interactive_segmenter.InteractiveSegmenterOptions.OutputType
|
||||
_InteractiveSegmenter = interactive_segmenter.InteractiveSegmenter
|
||||
_InteractiveSegmenterOptions = interactive_segmenter.InteractiveSegmenterOptions
|
||||
_RegionOfInterest = interactive_segmenter.RegionOfInterest
|
||||
_Format = interactive_segmenter.RegionOfInterest.Format
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
|
||||
_MODEL_FILE = 'ptm_512_hdt_ptm_woid.tflite'
|
||||
_CATS_AND_DOGS = 'cats_and_dogs.jpg'
|
||||
_CATS_AND_DOGS_MASK_DOG_1 = 'cats_and_dogs_mask_dog1.png'
|
||||
_CATS_AND_DOGS_MASK_DOG_2 = 'cats_and_dogs_mask_dog2.png'
|
||||
_MASK_MAGNIFICATION_FACTOR = 255
|
||||
_MASK_SIMILARITY_THRESHOLD = 0.97
|
||||
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
||||
|
||||
|
||||
def _calculate_soft_iou(m1, m2):
|
||||
intersection_sum = np.sum(m1 * m2)
|
||||
union_sum = np.sum(m1 * m1) + np.sum(m2 * m2) - intersection_sum
|
||||
|
||||
if union_sum > 0:
|
||||
return intersection_sum / union_sum
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def _similar_to_float_mask(actual_mask, expected_mask, similarity_threshold):
|
||||
actual_mask = actual_mask.numpy_view()
|
||||
expected_mask = expected_mask.numpy_view() / 255.0
|
||||
|
||||
return (
|
||||
actual_mask.shape == expected_mask.shape
|
||||
and _calculate_soft_iou(actual_mask, expected_mask) > similarity_threshold
|
||||
)
|
||||
|
||||
|
||||
def _similar_to_uint8_mask(actual_mask, expected_mask, similarity_threshold):
|
||||
actual_mask_pixels = actual_mask.numpy_view().flatten()
|
||||
expected_mask_pixels = expected_mask.numpy_view().flatten()
|
||||
|
||||
consistent_pixels = 0
|
||||
num_pixels = len(expected_mask_pixels)
|
||||
|
||||
for index in range(num_pixels):
|
||||
consistent_pixels += (
|
||||
actual_mask_pixels[index] * _MASK_MAGNIFICATION_FACTOR
|
||||
== expected_mask_pixels[index]
|
||||
)
|
||||
|
||||
return consistent_pixels / num_pixels >= similarity_threshold
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
FILE_CONTENT = 1
|
||||
FILE_NAME = 2
|
||||
|
||||
|
||||
class InteractiveSegmenterTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Load the test input image.
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _CATS_AND_DOGS)
|
||||
)
|
||||
)
|
||||
# Loads ground truth segmentation file.
|
||||
self.test_seg_image = self._load_segmentation_mask(
|
||||
_CATS_AND_DOGS_MASK_DOG_1
|
||||
)
|
||||
self.model_path = test_utils.get_test_data_path(
|
||||
os.path.join(_TEST_DATA_DIR, _MODEL_FILE)
|
||||
)
|
||||
|
||||
def _load_segmentation_mask(self, file_path: str):
|
||||
# Loads ground truth segmentation file.
|
||||
gt_segmentation_data = cv2.imread(
|
||||
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, file_path)),
|
||||
cv2.IMREAD_GRAYSCALE,
|
||||
)
|
||||
return _Image(_ImageFormat.GRAY8, gt_segmentation_data)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
with _InteractiveSegmenter.create_from_model_path(
|
||||
self.model_path
|
||||
) as segmenter:
|
||||
self.assertIsInstance(segmenter, _InteractiveSegmenter)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||
# Creates with options containing model file successfully.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _InteractiveSegmenterOptions(base_options=base_options)
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
self.assertIsInstance(segmenter, _InteractiveSegmenter)
|
||||
|
||||
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
|
||||
):
|
||||
base_options = _BaseOptions(
|
||||
model_asset_path='/path/to/invalid/model.tflite'
|
||||
)
|
||||
options = _InteractiveSegmenterOptions(base_options=base_options)
|
||||
_InteractiveSegmenter.create_from_options(options)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||
# Creates with options containing model content successfully.
|
||||
with open(self.model_path, 'rb') as f:
|
||||
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||
options = _InteractiveSegmenterOptions(base_options=base_options)
|
||||
segmenter = _InteractiveSegmenter.create_from_options(options)
|
||||
self.assertIsInstance(segmenter, _InteractiveSegmenter)
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.44, 0.7),
|
||||
_CATS_AND_DOGS_MASK_DOG_1,
|
||||
0.84,
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.44, 0.7),
|
||||
_CATS_AND_DOGS_MASK_DOG_1,
|
||||
0.84,
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.66, 0.66),
|
||||
_CATS_AND_DOGS_MASK_DOG_2,
|
||||
_MASK_SIMILARITY_THRESHOLD,
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.66, 0.66),
|
||||
_CATS_AND_DOGS_MASK_DOG_2,
|
||||
_MASK_SIMILARITY_THRESHOLD,
|
||||
),
|
||||
)
|
||||
def test_segment_succeeds_with_category_mask(
|
||||
self,
|
||||
model_file_type,
|
||||
roi_format,
|
||||
keypoint,
|
||||
output_mask,
|
||||
similarity_threshold,
|
||||
):
|
||||
# Creates segmenter.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options, output_type=_OutputType.CATEGORY_MASK
|
||||
)
|
||||
segmenter = _InteractiveSegmenter.create_from_options(options)
|
||||
|
||||
# Performs image segmentation on the input.
|
||||
roi = _RegionOfInterest(format=roi_format, keypoint=keypoint)
|
||||
category_masks = segmenter.segment(self.test_image, roi)
|
||||
self.assertLen(category_masks, 1)
|
||||
category_mask = category_masks[0]
|
||||
result_pixels = category_mask.numpy_view().flatten()
|
||||
|
||||
# Check if data type of `category_mask` is correct.
|
||||
self.assertEqual(result_pixels.dtype, np.uint8)
|
||||
|
||||
# Loads ground truth segmentation file.
|
||||
test_seg_image = self._load_segmentation_mask(output_mask)
|
||||
|
||||
self.assertTrue(
|
||||
_similar_to_uint8_mask(
|
||||
category_masks[0], test_seg_image, similarity_threshold
|
||||
),
|
||||
(
|
||||
'Number of pixels in the candidate mask differing from that of the'
|
||||
f' ground truth mask exceeds {similarity_threshold}.'
|
||||
),
|
||||
)
|
||||
|
||||
# Closes the segmenter explicitly when the segmenter is not used in
|
||||
# a context.
|
||||
segmenter.close()
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.44, 0.7),
|
||||
_CATS_AND_DOGS_MASK_DOG_1,
|
||||
0.84,
|
||||
),
|
||||
(
|
||||
_RegionOfInterest.Format.KEYPOINT,
|
||||
_NormalizedKeypoint(0.66, 0.66),
|
||||
_CATS_AND_DOGS_MASK_DOG_2,
|
||||
_MASK_SIMILARITY_THRESHOLD,
|
||||
),
|
||||
)
|
||||
def test_segment_succeeds_with_confidence_mask(
|
||||
self, roi_format, keypoint, output_mask, similarity_threshold
|
||||
):
|
||||
# Creates segmenter.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
roi = _RegionOfInterest(format=roi_format, keypoint=keypoint)
|
||||
|
||||
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options, output_type=_OutputType.CONFIDENCE_MASK
|
||||
)
|
||||
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
confidence_masks = segmenter.segment(self.test_image, roi)
|
||||
|
||||
# Check if confidence mask shape is correct.
|
||||
self.assertLen(
|
||||
confidence_masks,
|
||||
2,
|
||||
'Number of confidence masks must match with number of categories.',
|
||||
)
|
||||
|
||||
# Loads ground truth segmentation file.
|
||||
expected_mask = self._load_segmentation_mask(output_mask)
|
||||
|
||||
self.assertTrue(
|
||||
_similar_to_float_mask(
|
||||
confidence_masks[1], expected_mask, similarity_threshold
|
||||
)
|
||||
)
|
||||
|
||||
def test_segment_succeeds_with_rotation(self):
|
||||
# Creates segmenter.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
roi = _RegionOfInterest(
|
||||
format=_RegionOfInterest.Format.KEYPOINT,
|
||||
keypoint=_NormalizedKeypoint(0.66, 0.66),
|
||||
)
|
||||
|
||||
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options, output_type=_OutputType.CONFIDENCE_MASK
|
||||
)
|
||||
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
image_processing_options = _ImageProcessingOptions(rotation_degrees=-90)
|
||||
confidence_masks = segmenter.segment(
|
||||
self.test_image, roi, image_processing_options
|
||||
)
|
||||
|
||||
# Check if confidence mask shape is correct.
|
||||
self.assertLen(
|
||||
confidence_masks,
|
||||
2,
|
||||
'Number of confidence masks must match with number of categories.',
|
||||
)
|
||||
|
||||
def test_segment_fails_with_roi_in_image_processing_options(self):
|
||||
# Creates segmenter.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
roi = _RegionOfInterest(
|
||||
format=_RegionOfInterest.Format.KEYPOINT,
|
||||
keypoint=_NormalizedKeypoint(0.66, 0.66),
|
||||
)
|
||||
|
||||
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
||||
options = _InteractiveSegmenterOptions(
|
||||
base_options=base_options, output_type=_OutputType.CONFIDENCE_MASK
|
||||
)
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "This task doesn't support region-of-interest."
|
||||
):
|
||||
with _InteractiveSegmenter.create_from_options(options) as segmenter:
|
||||
# Perform segmentation
|
||||
image_processing_options = _ImageProcessingOptions(
|
||||
_Rect(left=0.1, top=0, right=0.9, bottom=1)
|
||||
)
|
||||
segmenter.segment(self.test_image, roi, image_processing_options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
|
@ -106,6 +106,28 @@ py_library(
|
|||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "interactive_segmenter",
|
||||
srcs = [
|
||||
"interactive_segmenter.py",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/python:packet_creator",
|
||||
"//mediapipe/python:packet_getter",
|
||||
"//mediapipe/tasks/cc/vision/image_segmenter/proto:image_segmenter_graph_options_py_pb2",
|
||||
"//mediapipe/tasks/cc/vision/image_segmenter/proto:segmenter_options_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:keypoint",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
"//mediapipe/tasks/python/core:task_info",
|
||||
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
"//mediapipe/util:render_data_py_pb2",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "gesture_recognizer",
|
||||
srcs = [
|
||||
|
|
254
mediapipe/tasks/python/vision/interactive_segmenter.py
Normal file
254
mediapipe/tasks/python/vision/interactive_segmenter.py
Normal file
|
@ -0,0 +1,254 @@
|
|||
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MediaPipe interactive segmenter task."""
|
||||
|
||||
import dataclasses
|
||||
import enum
|
||||
from typing import List, Optional
|
||||
|
||||
from mediapipe.python import packet_creator
|
||||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.cc.vision.image_segmenter.proto import image_segmenter_graph_options_pb2
|
||||
from mediapipe.tasks.cc.vision.image_segmenter.proto import segmenter_options_pb2
|
||||
from mediapipe.tasks.python.components.containers import keypoint as keypoint_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode
|
||||
from mediapipe.util import render_data_pb2
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_RenderDataProto = render_data_pb2.RenderData
|
||||
_SegmenterOptionsProto = segmenter_options_pb2.SegmenterOptions
|
||||
_ImageSegmenterGraphOptionsProto = (
|
||||
image_segmenter_graph_options_pb2.ImageSegmenterGraphOptions
|
||||
)
|
||||
_RunningMode = vision_task_running_mode.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
|
||||
_SEGMENTATION_OUT_STREAM_NAME = 'segmented_mask_out'
|
||||
_SEGMENTATION_TAG = 'GROUPED_SEGMENTATION'
|
||||
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||
_ROI_STREAM_NAME = 'roi_in'
|
||||
_ROI_TAG = 'ROI'
|
||||
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||
_NORM_RECT_TAG = 'NORM_RECT'
|
||||
_IMAGE_TAG = 'IMAGE'
|
||||
_TASK_GRAPH_NAME = (
|
||||
'mediapipe.tasks.vision.interactive_segmenter.InteractiveSegmenterGraph'
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class InteractiveSegmenterOptions:
|
||||
"""Options for the interactive segmenter task.
|
||||
|
||||
Attributes:
|
||||
base_options: Base options for the interactive segmenter task.
|
||||
output_type: The output mask type allows specifying the type of
|
||||
post-processing to perform on the raw model results.
|
||||
"""
|
||||
|
||||
class OutputType(enum.Enum):
|
||||
UNSPECIFIED = 0
|
||||
CATEGORY_MASK = 1
|
||||
CONFIDENCE_MASK = 2
|
||||
|
||||
base_options: _BaseOptions
|
||||
output_type: Optional[OutputType] = OutputType.CATEGORY_MASK
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _ImageSegmenterGraphOptionsProto:
|
||||
"""Generates an InteractiveSegmenterOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False
|
||||
segmenter_options_proto = _SegmenterOptionsProto(
|
||||
output_type=self.output_type.value
|
||||
)
|
||||
return _ImageSegmenterGraphOptionsProto(
|
||||
base_options=base_options_proto,
|
||||
segmenter_options=segmenter_options_proto,
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RegionOfInterest:
|
||||
"""The Region-Of-Interest (ROI) to interact with."""
|
||||
|
||||
class Format(enum.Enum):
|
||||
UNSPECIFIED = 0
|
||||
KEYPOINT = 1
|
||||
|
||||
format: Format
|
||||
keypoint: Optional[keypoint_module.NormalizedKeypoint] = None
|
||||
|
||||
|
||||
def _convert_roi_to_render_data(roi: RegionOfInterest) -> _RenderDataProto:
|
||||
"""Converts region of interest to render data proto."""
|
||||
result = _RenderDataProto()
|
||||
|
||||
if roi is not None:
|
||||
if roi.format == RegionOfInterest.Format.UNSPECIFIED:
|
||||
raise ValueError('RegionOfInterest format not specified.')
|
||||
|
||||
elif roi.format == RegionOfInterest.Format.KEYPOINT:
|
||||
if roi.keypoint is not None:
|
||||
annotation = result.render_annotations.add()
|
||||
annotation.color.r = 255
|
||||
point = annotation.point
|
||||
point.normalized = True
|
||||
point.x = roi.keypoint.x
|
||||
point.y = roi.keypoint.y
|
||||
return result
|
||||
else:
|
||||
raise ValueError('Please specify the Region-of-interest for segmentation.')
|
||||
|
||||
raise ValueError('Unrecognized format.')
|
||||
|
||||
|
||||
class InteractiveSegmenter(base_vision_task_api.BaseVisionTaskApi):
|
||||
"""Class that performs interactive segmentation on images.
|
||||
|
||||
Users can represent user interaction through `RegionOfInterest`, which gives
|
||||
a hint to InteractiveSegmenter to perform segmentation focusing on the given
|
||||
region of interest.
|
||||
|
||||
The API expects a TFLite model with mandatory TFLite Model Metadata.
|
||||
|
||||
Input tensor:
|
||||
(kTfLiteUInt8/kTfLiteFloat32)
|
||||
- image input of size `[batch x height x width x channels]`.
|
||||
- batch inference is not supported (`batch` is required to be 1).
|
||||
- RGB and greyscale inputs are supported (`channels` is required to be
|
||||
1 or 3).
|
||||
- if type is kTfLiteFloat32, NormalizationOptions are required to be
|
||||
attached to the metadata for input normalization.
|
||||
Output tensors:
|
||||
(kTfLiteUInt8/kTfLiteFloat32)
|
||||
- list of segmented masks.
|
||||
- if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
|
||||
- if `output_type` is CONFIDENCE_MASK, float32 Image list of size
|
||||
`channels`.
|
||||
- batch is always 1
|
||||
|
||||
An example of such model can be found at:
|
||||
https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def create_from_model_path(cls, model_path: str) -> 'InteractiveSegmenter':
|
||||
"""Creates an `InteractiveSegmenter` object from a TensorFlow Lite model and the default `InteractiveSegmenterOptions`.
|
||||
|
||||
Note that the created `InteractiveSegmenter` instance is in image mode, for
|
||||
performing image segmentation on single image inputs.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model.
|
||||
|
||||
Returns:
|
||||
`InteractiveSegmenter` object that's created from the model file and the
|
||||
default `InteractiveSegmenterOptions`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `InteractiveSegmenter` object from the
|
||||
provided file such as invalid file path.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
options = InteractiveSegmenterOptions(base_options=base_options)
|
||||
return cls.create_from_options(options)
|
||||
|
||||
@classmethod
|
||||
def create_from_options(
|
||||
cls, options: InteractiveSegmenterOptions
|
||||
) -> 'InteractiveSegmenter':
|
||||
"""Creates the `InteractiveSegmenter` object from interactive segmenter options.
|
||||
|
||||
Args:
|
||||
options: Options for the interactive segmenter task.
|
||||
|
||||
Returns:
|
||||
`InteractiveSegmenter` object that's created from `options`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `InteractiveSegmenter` object from
|
||||
`InteractiveSegmenterOptions` such as missing the model.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
|
||||
task_info = _TaskInfo(
|
||||
task_graph=_TASK_GRAPH_NAME,
|
||||
input_streams=[
|
||||
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||
':'.join([_ROI_TAG, _ROI_STREAM_NAME]),
|
||||
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||
],
|
||||
output_streams=[
|
||||
':'.join([_SEGMENTATION_TAG, _SEGMENTATION_OUT_STREAM_NAME]),
|
||||
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
||||
],
|
||||
task_options=options,
|
||||
)
|
||||
return cls(
|
||||
task_info.generate_graph_config(enable_flow_limiting=False),
|
||||
_RunningMode.IMAGE,
|
||||
None,
|
||||
)
|
||||
|
||||
def segment(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
roi: RegionOfInterest,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||
) -> List[image_module.Image]:
|
||||
"""Performs the actual segmentation task on the provided MediaPipe Image.
|
||||
|
||||
The image can be of any size with format RGB.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
roi: Optional user-specified region of interest for segmentation.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
If the output_type is CATEGORY_MASK, the returned vector of images is
|
||||
per-category segmented image mask.
|
||||
If the output_type is CONFIDENCE_MASK, the returned vector of images
|
||||
contains only one confidence image mask. A segmentation result object that
|
||||
contains a list of segmentation masks as images.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If image segmentation failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, image, roi_allowed=False
|
||||
)
|
||||
render_data_proto = _convert_roi_to_render_data(roi)
|
||||
output_packets = self._process_image_data({
|
||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
||||
_ROI_STREAM_NAME: packet_creator.create_proto(render_data_proto),
|
||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||
normalized_rect.to_pb2()
|
||||
),
|
||||
})
|
||||
segmentation_result = packet_getter.get_image_list(
|
||||
output_packets[_SEGMENTATION_OUT_STREAM_NAME]
|
||||
)
|
||||
return segmentation_result
|
Loading…
Reference in New Issue
Block a user