image_style full
This commit is contained in:
parent
c22ffa0012
commit
5fbb1988f5
|
@ -18,14 +18,24 @@ licenses(["notice"])
|
||||||
|
|
||||||
package(default_visibility = ["//visibility:public"])
|
package(default_visibility = ["//visibility:public"])
|
||||||
|
|
||||||
|
mediapipe_proto_library(
|
||||||
|
name = "fast_utils_calculator_proto",
|
||||||
|
srcs = ["fast_utils_calculator.proto"],
|
||||||
|
visibility = ["//visibility:public"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/framework:calculator_options_proto",
|
||||||
|
"//mediapipe/framework:calculator_proto",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
cc_library(
|
cc_library(
|
||||||
name = "fast_utils_calculator",
|
name = "fast_utils_calculator",
|
||||||
srcs = ["fast_utils_calculator.cc"],
|
srcs = ["fast_utils_calculator.cc"],
|
||||||
visibility = ["//visibility:public"],
|
visibility = ["//visibility:public"],
|
||||||
deps = [
|
deps = [
|
||||||
|
":fast_utils_calculator_cc_proto",
|
||||||
"//mediapipe/framework:calculator_options_cc_proto",
|
"//mediapipe/framework:calculator_options_cc_proto",
|
||||||
"//mediapipe/framework/formats:image_format_cc_proto",
|
"//mediapipe/framework/formats:image_format_cc_proto",
|
||||||
"//mediapipe/util:color_cc_proto",
|
|
||||||
"@com_google_absl//absl/strings",
|
"@com_google_absl//absl/strings",
|
||||||
"//mediapipe/framework:calculator_framework",
|
"//mediapipe/framework:calculator_framework",
|
||||||
"//mediapipe/framework/formats:image_frame",
|
"//mediapipe/framework/formats:image_frame",
|
||||||
|
@ -38,8 +48,32 @@ cc_library(
|
||||||
"//mediapipe/framework/port:opencv_highgui",
|
"//mediapipe/framework/port:opencv_highgui",
|
||||||
"//mediapipe/framework/port:status",
|
"//mediapipe/framework/port:status",
|
||||||
"//mediapipe/framework/port:vector",
|
"//mediapipe/framework/port:vector",
|
||||||
"//mediapipe/util:annotation_renderer",
|
],
|
||||||
"//mediapipe/util:render_data_cc_proto",
|
alwayslink = 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "apply_mask_calculator",
|
||||||
|
srcs = ["apply_mask_calculator.cc"],
|
||||||
|
visibility = ["//visibility:public"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/framework:calculator_options_cc_proto",
|
||||||
|
"//mediapipe/framework/formats:image_format_cc_proto",
|
||||||
|
"@com_google_absl//absl/strings",
|
||||||
|
"//mediapipe/framework:calculator_framework",
|
||||||
|
"//mediapipe/framework/formats:image_frame",
|
||||||
|
"//mediapipe/framework/formats:image_frame_opencv",
|
||||||
|
"//mediapipe/framework/formats:video_stream_header",
|
||||||
|
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||||
|
"//mediapipe/framework/port:logging",
|
||||||
|
"//mediapipe/framework/port:opencv_core",
|
||||||
|
"//mediapipe/framework/port:opencv_imgproc",
|
||||||
|
"//mediapipe/framework/port:opencv_highgui",
|
||||||
|
"//mediapipe/framework/port:status",
|
||||||
|
"//mediapipe/framework/port:vector",
|
||||||
|
"//mediapipe/framework/deps:file_path",
|
||||||
|
"//mediapipe/framework/port:file_helpers",
|
||||||
|
"//mediapipe/util:resource_util",
|
||||||
],
|
],
|
||||||
alwayslink = 1,
|
alwayslink = 1,
|
||||||
)
|
)
|
||||||
|
@ -49,3 +83,5 @@ cc_library(
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
305
mediapipe/calculators/image_style/apply_mask_calculator.cc
Normal file
305
mediapipe/calculators/image_style/apply_mask_calculator.cc
Normal file
|
@ -0,0 +1,305 @@
|
||||||
|
// Copyright 2019 The MediaPipe Authors.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include <math.h>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "absl/strings/str_cat.h"
|
||||||
|
#include "mediapipe/framework/calculator_framework.h"
|
||||||
|
#include "mediapipe/framework/formats/image_format.pb.h"
|
||||||
|
#include "mediapipe/framework/formats/image_frame.h"
|
||||||
|
#include "mediapipe/framework/formats/image_frame_opencv.h"
|
||||||
|
#include "mediapipe/framework/formats/video_stream_header.h"
|
||||||
|
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||||
|
#include "mediapipe/framework/port/logging.h"
|
||||||
|
#include "mediapipe/framework/port/opencv_core_inc.h"
|
||||||
|
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||||
|
#include "mediapipe/framework/port/opencv_highgui_inc.h"
|
||||||
|
#include "mediapipe/framework/port/status.h"
|
||||||
|
#include "mediapipe/framework/port/logging.h"
|
||||||
|
#include "mediapipe/framework/port/vector.h"
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
namespace mediapipe
|
||||||
|
{
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
static const std::vector<cv::Point2f> FFHQ_NORM_LM = {
|
||||||
|
{638.68525475 / 1024, 486.24604922 / 1024},
|
||||||
|
{389.31496114 / 1024, 485.8921848 / 1024},
|
||||||
|
{513.67979275 / 1024, 620.8915371 / 1024},
|
||||||
|
{405.50932642 / 1024, 756.52797927 / 1024},
|
||||||
|
{622.55630397 / 1024, 756.15509499 / 1024}};
|
||||||
|
|
||||||
|
constexpr char kImageFrameTag[] = "IMAGE";
|
||||||
|
constexpr char kFakeBgTag[] = "FAKE_BG";
|
||||||
|
constexpr char kLmMaskTag[] = "LM_MASK";
|
||||||
|
|
||||||
|
inline bool HasImageTag(mediapipe::CalculatorContext *cc) { return false; }
|
||||||
|
|
||||||
|
cv::Mat blend_mask(cv::Mat mask_face, cv::Mat mask_bbox, int kernel_size = 33, int reduce_size = 128)
|
||||||
|
{
|
||||||
|
int k_sz = kernel_size;
|
||||||
|
auto [width, height] = mask_face.size();
|
||||||
|
|
||||||
|
cv::Mat mask_face_0 = mask_face.clone();
|
||||||
|
|
||||||
|
double K = (double)reduce_size / std::min(height, width);
|
||||||
|
|
||||||
|
cv::resize(mask_face, mask_face, {(int)(width * K), (int)(height * K)});
|
||||||
|
mask_face.convertTo(mask_face, CV_32F);
|
||||||
|
|
||||||
|
cv::GaussianBlur(mask_face, mask_face, {k_sz, k_sz}, 0);
|
||||||
|
mask_face *= 2;
|
||||||
|
cv::threshold(mask_face, mask_face, 1, 255, CV_THRESH_TRUNC);
|
||||||
|
|
||||||
|
cv::resize(mask_bbox, mask_bbox, {(int)(width * K), (int)(height * K)});
|
||||||
|
|
||||||
|
mask_bbox.convertTo(mask_bbox, CV_32F);
|
||||||
|
cv::GaussianBlur(mask_bbox, mask_bbox, {k_sz, k_sz}, 0);
|
||||||
|
|
||||||
|
cv::Mat mask_bbox_3ch;
|
||||||
|
cv::merge(std::vector{mask_bbox, mask_bbox, mask_bbox}, mask_bbox_3ch);
|
||||||
|
|
||||||
|
cv::Mat mask = mask_bbox_3ch.mul(mask_face);
|
||||||
|
|
||||||
|
cv::Mat img_out;
|
||||||
|
cv::resize(mask, img_out, {width, height});
|
||||||
|
|
||||||
|
for (int i = 1; i < mask_face_0.rows; i++)
|
||||||
|
{
|
||||||
|
for (int j = 1; j < mask_face_0.cols; j++)
|
||||||
|
{
|
||||||
|
if (mask_face_0.at<uchar>(i, j) > 0)
|
||||||
|
img_out.at<cv::Vec3b>(i, j) = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return img_out;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
class ApplyMaskCalculator : public CalculatorBase
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
ApplyMaskCalculator() = default;
|
||||||
|
~ApplyMaskCalculator() override = default;
|
||||||
|
|
||||||
|
static absl::Status GetContract(CalculatorContract *cc);
|
||||||
|
|
||||||
|
// From Calculator.
|
||||||
|
absl::Status Open(CalculatorContext *cc) override;
|
||||||
|
absl::Status Process(CalculatorContext *cc) override;
|
||||||
|
absl::Status Close(CalculatorContext *cc) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
absl::Status CreateRenderTargetCpu(CalculatorContext *cc,
|
||||||
|
std::unique_ptr<cv::Mat> &image_mat,
|
||||||
|
std::string_view tag,
|
||||||
|
ImageFormat::Format *target_format);
|
||||||
|
|
||||||
|
absl::Status RenderToCpu(
|
||||||
|
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
||||||
|
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat);
|
||||||
|
|
||||||
|
// Indicates if image frame is available as input.
|
||||||
|
bool image_frame_available_ = false;
|
||||||
|
int image_width_;
|
||||||
|
int image_height_;
|
||||||
|
};
|
||||||
|
REGISTER_CALCULATOR(ApplyMaskCalculator);
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::GetContract(CalculatorContract *cc)
|
||||||
|
{
|
||||||
|
CHECK_GE(cc->Inputs().NumEntries(), 1);
|
||||||
|
|
||||||
|
if (cc->Inputs().HasTag(kImageFrameTag))
|
||||||
|
{
|
||||||
|
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||||
|
CHECK(cc->Outputs().HasTag(kImageFrameTag));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cc->Inputs().HasTag(kFakeBgTag))
|
||||||
|
{
|
||||||
|
cc->Inputs().Tag(kFakeBgTag).Set<ImageFrame>();
|
||||||
|
}
|
||||||
|
if (cc->Inputs().HasTag(kLmMaskTag))
|
||||||
|
{
|
||||||
|
cc->Inputs().Tag(kLmMaskTag).Set<ImageFrame>();
|
||||||
|
}
|
||||||
|
if (cc->Outputs().HasTag(kImageFrameTag))
|
||||||
|
{
|
||||||
|
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||||
|
}
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::Open(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
cc->SetOffset(TimestampDiff(0));
|
||||||
|
|
||||||
|
if (cc->Inputs().HasTag(kImageFrameTag) || HasImageTag(cc))
|
||||||
|
{
|
||||||
|
image_frame_available_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set the output header based on the input header (if present).
|
||||||
|
const char *tag = kImageFrameTag;
|
||||||
|
if (image_frame_available_ && !cc->Inputs().Tag(tag).Header().IsEmpty())
|
||||||
|
{
|
||||||
|
const auto &input_header =
|
||||||
|
cc->Inputs().Tag(tag).Header().Get<VideoHeader>();
|
||||||
|
auto *output_video_header = new VideoHeader(input_header);
|
||||||
|
cc->Outputs().Tag(tag).SetHeader(Adopt(output_video_header));
|
||||||
|
}
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::Process(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
if (cc->Inputs().HasTag(kImageFrameTag) &&
|
||||||
|
cc->Inputs().Tag(kImageFrameTag).IsEmpty())
|
||||||
|
{
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
// Initialize render target, drawn with OpenCV.
|
||||||
|
ImageFormat::Format target_format;
|
||||||
|
std::unique_ptr<cv::Mat> image_mat;
|
||||||
|
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, kImageFrameTag, &target_format));
|
||||||
|
|
||||||
|
if (((cc->Inputs().HasTag(kFakeBgTag) &&
|
||||||
|
!cc->Inputs().Tag(kFakeBgTag).IsEmpty())) &&
|
||||||
|
((cc->Inputs().HasTag(kLmMaskTag) &&
|
||||||
|
!cc->Inputs().Tag(kLmMaskTag).IsEmpty())))
|
||||||
|
{
|
||||||
|
// Initialize render target, drawn with OpenCV.
|
||||||
|
std::unique_ptr<cv::Mat> fake_bg;
|
||||||
|
std::unique_ptr<cv::Mat> lm_mask_ptr;
|
||||||
|
|
||||||
|
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, fake_bg, kFakeBgTag, &target_format));
|
||||||
|
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, lm_mask_ptr, kLmMaskTag, &target_format));
|
||||||
|
|
||||||
|
cv::Mat mat_fake_bg_ = *fake_bg.get();
|
||||||
|
cv::Mat mat_image_ = *image_mat.get();
|
||||||
|
cv::Mat lm_mask = *lm_mask_ptr.get();
|
||||||
|
|
||||||
|
image_width_ = image_mat->cols;
|
||||||
|
image_height_ = image_mat->rows;
|
||||||
|
|
||||||
|
cv::Mat roi_mask = mat_image_.clone();
|
||||||
|
|
||||||
|
cv::transform(roi_mask, roi_mask, cv::Matx13f(1, 1, 1));
|
||||||
|
cv::threshold(roi_mask, roi_mask, 1, 255, CV_THRESH_TRUNC);
|
||||||
|
|
||||||
|
cv::Mat mask = blend_mask(lm_mask, roi_mask, 33);
|
||||||
|
|
||||||
|
mat_image_.convertTo(mat_image_, CV_32F);
|
||||||
|
mat_fake_bg_.convertTo(mat_fake_bg_, CV_32F);
|
||||||
|
cv::resize(mat_fake_bg_, mat_fake_bg_, {image_width_, image_height_});
|
||||||
|
|
||||||
|
cv::Mat im_out = mat_fake_bg_.mul(cv::Scalar::all(1) - mask) + mat_image_.mul(mask);
|
||||||
|
|
||||||
|
im_out.convertTo(*image_mat, CV_8U);
|
||||||
|
}
|
||||||
|
uchar *image_mat_ptr = image_mat->data;
|
||||||
|
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat));
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::Close(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::RenderToCpu(
|
||||||
|
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
||||||
|
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat)
|
||||||
|
{
|
||||||
|
auto output_frame = absl::make_unique<ImageFrame>(
|
||||||
|
target_format, image_mat->cols, image_mat->rows);
|
||||||
|
|
||||||
|
output_frame->CopyPixelData(target_format, image_mat->cols, image_mat->rows, data_image,
|
||||||
|
ImageFrame::kDefaultAlignmentBoundary);
|
||||||
|
|
||||||
|
if (cc->Outputs().HasTag(kImageFrameTag))
|
||||||
|
{
|
||||||
|
cc->Outputs()
|
||||||
|
.Tag(kImageFrameTag)
|
||||||
|
.Add(output_frame.release(), cc->InputTimestamp());
|
||||||
|
}
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status ApplyMaskCalculator::CreateRenderTargetCpu(
|
||||||
|
CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat, std::string_view tag,
|
||||||
|
ImageFormat::Format *target_format)
|
||||||
|
{
|
||||||
|
if (image_frame_available_)
|
||||||
|
{
|
||||||
|
const auto &input_frame =
|
||||||
|
cc->Inputs().Tag(tag).Get<ImageFrame>();
|
||||||
|
|
||||||
|
int target_mat_type;
|
||||||
|
switch (input_frame.Format())
|
||||||
|
{
|
||||||
|
case ImageFormat::SRGBA:
|
||||||
|
*target_format = ImageFormat::SRGBA;
|
||||||
|
target_mat_type = CV_8UC4;
|
||||||
|
break;
|
||||||
|
case ImageFormat::SRGB:
|
||||||
|
*target_format = ImageFormat::SRGB;
|
||||||
|
target_mat_type = CV_8UC3;
|
||||||
|
break;
|
||||||
|
case ImageFormat::GRAY8:
|
||||||
|
*target_format = ImageFormat::SRGB;
|
||||||
|
target_mat_type = CV_8UC3;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
return absl::UnknownError("Unexpected image frame format.");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
image_mat = absl::make_unique<cv::Mat>(
|
||||||
|
input_frame.Height(), input_frame.Width(), target_mat_type);
|
||||||
|
|
||||||
|
auto input_mat = formats::MatView(&input_frame);
|
||||||
|
|
||||||
|
if (input_frame.Format() == ImageFormat::GRAY8)
|
||||||
|
{
|
||||||
|
cv::Mat rgb_mat;
|
||||||
|
cv::cvtColor(input_mat, rgb_mat, CV_GRAY2RGB);
|
||||||
|
rgb_mat.copyTo(*image_mat);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
input_mat.copyTo(*image_mat);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
image_mat = absl::make_unique<cv::Mat>(
|
||||||
|
1920, 1080, CV_8UC4,
|
||||||
|
cv::Scalar::all(255));
|
||||||
|
*target_format = ImageFormat::SRGBA;
|
||||||
|
}
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
} // namespace mediapipe
|
|
@ -22,6 +22,7 @@
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
|
||||||
#include "absl/strings/str_cat.h"
|
#include "absl/strings/str_cat.h"
|
||||||
|
#include "mediapipe/calculators/image_style/fast_utils_calculator.pb.h"
|
||||||
#include "mediapipe/framework/calculator_framework.h"
|
#include "mediapipe/framework/calculator_framework.h"
|
||||||
#include "mediapipe/framework/calculator_options.pb.h"
|
#include "mediapipe/framework/calculator_options.pb.h"
|
||||||
#include "mediapipe/framework/formats/image_format.pb.h"
|
#include "mediapipe/framework/formats/image_format.pb.h"
|
||||||
|
@ -41,7 +42,7 @@ namespace mediapipe
|
||||||
{
|
{
|
||||||
namespace
|
namespace
|
||||||
{
|
{
|
||||||
static const std::vector<cv::Point2f> FFHQ_NORM_LM = {
|
const std::vector<cv::Point2f> FFHQ_NORM_LM = {
|
||||||
{638.68525475 / 1024, 486.24604922 / 1024},
|
{638.68525475 / 1024, 486.24604922 / 1024},
|
||||||
{389.31496114 / 1024, 485.8921848 / 1024},
|
{389.31496114 / 1024, 485.8921848 / 1024},
|
||||||
{513.67979275 / 1024, 620.8915371 / 1024},
|
{513.67979275 / 1024, 620.8915371 / 1024},
|
||||||
|
@ -52,16 +53,8 @@ namespace mediapipe
|
||||||
constexpr char kVectorTag[] = "VECTOR";
|
constexpr char kVectorTag[] = "VECTOR";
|
||||||
constexpr char kLandmarksTag[] = "LANDMARKS";
|
constexpr char kLandmarksTag[] = "LANDMARKS";
|
||||||
constexpr char kNormLandmarksTag[] = "NORM_LANDMARKS";
|
constexpr char kNormLandmarksTag[] = "NORM_LANDMARKS";
|
||||||
|
constexpr char kLmMaskTag[] = "LM_MASK";
|
||||||
std::tuple<int, int> _normalized_to_pixel_coordinates(float normalized_x,
|
constexpr char kSizeTag[] = "SIZE";
|
||||||
float normalized_y, int image_width, int image_height)
|
|
||||||
{
|
|
||||||
// Converts normalized value pair to pixel coordinates
|
|
||||||
int x_px = std::min<int>(floor(normalized_x * image_width), image_width - 1);
|
|
||||||
int y_px = std::min<int>(floor(normalized_y * image_height), image_height - 1);
|
|
||||||
|
|
||||||
return {x_px, y_px};
|
|
||||||
};
|
|
||||||
|
|
||||||
static const std::vector<cv::Point> FACEMESH_FACE_OVAL{
|
static const std::vector<cv::Point> FACEMESH_FACE_OVAL{
|
||||||
{10, 338}, {338, 297}, {297, 332}, {332, 284}, {284, 251}, {251, 389}, {389, 356}, {356, 454}, {454, 323}, {323, 361}, {361, 288}, {288, 397}, {397, 365}, {365, 379}, {379, 378}, {378, 400}, {400, 377}, {377, 152}, {152, 148}, {148, 176}, {176, 149}, {149, 150}, {150, 136}, {136, 172}, {172, 58}, {58, 132}, {132, 93}, {93, 234}, {234, 127}, {127, 162}, {162, 21}, {21, 54}, {54, 103}, {103, 67}, {67, 109}, {109, 10}};
|
{10, 338}, {338, 297}, {297, 332}, {332, 284}, {284, 251}, {251, 389}, {389, 356}, {356, 454}, {454, 323}, {323, 361}, {361, 288}, {288, 397}, {397, 365}, {365, 379}, {379, 378}, {378, 400}, {400, 377}, {377, 152}, {152, 148}, {148, 176}, {176, 149}, {149, 150}, {150, 136}, {136, 172}, {172, 58}, {58, 132}, {132, 93}, {93, 234}, {234, 127}, {127, 162}, {162, 21}, {21, 54}, {54, 103}, {103, 67}, {67, 109}, {109, 10}};
|
||||||
|
@ -113,16 +106,15 @@ namespace mediapipe
|
||||||
cv::Mat &source,
|
cv::Mat &source,
|
||||||
cv::Mat &target, float eps = 1e-7)
|
cv::Mat &target, float eps = 1e-7)
|
||||||
{
|
{
|
||||||
cv::Mat source_mean_mat, target_mean_mat, source1ch, target1ch;
|
cv::Mat source_mean_mat, target_mean_mat;
|
||||||
|
|
||||||
cv::reduce(source, source_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
cv::reduce(source, source_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
||||||
cv::reduce(target, target_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
cv::reduce(target, target_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
||||||
|
|
||||||
source -= {source_mean_mat.at<float>(0, 0), source_mean_mat.at<float>(0, 1)};
|
source -= {source_mean_mat.at<float>(0, 0), source_mean_mat.at<float>(0, 1)};
|
||||||
target -= {target_mean_mat.at<float>(0, 0), target_mean_mat.at<float>(0, 1)};
|
target -= {target_mean_mat.at<float>(0, 0), target_mean_mat.at<float>(0, 1)};
|
||||||
|
|
||||||
source1ch = source.reshape(1, 5);
|
cv::Mat source1ch = source.reshape(1, 5);
|
||||||
target1ch = target.reshape(1, 5);
|
cv::Mat target1ch = target.reshape(1, 5);
|
||||||
|
|
||||||
cv::Mat source_std_mat, target_std_mat;
|
cv::Mat source_std_mat, target_std_mat;
|
||||||
cv::meanStdDev(source1ch, cv::noArray(), source_std_mat);
|
cv::meanStdDev(source1ch, cv::noArray(), source_std_mat);
|
||||||
|
@ -136,21 +128,21 @@ namespace mediapipe
|
||||||
source /= source_std + eps;
|
source /= source_std + eps;
|
||||||
target /= target_std + eps;
|
target /= target_std + eps;
|
||||||
|
|
||||||
cv::Mat u, vt, rotation, w;
|
|
||||||
|
|
||||||
source1ch = source.reshape(1, 5);
|
source1ch = source.reshape(1, 5);
|
||||||
target1ch = target.reshape(1, 5);
|
target1ch = target.reshape(1, 5);
|
||||||
|
|
||||||
|
cv::Mat u, vt, w;
|
||||||
cv::SVD::compute(source1ch.t() * target1ch, w, u, vt);
|
cv::SVD::compute(source1ch.t() * target1ch, w, u, vt);
|
||||||
|
|
||||||
rotation = (u * vt).t();
|
cv::Mat rotation = (u * vt).t();
|
||||||
|
|
||||||
|
float scale = target_std / (source_std + eps);
|
||||||
|
|
||||||
float scale = target_std / source_std + eps;
|
|
||||||
cv::Mat translation;
|
cv::Mat translation;
|
||||||
|
cv::subtract(target_mean_mat.reshape(1, 2),
|
||||||
|
scale * rotation * source_mean_mat.reshape(1, 2), translation);
|
||||||
|
|
||||||
cv::subtract(target_mean_mat.reshape(1, 2), scale * rotation * source_mean_mat.reshape(1, 2), translation);
|
return {scale, rotation, translation};
|
||||||
|
|
||||||
return std::make_tuple(scale, rotation, translation);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<float, float, float, float> Crop(
|
std::tuple<float, float, float, float> Crop(
|
||||||
|
@ -210,6 +202,9 @@ namespace mediapipe
|
||||||
absl::Status Process(CalculatorContext *cc) override;
|
absl::Status Process(CalculatorContext *cc) override;
|
||||||
absl::Status Close(CalculatorContext *cc) override;
|
absl::Status Close(CalculatorContext *cc) override;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
mediapipe::FastUtilsCalculatorOptions options_;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
absl::Status CreateRenderTargetCpu(CalculatorContext *cc,
|
absl::Status CreateRenderTargetCpu(CalculatorContext *cc,
|
||||||
std::unique_ptr<cv::Mat> &image_mat,
|
std::unique_ptr<cv::Mat> &image_mat,
|
||||||
|
@ -217,7 +212,7 @@ namespace mediapipe
|
||||||
|
|
||||||
absl::Status RenderToCpu(
|
absl::Status RenderToCpu(
|
||||||
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
||||||
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat);
|
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat, std::string_view tag);
|
||||||
|
|
||||||
absl::Status Call(CalculatorContext *cc,
|
absl::Status Call(CalculatorContext *cc,
|
||||||
std::unique_ptr<cv::Mat> &image_mat,
|
std::unique_ptr<cv::Mat> &image_mat,
|
||||||
|
@ -231,19 +226,20 @@ namespace mediapipe
|
||||||
|
|
||||||
// Indicates if image frame is available as input.
|
// Indicates if image frame is available as input.
|
||||||
bool image_frame_available_ = false;
|
bool image_frame_available_ = false;
|
||||||
std::vector<std::pair<std::string, const std::vector<int>>> index_dict = {
|
|
||||||
|
const std::vector<std::pair<std::string, std::vector<int>>> index_dict = {
|
||||||
{"leftEye", {384, 385, 386, 387, 388, 390, 263, 362, 398, 466, 373, 374, 249, 380, 381, 382}},
|
{"leftEye", {384, 385, 386, 387, 388, 390, 263, 362, 398, 466, 373, 374, 249, 380, 381, 382}},
|
||||||
{"rightEye", {160, 33, 161, 163, 133, 7, 173, 144, 145, 246, 153, 154, 155, 157, 158, 159}},
|
{"rightEye", {160, 33, 161, 163, 133, 7, 173, 144, 145, 246, 153, 154, 155, 157, 158, 159}},
|
||||||
{"nose", {4}},
|
{"nose", {4}},
|
||||||
//{"lips", {0, 13, 14, 17, 84}},
|
|
||||||
{"leftLips", {61, 146}},
|
{"leftLips", {61, 146}},
|
||||||
{"rightLips", {291, 375}},
|
{"rightLips", {291, 375}},
|
||||||
};
|
};
|
||||||
|
|
||||||
std::unique_ptr<cv::Mat> image_mat;
|
|
||||||
cv::Mat mat_image_;
|
cv::Mat mat_image_;
|
||||||
|
cv::Mat lm_mask;
|
||||||
int image_width_;
|
int image_width_;
|
||||||
int image_height_;
|
int image_height_;
|
||||||
|
bool back_to_im;
|
||||||
};
|
};
|
||||||
REGISTER_CALCULATOR(FastUtilsCalculator);
|
REGISTER_CALCULATOR(FastUtilsCalculator);
|
||||||
|
|
||||||
|
@ -273,18 +269,29 @@ namespace mediapipe
|
||||||
{
|
{
|
||||||
cc->Inputs().Tag(kNormLandmarksTag).Set<std::vector<NormalizedLandmarkList>>();
|
cc->Inputs().Tag(kNormLandmarksTag).Set<std::vector<NormalizedLandmarkList>>();
|
||||||
}
|
}
|
||||||
|
if (cc->Inputs().HasTag(kSizeTag))
|
||||||
|
{
|
||||||
|
cc->Inputs().Tag(kSizeTag).Set<std::pair<int, int>>();
|
||||||
|
}
|
||||||
|
|
||||||
if (cc->Outputs().HasTag(kImageFrameTag))
|
if (cc->Outputs().HasTag(kImageFrameTag))
|
||||||
{
|
{
|
||||||
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (cc->Outputs().HasTag(kLmMaskTag))
|
||||||
|
{
|
||||||
|
cc->Outputs().Tag(kLmMaskTag).Set<ImageFrame>();
|
||||||
|
}
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status FastUtilsCalculator::Open(CalculatorContext *cc)
|
absl::Status FastUtilsCalculator::Open(CalculatorContext *cc)
|
||||||
{
|
{
|
||||||
cc->SetOffset(TimestampDiff(0));
|
cc->SetOffset(TimestampDiff(0));
|
||||||
|
options_ = cc->Options<mediapipe::FastUtilsCalculatorOptions>();
|
||||||
|
back_to_im = options_.back_to_image();
|
||||||
|
|
||||||
if (cc->Inputs().HasTag(kImageFrameTag) || HasImageTag(cc))
|
if (cc->Inputs().HasTag(kImageFrameTag) || HasImageTag(cc))
|
||||||
{
|
{
|
||||||
|
@ -313,7 +320,9 @@ namespace mediapipe
|
||||||
}
|
}
|
||||||
|
|
||||||
// Initialize render target, drawn with OpenCV.
|
// Initialize render target, drawn with OpenCV.
|
||||||
|
std::unique_ptr<cv::Mat> image_mat;
|
||||||
ImageFormat::Format target_format;
|
ImageFormat::Format target_format;
|
||||||
|
ImageFormat::Format target_format2;
|
||||||
std::vector<std::vector<cv::Point2f>> lms_out;
|
std::vector<std::vector<cv::Point2f>> lms_out;
|
||||||
|
|
||||||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||||
|
@ -326,14 +335,42 @@ namespace mediapipe
|
||||||
{
|
{
|
||||||
MP_RETURN_IF_ERROR(Call(cc, image_mat, target_format, lms_out));
|
MP_RETURN_IF_ERROR(Call(cc, image_mat, target_format, lms_out));
|
||||||
|
|
||||||
cv::Mat source_lm = cv::Mat(lms_out[0]);
|
if (cc->Outputs().HasTag(kLmMaskTag))
|
||||||
|
{
|
||||||
|
lm_mask.convertTo(lm_mask, CV_8U);
|
||||||
|
|
||||||
MP_RETURN_IF_ERROR(Align(image_mat, source_lm));
|
std::unique_ptr<cv::Mat> lm_mask_ptr = absl::make_unique<cv::Mat>(
|
||||||
|
mat_image_.size(), lm_mask.type());
|
||||||
|
|
||||||
|
lm_mask.copyTo(*lm_mask_ptr);
|
||||||
|
|
||||||
|
target_format2 = ImageFormat::GRAY8;
|
||||||
|
uchar *lm_mask_pt = lm_mask_ptr->data;
|
||||||
|
|
||||||
|
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format2, lm_mask_pt, lm_mask_ptr, kLmMaskTag));
|
||||||
}
|
}
|
||||||
|
|
||||||
uchar *image_mat_ptr = image_mat->data;
|
if (!back_to_im)
|
||||||
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat));
|
{
|
||||||
|
MP_RETURN_IF_ERROR(Align(image_mat, cv::Mat(lms_out[0])));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
const auto &size =
|
||||||
|
cc->Inputs().Tag(kSizeTag).Get<std::pair<int, int>>();
|
||||||
|
cv::Mat tar = cv::Mat(FFHQ_NORM_LM) * 256;
|
||||||
|
|
||||||
|
MP_RETURN_IF_ERROR(Align(image_mat, tar,
|
||||||
|
cv::Mat(lms_out[0]), {size.first, size.second}));
|
||||||
|
}
|
||||||
|
uchar *image_mat_ptr = image_mat->data;
|
||||||
|
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat, kImageFrameTag));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
uchar *image_mat_ptr = image_mat->data;
|
||||||
|
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat, kImageFrameTag));
|
||||||
|
}
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -344,7 +381,7 @@ namespace mediapipe
|
||||||
|
|
||||||
absl::Status FastUtilsCalculator::RenderToCpu(
|
absl::Status FastUtilsCalculator::RenderToCpu(
|
||||||
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
CalculatorContext *cc, const ImageFormat::Format &target_format,
|
||||||
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat)
|
uchar *data_image, std::unique_ptr<cv::Mat> &image_mat, std::string_view tag)
|
||||||
{
|
{
|
||||||
auto output_frame = absl::make_unique<ImageFrame>(
|
auto output_frame = absl::make_unique<ImageFrame>(
|
||||||
target_format, image_mat->cols, image_mat->rows);
|
target_format, image_mat->cols, image_mat->rows);
|
||||||
|
@ -352,10 +389,10 @@ namespace mediapipe
|
||||||
output_frame->CopyPixelData(target_format, image_mat->cols, image_mat->rows, data_image,
|
output_frame->CopyPixelData(target_format, image_mat->cols, image_mat->rows, data_image,
|
||||||
ImageFrame::kDefaultAlignmentBoundary);
|
ImageFrame::kDefaultAlignmentBoundary);
|
||||||
|
|
||||||
if (cc->Outputs().HasTag(kImageFrameTag))
|
if (cc->Outputs().HasTag(tag))
|
||||||
{
|
{
|
||||||
cc->Outputs()
|
cc->Outputs()
|
||||||
.Tag(kImageFrameTag)
|
.Tag(tag)
|
||||||
.Add(output_frame.release(), cc->InputTimestamp());
|
.Add(output_frame.release(), cc->InputTimestamp());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -410,9 +447,8 @@ namespace mediapipe
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
image_mat = absl::make_unique<cv::Mat>(
|
image_mat = absl::make_unique<cv::Mat>(
|
||||||
150, 150, CV_8UC4,
|
1920, 1080, CV_8UC4,
|
||||||
cv::Scalar(255, 255,
|
cv::Scalar::all(255));
|
||||||
255));
|
|
||||||
*target_format = ImageFormat::SRGBA;
|
*target_format = ImageFormat::SRGBA;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -424,8 +460,6 @@ namespace mediapipe
|
||||||
ImageFormat::Format &target_format,
|
ImageFormat::Format &target_format,
|
||||||
std::vector<std::vector<cv::Point2f>> &lms_out)
|
std::vector<std::vector<cv::Point2f>> &lms_out)
|
||||||
{
|
{
|
||||||
std::vector<cv::Point2f> kps, landmarks;
|
|
||||||
|
|
||||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||||
{
|
{
|
||||||
const std::vector<NormalizedLandmarkList> &landmarkslist =
|
const std::vector<NormalizedLandmarkList> &landmarkslist =
|
||||||
|
@ -434,11 +468,12 @@ namespace mediapipe
|
||||||
std::vector<cv::Point2f> point_array;
|
std::vector<cv::Point2f> point_array;
|
||||||
for (const auto &face : landmarkslist)
|
for (const auto &face : landmarkslist)
|
||||||
{
|
{
|
||||||
|
std::vector<cv::Point2f> landmarks = {};
|
||||||
for (const auto &[key, value] : index_dict)
|
for (const auto &[key, value] : index_dict)
|
||||||
{
|
{
|
||||||
|
std::vector<cv::Point2f> kps = {};
|
||||||
for (auto order : value)
|
for (auto order : value)
|
||||||
{
|
{
|
||||||
|
|
||||||
const NormalizedLandmark &landmark = face.landmark(order);
|
const NormalizedLandmark &landmark = face.landmark(order);
|
||||||
|
|
||||||
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
||||||
|
@ -449,11 +484,13 @@ namespace mediapipe
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const auto &size =
|
||||||
|
cc->Inputs().Tag(kSizeTag).Get<std::pair<int, int>>();
|
||||||
const auto &point = landmark;
|
const auto &point = landmark;
|
||||||
int x = -1;
|
int x = -1;
|
||||||
int y = -1;
|
int y = -1;
|
||||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), size.first,
|
||||||
image_height_, &x, &y));
|
size.second, &x, &y));
|
||||||
kps.push_back(cv::Point2f(x, y));
|
kps.push_back(cv::Point2f(x, y));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -461,12 +498,29 @@ namespace mediapipe
|
||||||
cv::reduce(kps, mean, 1, CV_REDUCE_AVG, CV_32F);
|
cv::reduce(kps, mean, 1, CV_REDUCE_AVG, CV_32F);
|
||||||
|
|
||||||
landmarks.push_back({mean.at<float>(0, 0), mean.at<float>(0, 1)});
|
landmarks.push_back({mean.at<float>(0, 0), mean.at<float>(0, 1)});
|
||||||
|
|
||||||
kps.clear();
|
|
||||||
}
|
}
|
||||||
lms_out.push_back(landmarks);
|
lms_out.push_back(landmarks);
|
||||||
|
}
|
||||||
|
if (cc->Outputs().HasTag(kLmMaskTag))
|
||||||
|
{
|
||||||
|
std::vector<cv::Point> kpsint = {};
|
||||||
|
for (auto &ix : FACEMESH_FACE_OVAL)
|
||||||
|
{
|
||||||
|
auto i = ix.x;
|
||||||
|
|
||||||
landmarks.clear();
|
const NormalizedLandmark &landmark = landmarkslist[0].landmark(i);
|
||||||
|
|
||||||
|
const auto &point = landmark;
|
||||||
|
int x = -1;
|
||||||
|
int y = -1;
|
||||||
|
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||||
|
image_height_, &x, &y));
|
||||||
|
kpsint.push_back(cv::Point(x, y));
|
||||||
|
}
|
||||||
|
std::vector<std::vector<cv::Point>> pts;
|
||||||
|
pts.push_back(kpsint);
|
||||||
|
lm_mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
|
||||||
|
cv::fillPoly(lm_mask, pts, cv::Scalar::all(1), cv::LINE_AA);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -478,6 +532,8 @@ namespace mediapipe
|
||||||
cv::Mat target_lm, cv::Size size,
|
cv::Mat target_lm, cv::Size size,
|
||||||
float extend, std::tuple<float, float, float, float> roi)
|
float extend, std::tuple<float, float, float, float> roi)
|
||||||
{
|
{
|
||||||
|
cv::Mat mat_image_ = *image_mat.get();
|
||||||
|
|
||||||
cv::Mat source, target;
|
cv::Mat source, target;
|
||||||
source_lm.convertTo(source, CV_32F);
|
source_lm.convertTo(source, CV_32F);
|
||||||
target_lm.convertTo(target, CV_32F);
|
target_lm.convertTo(target, CV_32F);
|
||||||
|
|
|
@ -0,0 +1,27 @@
|
||||||
|
// Copyright 2019 The MediaPipe Authors.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
syntax = "proto2";
|
||||||
|
|
||||||
|
package mediapipe;
|
||||||
|
|
||||||
|
import "mediapipe/framework/calculator.proto";
|
||||||
|
|
||||||
|
message FastUtilsCalculatorOptions {
|
||||||
|
extend CalculatorOptions {
|
||||||
|
optional FastUtilsCalculatorOptions ext = 251431399;
|
||||||
|
}
|
||||||
|
// Change color and size of rendered landmarks based on its z value.
|
||||||
|
optional bool back_to_image = 1 [default = false];
|
||||||
|
}
|
|
@ -893,3 +893,34 @@ cc_library(
|
||||||
}),
|
}),
|
||||||
alwayslink = 1,
|
alwayslink = 1,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "tensors_to_image_calculator",
|
||||||
|
srcs = ["tensors_to_image_calculator.cc"],
|
||||||
|
copts = select({
|
||||||
|
"//mediapipe:apple": [
|
||||||
|
"-x objective-c++",
|
||||||
|
"-fobjc-arc", # enable reference-counting
|
||||||
|
],
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
visibility = ["//visibility:public"],
|
||||||
|
deps = [
|
||||||
|
"@com_google_absl//absl/strings:str_format",
|
||||||
|
"@com_google_absl//absl/strings",
|
||||||
|
"@com_google_absl//absl/types:span",
|
||||||
|
"//mediapipe/framework/formats:image",
|
||||||
|
"//mediapipe/framework/formats:image_frame",
|
||||||
|
"//mediapipe/framework/formats:image_opencv",
|
||||||
|
"//mediapipe/framework/formats:tensor",
|
||||||
|
"//mediapipe/framework/port:opencv_imgproc",
|
||||||
|
"//mediapipe/framework/port:ret_check",
|
||||||
|
"//mediapipe/framework:calculator_context",
|
||||||
|
"//mediapipe/framework:calculator_framework",
|
||||||
|
"//mediapipe/framework:port",
|
||||||
|
"//mediapipe/util:resource_util",
|
||||||
|
"@org_tensorflow//tensorflow/lite:framework",
|
||||||
|
"//mediapipe/framework/port:statusor",
|
||||||
|
],
|
||||||
|
alwayslink = 1,
|
||||||
|
)
|
||||||
|
|
201
mediapipe/calculators/tensor/tensors_to_image_calculator.cc
Normal file
201
mediapipe/calculators/tensor/tensors_to_image_calculator.cc
Normal file
|
@ -0,0 +1,201 @@
|
||||||
|
// Copyright 2021 The MediaPipe Authors.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
#include "absl/strings/str_format.h"
|
||||||
|
#include "absl/types/span.h"
|
||||||
|
#include "mediapipe/framework/calculator_context.h"
|
||||||
|
#include "mediapipe/framework/calculator_framework.h"
|
||||||
|
#include "mediapipe/framework/formats/image.h"
|
||||||
|
#include "mediapipe/framework/formats/image_opencv.h"
|
||||||
|
#include "mediapipe/framework/formats/tensor.h"
|
||||||
|
#include "mediapipe/framework/port.h"
|
||||||
|
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||||
|
#include "mediapipe/framework/port/ret_check.h"
|
||||||
|
#include "mediapipe/framework/port/statusor.h"
|
||||||
|
#include "mediapipe/util/resource_util.h"
|
||||||
|
#include "tensorflow/lite/interpreter.h"
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
constexpr char kTensorsTag[] = "TENSORS";
|
||||||
|
constexpr char kOutputSizeTag[] = "OUTPUT_SIZE";
|
||||||
|
constexpr char kImageTag[] = "IMAGE";
|
||||||
|
|
||||||
|
absl::StatusOr<std::tuple<int, int, int>> GetHwcFromDims(
|
||||||
|
const std::vector<int> &dims)
|
||||||
|
{
|
||||||
|
if (dims.size() == 3)
|
||||||
|
{
|
||||||
|
return std::make_tuple(dims[0], dims[1], dims[2]);
|
||||||
|
}
|
||||||
|
else if (dims.size() == 4)
|
||||||
|
{
|
||||||
|
// BHWC format check B == 1
|
||||||
|
RET_CHECK_EQ(1, dims[0]) << "Expected batch to be 1 for BHWC heatmap";
|
||||||
|
return std::make_tuple(dims[1], dims[2], dims[3]);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
RET_CHECK(false) << "Invalid shape for segmentation tensor " << dims.size();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace mediapipe
|
||||||
|
{
|
||||||
|
|
||||||
|
// Converts Tensors from a tflite segmentation model to an image.
|
||||||
|
//
|
||||||
|
// Performs optional upscale to OUTPUT_SIZE dimensions if provided,
|
||||||
|
// otherwise the image is the same size as input tensor.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Inputs:
|
||||||
|
// One of the following TENSORS tags:
|
||||||
|
// TENSORS: Vector of Tensor,
|
||||||
|
// The tensor dimensions are specified in this calculator's options.
|
||||||
|
// OUTPUT_SIZE(optional): std::pair<int, int>,
|
||||||
|
// If provided, the size to upscale mask to.
|
||||||
|
//
|
||||||
|
// Output:
|
||||||
|
// IMAGE: An Image output, RGBA.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Usage example:
|
||||||
|
// node {
|
||||||
|
// calculator: "TensorsToImageCalculator"
|
||||||
|
// input_stream: "TENSORS:tensors"
|
||||||
|
// input_stream: "OUTPUT_SIZE:size"
|
||||||
|
// output_stream: "IMAGE:image"
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// TODO Refactor and add support for other backends/platforms.
|
||||||
|
//
|
||||||
|
class TensorsToImageCalculator : public CalculatorBase
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
static absl::Status GetContract(CalculatorContract *cc);
|
||||||
|
|
||||||
|
absl::Status Open(CalculatorContext *cc) override;
|
||||||
|
absl::Status Process(CalculatorContext *cc) override;
|
||||||
|
absl::Status Close(CalculatorContext *cc) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
absl::Status ProcessCpu(CalculatorContext *cc);
|
||||||
|
|
||||||
|
};
|
||||||
|
REGISTER_CALCULATOR(TensorsToImageCalculator);
|
||||||
|
|
||||||
|
// static
|
||||||
|
absl::Status TensorsToImageCalculator::GetContract(
|
||||||
|
CalculatorContract *cc)
|
||||||
|
{
|
||||||
|
RET_CHECK(!cc->Inputs().GetTags().empty());
|
||||||
|
RET_CHECK(!cc->Outputs().GetTags().empty());
|
||||||
|
|
||||||
|
// Inputs.
|
||||||
|
cc->Inputs().Tag(kTensorsTag).Set<std::vector<Tensor>>();
|
||||||
|
if (cc->Inputs().HasTag(kOutputSizeTag))
|
||||||
|
{
|
||||||
|
cc->Inputs().Tag(kOutputSizeTag).Set<std::pair<int, int>>();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Outputs.
|
||||||
|
cc->Outputs().Tag(kImageTag).Set<Image>();
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status TensorsToImageCalculator::Open(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
cc->SetOffset(TimestampDiff(0));
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status TensorsToImageCalculator::Process(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
if (cc->Inputs().Tag(kTensorsTag).IsEmpty())
|
||||||
|
{
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
const auto &input_tensors =
|
||||||
|
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
||||||
|
|
||||||
|
MP_RETURN_IF_ERROR(ProcessCpu(cc));
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status TensorsToImageCalculator::Close(CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
absl::Status TensorsToImageCalculator::ProcessCpu(
|
||||||
|
CalculatorContext *cc)
|
||||||
|
{
|
||||||
|
// Get input streams, and dimensions.
|
||||||
|
const auto &input_tensors =
|
||||||
|
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
||||||
|
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
||||||
|
auto [tensor_height, tensor_width, tensor_channels] = hwc;
|
||||||
|
int output_width = tensor_width, output_height = tensor_height;
|
||||||
|
if (cc->Inputs().HasTag(kOutputSizeTag))
|
||||||
|
{
|
||||||
|
const auto &size =
|
||||||
|
cc->Inputs().Tag(kOutputSizeTag).Get<std::pair<int, int>>();
|
||||||
|
output_width = size.first;
|
||||||
|
output_height = size.second;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat image_mat(cv::Size(tensor_width, tensor_height), CV_32FC1);
|
||||||
|
|
||||||
|
// Wrap input tensor.
|
||||||
|
auto raw_input_tensor = &input_tensors[0];
|
||||||
|
auto raw_input_view = raw_input_tensor->GetCpuReadView();
|
||||||
|
const float *raw_input_data = raw_input_view.buffer<float>();
|
||||||
|
cv::Mat tensor_mat(cv::Size(tensor_width, tensor_height),
|
||||||
|
CV_MAKETYPE(CV_32F, tensor_channels),
|
||||||
|
const_cast<float *>(raw_input_data));
|
||||||
|
|
||||||
|
std::vector<cv::Mat> channels(4);
|
||||||
|
cv::split(tensor_mat, channels);
|
||||||
|
for (auto ch : channels)
|
||||||
|
ch = (ch + 1) * 127.5;
|
||||||
|
|
||||||
|
cv::merge(channels, tensor_mat);
|
||||||
|
|
||||||
|
cv::convertScaleAbs(tensor_mat, tensor_mat);
|
||||||
|
|
||||||
|
// Send out image as CPU packet.
|
||||||
|
std::shared_ptr<ImageFrame> image_frame = std::make_shared<ImageFrame>(
|
||||||
|
ImageFormat::SRGB, output_width, output_height);
|
||||||
|
std::unique_ptr<Image> output_image = absl::make_unique<Image>(image_frame);
|
||||||
|
auto output_mat = formats::MatView(output_image.get());
|
||||||
|
// Upsample image into output.
|
||||||
|
cv::resize(tensor_mat, *output_mat,
|
||||||
|
cv::Size(output_width, output_height));
|
||||||
|
cc->Outputs().Tag(kImageTag).Add(output_image.release(), cc->InputTimestamp());
|
||||||
|
|
||||||
|
return absl::OkStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mediapipe
|
|
@ -13,7 +13,6 @@
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
#include "absl/strings/str_format.h"
|
#include "absl/strings/str_format.h"
|
||||||
#include "absl/types/span.h"
|
#include "absl/types/span.h"
|
||||||
|
@ -21,10 +20,8 @@
|
||||||
#include "mediapipe/framework/calculator_context.h"
|
#include "mediapipe/framework/calculator_context.h"
|
||||||
#include "mediapipe/framework/calculator_framework.h"
|
#include "mediapipe/framework/calculator_framework.h"
|
||||||
#include "mediapipe/framework/formats/image.h"
|
#include "mediapipe/framework/formats/image.h"
|
||||||
#include "mediapipe/framework/formats/image_opencv.h"
|
|
||||||
#include "mediapipe/framework/formats/tensor.h"
|
#include "mediapipe/framework/formats/tensor.h"
|
||||||
#include "mediapipe/framework/port.h"
|
#include "mediapipe/framework/port.h"
|
||||||
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
|
||||||
#include "mediapipe/framework/port/ret_check.h"
|
#include "mediapipe/framework/port/ret_check.h"
|
||||||
#include "mediapipe/framework/port/statusor.h"
|
#include "mediapipe/framework/port/statusor.h"
|
||||||
#include "mediapipe/gpu/gpu_origin.pb.h"
|
#include "mediapipe/gpu/gpu_origin.pb.h"
|
||||||
|
@ -38,6 +35,11 @@
|
||||||
#include "mediapipe/gpu/shader_util.h"
|
#include "mediapipe/gpu/shader_util.h"
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
|
|
||||||
|
#if !MEDIAPIPE_DISABLE_OPENCV
|
||||||
|
#include "mediapipe/framework/formats/image_opencv.h"
|
||||||
|
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||||
|
#endif // !MEDIAPIPE_DISABLE_OPENCV
|
||||||
|
|
||||||
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
#include "tensorflow/lite/delegates/gpu/gl/converters/util.h"
|
#include "tensorflow/lite/delegates/gpu/gl/converters/util.h"
|
||||||
#include "tensorflow/lite/delegates/gpu/gl/gl_program.h"
|
#include "tensorflow/lite/delegates/gpu/gl/gl_program.h"
|
||||||
|
@ -55,24 +57,16 @@
|
||||||
#include "mediapipe/gpu/MPPMetalUtil.h"
|
#include "mediapipe/gpu/MPPMetalUtil.h"
|
||||||
#endif // MEDIAPIPE_METAL_ENABLED
|
#endif // MEDIAPIPE_METAL_ENABLED
|
||||||
|
|
||||||
namespace
|
namespace {
|
||||||
{
|
constexpr int kWorkgroupSize = 8; // Block size for GPU shader.
|
||||||
constexpr int kWorkgroupSize = 8; // Block size for GPU shader.
|
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
|
||||||
enum
|
|
||||||
{
|
|
||||||
ATTRIB_VERTEX,
|
|
||||||
ATTRIB_TEXTURE_POSITION,
|
|
||||||
NUM_ATTRIBUTES
|
|
||||||
};
|
|
||||||
|
|
||||||
// Commonly used to compute the number of blocks to launch in a kernel.
|
// Commonly used to compute the number of blocks to launch in a kernel.
|
||||||
int NumGroups(const int size, const int group_size)
|
int NumGroups(const int size, const int group_size) { // NOLINT
|
||||||
{ // NOLINT
|
|
||||||
return (size + group_size - 1) / group_size;
|
return (size + group_size - 1) / group_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool CanUseGpu()
|
bool CanUseGpu() {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU || MEDIAPIPE_METAL_ENABLED
|
#if !MEDIAPIPE_DISABLE_GPU || MEDIAPIPE_METAL_ENABLED
|
||||||
// TODO: Configure GPU usage policy in individual calculators.
|
// TODO: Configure GPU usage policy in individual calculators.
|
||||||
constexpr bool kAllowGpuProcessing = true;
|
constexpr bool kAllowGpuProcessing = true;
|
||||||
|
@ -80,106 +74,98 @@ namespace
|
||||||
#else
|
#else
|
||||||
return false;
|
return false;
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU || MEDIAPIPE_METAL_ENABLED
|
#endif // !MEDIAPIPE_DISABLE_GPU || MEDIAPIPE_METAL_ENABLED
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr char kTensorsTag[] = "TENSORS";
|
constexpr char kTensorsTag[] = "TENSORS";
|
||||||
constexpr char kOutputSizeTag[] = "OUTPUT_SIZE";
|
constexpr char kOutputSizeTag[] = "OUTPUT_SIZE";
|
||||||
constexpr char kMaskTag[] = "MASK";
|
constexpr char kMaskTag[] = "MASK";
|
||||||
|
|
||||||
absl::StatusOr<std::tuple<int, int, int>> GetHwcFromDims(
|
absl::StatusOr<std::tuple<int, int, int>> GetHwcFromDims(
|
||||||
const std::vector<int> &dims)
|
const std::vector<int>& dims) {
|
||||||
{
|
if (dims.size() == 3) {
|
||||||
if (dims.size() == 3)
|
|
||||||
{
|
|
||||||
return std::make_tuple(dims[0], dims[1], dims[2]);
|
return std::make_tuple(dims[0], dims[1], dims[2]);
|
||||||
}
|
} else if (dims.size() == 4) {
|
||||||
else if (dims.size() == 4)
|
|
||||||
{
|
|
||||||
// BHWC format check B == 1
|
// BHWC format check B == 1
|
||||||
RET_CHECK_EQ(1, dims[0]) << "Expected batch to be 1 for BHWC heatmap";
|
RET_CHECK_EQ(1, dims[0]) << "Expected batch to be 1 for BHWC heatmap";
|
||||||
return std::make_tuple(dims[1], dims[2], dims[3]);
|
return std::make_tuple(dims[1], dims[2], dims[3]);
|
||||||
}
|
} else {
|
||||||
else
|
|
||||||
{
|
|
||||||
RET_CHECK(false) << "Invalid shape for segmentation tensor " << dims.size();
|
RET_CHECK(false) << "Invalid shape for segmentation tensor " << dims.size();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
namespace mediapipe
|
namespace mediapipe {
|
||||||
{
|
|
||||||
|
|
||||||
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
using ::tflite::gpu::gl::GlProgram;
|
using ::tflite::gpu::gl::GlProgram;
|
||||||
using ::tflite::gpu::gl::GlShader;
|
using ::tflite::gpu::gl::GlShader;
|
||||||
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
|
|
||||||
// Converts Tensors from a tflite segmentation model to an image mask.
|
// Converts Tensors from a tflite segmentation model to an image mask.
|
||||||
//
|
//
|
||||||
// Performs optional upscale to OUTPUT_SIZE dimensions if provided,
|
// Performs optional upscale to OUTPUT_SIZE dimensions if provided,
|
||||||
// otherwise the mask is the same size as input tensor.
|
// otherwise the mask is the same size as input tensor.
|
||||||
//
|
//
|
||||||
// If at least one input tensor is already on GPU, processing happens on GPU and
|
// If at least one input tensor is already on GPU, processing happens on GPU and
|
||||||
// the output mask is also stored on GPU. Otherwise, processing and the output
|
// the output mask is also stored on GPU. Otherwise, processing and the output
|
||||||
// mask are both on CPU.
|
// mask are both on CPU.
|
||||||
//
|
//
|
||||||
// On GPU, the mask is an RGBA image, in both the R & A channels, scaled 0-1.
|
// On GPU, the mask is an RGBA image, in both the R & A channels, scaled 0-1.
|
||||||
// On CPU, the mask is a ImageFormat::VEC32F1 image, with values scaled 0-1.
|
// On CPU, the mask is a ImageFormat::VEC32F1 image, with values scaled 0-1.
|
||||||
//
|
//
|
||||||
//
|
//
|
||||||
// Inputs:
|
// Inputs:
|
||||||
// One of the following TENSORS tags:
|
// One of the following TENSORS tags:
|
||||||
// TENSORS: Vector of Tensor,
|
// TENSORS: Vector of Tensor,
|
||||||
// The tensor dimensions are specified in this calculator's options.
|
// The tensor dimensions are specified in this calculator's options.
|
||||||
// OUTPUT_SIZE(optional): std::pair<int, int>,
|
// OUTPUT_SIZE(optional): std::pair<int, int>,
|
||||||
// If provided, the size to upscale mask to.
|
// If provided, the size to upscale mask to.
|
||||||
//
|
//
|
||||||
// Output:
|
// Output:
|
||||||
// MASK: An Image output mask, RGBA(GPU) / VEC32F1(CPU).
|
// MASK: An Image output mask, RGBA(GPU) / VEC32F1(CPU).
|
||||||
//
|
//
|
||||||
// Options:
|
// Options:
|
||||||
// See tensors_to_segmentation_calculator.proto
|
// See tensors_to_segmentation_calculator.proto
|
||||||
//
|
//
|
||||||
// Usage example:
|
// Usage example:
|
||||||
// node {
|
// node {
|
||||||
// calculator: "TensorsToSegmentationCalculator"
|
// calculator: "TensorsToSegmentationCalculator"
|
||||||
// input_stream: "TENSORS:tensors"
|
// input_stream: "TENSORS:tensors"
|
||||||
// input_stream: "OUTPUT_SIZE:size"
|
// input_stream: "OUTPUT_SIZE:size"
|
||||||
// output_stream: "MASK:hair_mask"
|
// output_stream: "MASK:hair_mask"
|
||||||
// node_options: {
|
// node_options: {
|
||||||
// [mediapipe.TensorsToSegmentationCalculatorOptions] {
|
// [mediapipe.TensorsToSegmentationCalculatorOptions] {
|
||||||
// output_layer_index: 1
|
// output_layer_index: 1
|
||||||
// # gpu_origin: CONVENTIONAL # or TOP_LEFT
|
// # gpu_origin: CONVENTIONAL # or TOP_LEFT
|
||||||
// }
|
// }
|
||||||
// }
|
// }
|
||||||
// }
|
// }
|
||||||
//
|
//
|
||||||
// TODO Refactor and add support for other backends/platforms.
|
// TODO Refactor and add support for other backends/platforms.
|
||||||
//
|
//
|
||||||
class TensorsToSegmentationCalculator : public CalculatorBase
|
class TensorsToSegmentationCalculator : public CalculatorBase {
|
||||||
{
|
|
||||||
public:
|
public:
|
||||||
static absl::Status GetContract(CalculatorContract *cc);
|
static absl::Status GetContract(CalculatorContract* cc);
|
||||||
|
|
||||||
absl::Status Open(CalculatorContext *cc) override;
|
absl::Status Open(CalculatorContext* cc) override;
|
||||||
absl::Status Process(CalculatorContext *cc) override;
|
absl::Status Process(CalculatorContext* cc) override;
|
||||||
absl::Status Close(CalculatorContext *cc) override;
|
absl::Status Close(CalculatorContext* cc) override;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
absl::Status LoadOptions(CalculatorContext *cc);
|
absl::Status LoadOptions(CalculatorContext* cc);
|
||||||
absl::Status InitGpu(CalculatorContext *cc);
|
absl::Status InitGpu(CalculatorContext* cc);
|
||||||
absl::Status ProcessGpu(CalculatorContext *cc);
|
absl::Status ProcessGpu(CalculatorContext* cc);
|
||||||
absl::Status ProcessCpu(CalculatorContext *cc);
|
absl::Status ProcessCpu(CalculatorContext* cc);
|
||||||
void GlRender();
|
void GlRender();
|
||||||
|
|
||||||
bool DoesGpuTextureStartAtBottom()
|
bool DoesGpuTextureStartAtBottom() {
|
||||||
{
|
|
||||||
return options_.gpu_origin() != mediapipe::GpuOrigin_Mode_TOP_LEFT;
|
return options_.gpu_origin() != mediapipe::GpuOrigin_Mode_TOP_LEFT;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if !MEDIAPIPE_DISABLE_OPENCV
|
||||||
template <class T>
|
template <class T>
|
||||||
absl::Status ApplyActivation(cv::Mat &tensor_mat, cv::Mat *small_mask_mat);
|
absl::Status ApplyActivation(cv::Mat& tensor_mat, cv::Mat* small_mask_mat);
|
||||||
|
#endif // !MEDIAPIPE_DISABLE_OPENCV
|
||||||
::mediapipe::TensorsToSegmentationCalculatorOptions options_;
|
::mediapipe::TensorsToSegmentationCalculatorOptions options_;
|
||||||
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
|
@ -191,32 +177,29 @@ namespace mediapipe
|
||||||
GLuint mask_program_20_;
|
GLuint mask_program_20_;
|
||||||
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
#if MEDIAPIPE_METAL_ENABLED
|
#if MEDIAPIPE_METAL_ENABLED
|
||||||
MPPMetalHelper *metal_helper_ = nullptr;
|
MPPMetalHelper* metal_helper_ = nullptr;
|
||||||
id<MTLComputePipelineState> mask_program_;
|
id<MTLComputePipelineState> mask_program_;
|
||||||
#endif // MEDIAPIPE_METAL_ENABLED
|
#endif // MEDIAPIPE_METAL_ENABLED
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
};
|
};
|
||||||
REGISTER_CALCULATOR(TensorsToSegmentationCalculator);
|
REGISTER_CALCULATOR(TensorsToSegmentationCalculator);
|
||||||
|
|
||||||
// static
|
// static
|
||||||
absl::Status TensorsToSegmentationCalculator::GetContract(
|
absl::Status TensorsToSegmentationCalculator::GetContract(
|
||||||
CalculatorContract *cc)
|
CalculatorContract* cc) {
|
||||||
{
|
|
||||||
RET_CHECK(!cc->Inputs().GetTags().empty());
|
RET_CHECK(!cc->Inputs().GetTags().empty());
|
||||||
RET_CHECK(!cc->Outputs().GetTags().empty());
|
RET_CHECK(!cc->Outputs().GetTags().empty());
|
||||||
|
|
||||||
// Inputs.
|
// Inputs.
|
||||||
cc->Inputs().Tag(kTensorsTag).Set<std::vector<Tensor>>();
|
cc->Inputs().Tag(kTensorsTag).Set<std::vector<Tensor>>();
|
||||||
if (cc->Inputs().HasTag(kOutputSizeTag))
|
if (cc->Inputs().HasTag(kOutputSizeTag)) {
|
||||||
{
|
|
||||||
cc->Inputs().Tag(kOutputSizeTag).Set<std::pair<int, int>>();
|
cc->Inputs().Tag(kOutputSizeTag).Set<std::pair<int, int>>();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Outputs.
|
// Outputs.
|
||||||
cc->Outputs().Tag(kMaskTag).Set<Image>();
|
cc->Outputs().Tag(kMaskTag).Set<Image>();
|
||||||
|
|
||||||
if (CanUseGpu())
|
if (CanUseGpu()) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
|
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
|
||||||
#if MEDIAPIPE_METAL_ENABLED
|
#if MEDIAPIPE_METAL_ENABLED
|
||||||
|
@ -226,15 +209,13 @@ namespace mediapipe
|
||||||
}
|
}
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::Open(CalculatorContext *cc)
|
absl::Status TensorsToSegmentationCalculator::Open(CalculatorContext* cc) {
|
||||||
{
|
|
||||||
cc->SetOffset(TimestampDiff(0));
|
cc->SetOffset(TimestampDiff(0));
|
||||||
bool use_gpu = false;
|
bool use_gpu = false;
|
||||||
|
|
||||||
if (CanUseGpu())
|
if (CanUseGpu()) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
use_gpu = true;
|
use_gpu = true;
|
||||||
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
||||||
|
@ -247,8 +228,7 @@ namespace mediapipe
|
||||||
|
|
||||||
MP_RETURN_IF_ERROR(LoadOptions(cc));
|
MP_RETURN_IF_ERROR(LoadOptions(cc));
|
||||||
|
|
||||||
if (use_gpu)
|
if (use_gpu) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
MP_RETURN_IF_ERROR(InitGpu(cc));
|
MP_RETURN_IF_ERROR(InitGpu(cc));
|
||||||
#else
|
#else
|
||||||
|
@ -257,26 +237,21 @@ namespace mediapipe
|
||||||
}
|
}
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::Process(CalculatorContext *cc)
|
absl::Status TensorsToSegmentationCalculator::Process(CalculatorContext* cc) {
|
||||||
{
|
if (cc->Inputs().Tag(kTensorsTag).IsEmpty()) {
|
||||||
if (cc->Inputs().Tag(kTensorsTag).IsEmpty())
|
|
||||||
{
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto &input_tensors =
|
const auto& input_tensors =
|
||||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
||||||
|
|
||||||
bool use_gpu = false;
|
bool use_gpu = false;
|
||||||
if (CanUseGpu())
|
if (CanUseGpu()) {
|
||||||
{
|
|
||||||
// Use GPU processing only if at least one input tensor is already on GPU.
|
// Use GPU processing only if at least one input tensor is already on GPU.
|
||||||
for (const auto &tensor : input_tensors)
|
for (const auto& tensor : input_tensors) {
|
||||||
{
|
if (tensor.ready_on_gpu()) {
|
||||||
if (tensor.ready_on_gpu())
|
|
||||||
{
|
|
||||||
use_gpu = true;
|
use_gpu = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -284,7 +259,7 @@ namespace mediapipe
|
||||||
}
|
}
|
||||||
|
|
||||||
// Validate tensor channels and activation type.
|
// Validate tensor channels and activation type.
|
||||||
/*{
|
{
|
||||||
RET_CHECK(!input_tensors.empty());
|
RET_CHECK(!input_tensors.empty());
|
||||||
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
||||||
int tensor_channels = std::get<2>(hwc);
|
int tensor_channels = std::get<2>(hwc);
|
||||||
|
@ -301,40 +276,36 @@ namespace mediapipe
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
*/
|
|
||||||
/* if (use_gpu)
|
if (use_gpu) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this, cc]() -> absl::Status
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this, cc]() -> absl::Status {
|
||||||
{
|
|
||||||
MP_RETURN_IF_ERROR(ProcessGpu(cc));
|
MP_RETURN_IF_ERROR(ProcessGpu(cc));
|
||||||
return absl::OkStatus(); }));
|
return absl::OkStatus();
|
||||||
|
}));
|
||||||
#else
|
#else
|
||||||
RET_CHECK_FAIL() << "GPU processing disabled.";
|
RET_CHECK_FAIL() << "GPU processing disabled.";
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
}
|
} else {
|
||||||
else
|
#if !MEDIAPIPE_DISABLE_OPENCV
|
||||||
{ */
|
|
||||||
MP_RETURN_IF_ERROR(ProcessCpu(cc));
|
MP_RETURN_IF_ERROR(ProcessCpu(cc));
|
||||||
//}
|
#else
|
||||||
|
RET_CHECK_FAIL() << "OpenCV processing disabled.";
|
||||||
|
#endif // !MEDIAPIPE_DISABLE_OPENCV
|
||||||
|
}
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::Close(CalculatorContext *cc)
|
|
||||||
{
|
|
||||||
|
|
||||||
|
absl::Status TensorsToSegmentationCalculator::Close(CalculatorContext* cc) {
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
gpu_helper_.RunInGlContext([this]
|
gpu_helper_.RunInGlContext([this] {
|
||||||
{
|
if (upsample_program_) glDeleteProgram(upsample_program_);
|
||||||
if (upsample_program_)
|
|
||||||
glDeleteProgram(upsample_program_);
|
|
||||||
upsample_program_ = 0;
|
upsample_program_ = 0;
|
||||||
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
mask_program_31_.reset();
|
mask_program_31_.reset();
|
||||||
#else
|
#else
|
||||||
if (mask_program_20_)
|
if (mask_program_20_) glDeleteProgram(mask_program_20_);
|
||||||
glDeleteProgram(mask_program_20_);
|
|
||||||
mask_program_20_ = 0;
|
mask_program_20_ = 0;
|
||||||
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
#if MEDIAPIPE_METAL_ENABLED
|
#if MEDIAPIPE_METAL_ENABLED
|
||||||
|
@ -344,20 +315,19 @@ namespace mediapipe
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::ProcessCpu(
|
absl::Status TensorsToSegmentationCalculator::ProcessCpu(
|
||||||
CalculatorContext *cc)
|
CalculatorContext* cc) {
|
||||||
{
|
#if !MEDIAPIPE_DISABLE_OPENCV
|
||||||
// Get input streams, and dimensions.
|
// Get input streams, and dimensions.
|
||||||
const auto &input_tensors =
|
const auto& input_tensors =
|
||||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
||||||
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
||||||
auto [tensor_height, tensor_width, tensor_channels] = hwc;
|
auto [tensor_height, tensor_width, tensor_channels] = hwc;
|
||||||
int output_width = tensor_width, output_height = tensor_height;
|
int output_width = tensor_width, output_height = tensor_height;
|
||||||
if (cc->Inputs().HasTag(kOutputSizeTag))
|
if (cc->Inputs().HasTag(kOutputSizeTag)) {
|
||||||
{
|
const auto& size =
|
||||||
const auto &size =
|
|
||||||
cc->Inputs().Tag(kOutputSizeTag).Get<std::pair<int, int>>();
|
cc->Inputs().Tag(kOutputSizeTag).Get<std::pair<int, int>>();
|
||||||
output_width = size.first;
|
output_width = size.first;
|
||||||
output_height = size.second;
|
output_height = size.second;
|
||||||
|
@ -369,62 +339,63 @@ namespace mediapipe
|
||||||
// Wrap input tensor.
|
// Wrap input tensor.
|
||||||
auto raw_input_tensor = &input_tensors[0];
|
auto raw_input_tensor = &input_tensors[0];
|
||||||
auto raw_input_view = raw_input_tensor->GetCpuReadView();
|
auto raw_input_view = raw_input_tensor->GetCpuReadView();
|
||||||
const float *raw_input_data = raw_input_view.buffer<float>();
|
const float* raw_input_data = raw_input_view.buffer<float>();
|
||||||
cv::Mat tensor_mat(cv::Size(tensor_width, tensor_height),
|
cv::Mat tensor_mat(cv::Size(tensor_width, tensor_height),
|
||||||
CV_MAKETYPE(CV_32F, tensor_channels),
|
CV_MAKETYPE(CV_32F, tensor_channels),
|
||||||
const_cast<float *>(raw_input_data));
|
const_cast<float*>(raw_input_data));
|
||||||
|
|
||||||
// std::cout << tensor_mat.channels() << std::endl;
|
// Process mask tensor and apply activation function.
|
||||||
std::vector<cv::Mat> channels(4);
|
if (tensor_channels == 2) {
|
||||||
cv::split(tensor_mat, channels);
|
MP_RETURN_IF_ERROR(ApplyActivation<cv::Vec2f>(tensor_mat, &small_mask_mat));
|
||||||
for (auto ch : channels)
|
} else if (tensor_channels == 1) {
|
||||||
ch = (ch + 1) * 127.5;
|
RET_CHECK(mediapipe::TensorsToSegmentationCalculatorOptions::SOFTMAX !=
|
||||||
|
options_.activation()); // Requires 2 channels.
|
||||||
cv::merge(channels, tensor_mat);
|
if (mediapipe::TensorsToSegmentationCalculatorOptions::NONE ==
|
||||||
|
options_.activation()) // Pass-through optimization.
|
||||||
cv::convertScaleAbs(tensor_mat, tensor_mat);
|
tensor_mat.copyTo(small_mask_mat);
|
||||||
// std::cout << "R (numpy) = " << std::endl << cv::format(tensor_mat, cv::Formatter::FMT_NUMPY ) << std::endl << std::endl;
|
else
|
||||||
|
MP_RETURN_IF_ERROR(ApplyActivation<float>(tensor_mat, &small_mask_mat));
|
||||||
|
} else {
|
||||||
|
RET_CHECK_FAIL() << "Unsupported number of tensor channels "
|
||||||
|
<< tensor_channels;
|
||||||
|
}
|
||||||
|
|
||||||
// Send out image as CPU packet.
|
// Send out image as CPU packet.
|
||||||
std::shared_ptr<ImageFrame> mask_frame = std::make_shared<ImageFrame>(
|
std::shared_ptr<ImageFrame> mask_frame = std::make_shared<ImageFrame>(
|
||||||
ImageFormat::SRGB, output_width, output_height);
|
ImageFormat::VEC32F1, output_width, output_height);
|
||||||
std::unique_ptr<Image> output_mask = absl::make_unique<Image>(mask_frame);
|
std::unique_ptr<Image> output_mask = absl::make_unique<Image>(mask_frame);
|
||||||
auto output_mat = formats::MatView(output_mask.get());
|
auto output_mat = formats::MatView(output_mask.get());
|
||||||
// Upsample small mask into output.
|
// Upsample small mask into output.
|
||||||
cv::resize(tensor_mat, *output_mat,
|
cv::resize(small_mask_mat, *output_mat,
|
||||||
cv::Size(output_width, output_height));
|
cv::Size(output_width, output_height));
|
||||||
cc->Outputs().Tag(kMaskTag).Add(output_mask.release(), cc->InputTimestamp());
|
cc->Outputs().Tag(kMaskTag).Add(output_mask.release(), cc->InputTimestamp());
|
||||||
|
#endif // !MEDIAPIPE_DISABLE_OPENCV
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T>
|
#if !MEDIAPIPE_DISABLE_OPENCV
|
||||||
absl::Status TensorsToSegmentationCalculator::ApplyActivation(
|
template <class T>
|
||||||
cv::Mat &tensor_mat, cv::Mat *small_mask_mat)
|
absl::Status TensorsToSegmentationCalculator::ApplyActivation(
|
||||||
{
|
cv::Mat& tensor_mat, cv::Mat* small_mask_mat) {
|
||||||
// Configure activation function.
|
// Configure activation function.
|
||||||
const int output_layer_index = options_.output_layer_index();
|
const int output_layer_index = options_.output_layer_index();
|
||||||
typedef mediapipe::TensorsToSegmentationCalculatorOptions Options;
|
typedef mediapipe::TensorsToSegmentationCalculatorOptions Options;
|
||||||
const auto activation_fn = [&](const cv::Vec2f &mask_value)
|
const auto activation_fn = [&](const cv::Vec2f& mask_value) {
|
||||||
{
|
|
||||||
float new_mask_value = 0;
|
float new_mask_value = 0;
|
||||||
// TODO consider moving switch out of the loop,
|
// TODO consider moving switch out of the loop,
|
||||||
// and also avoid float/Vec2f casting.
|
// and also avoid float/Vec2f casting.
|
||||||
switch (options_.activation())
|
switch (options_.activation()) {
|
||||||
{
|
case Options::NONE: {
|
||||||
case Options::NONE:
|
|
||||||
{
|
|
||||||
new_mask_value = mask_value[0];
|
new_mask_value = mask_value[0];
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Options::SIGMOID:
|
case Options::SIGMOID: {
|
||||||
{
|
|
||||||
const float pixel0 = mask_value[0];
|
const float pixel0 = mask_value[0];
|
||||||
new_mask_value = 1.0 / (std::exp(-pixel0) + 1.0);
|
new_mask_value = 1.0 / (std::exp(-pixel0) + 1.0);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Options::SOFTMAX:
|
case Options::SOFTMAX: {
|
||||||
{
|
|
||||||
const float pixel0 = mask_value[0];
|
const float pixel0 = mask_value[0];
|
||||||
const float pixel1 = mask_value[1];
|
const float pixel1 = mask_value[1];
|
||||||
const float max_pixel = std::max(pixel0, pixel1);
|
const float max_pixel = std::max(pixel0, pixel1);
|
||||||
|
@ -441,78 +412,159 @@ namespace mediapipe
|
||||||
};
|
};
|
||||||
|
|
||||||
// Process mask tensor.
|
// Process mask tensor.
|
||||||
for (int i = 0; i < tensor_mat.rows; ++i)
|
for (int i = 0; i < tensor_mat.rows; ++i) {
|
||||||
{
|
for (int j = 0; j < tensor_mat.cols; ++j) {
|
||||||
for (int j = 0; j < tensor_mat.cols; ++j)
|
const T& input_pix = tensor_mat.at<T>(i, j);
|
||||||
{
|
|
||||||
const T &input_pix = tensor_mat.at<T>(i, j);
|
|
||||||
const float mask_value = activation_fn(input_pix);
|
const float mask_value = activation_fn(input_pix);
|
||||||
small_mask_mat->at<float>(i, j) = mask_value;
|
small_mask_mat->at<float>(i, j) = mask_value;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
#endif // !MEDIAPIPE_DISABLE_OPENCV
|
||||||
|
|
||||||
// Steps:
|
// Steps:
|
||||||
// 1. receive tensor
|
// 1. receive tensor
|
||||||
// 2. process segmentation tensor into small mask
|
// 2. process segmentation tensor into small mask
|
||||||
// 3. upsample small mask into output mask to be same size as input image
|
// 3. upsample small mask into output mask to be same size as input image
|
||||||
absl::Status TensorsToSegmentationCalculator::ProcessGpu(
|
absl::Status TensorsToSegmentationCalculator::ProcessGpu(
|
||||||
CalculatorContext *cc)
|
CalculatorContext* cc) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
|
|
||||||
// Get input streams, and dimensions.
|
// Get input streams, and dimensions.
|
||||||
const auto &input_tensors =
|
const auto& input_tensors =
|
||||||
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
cc->Inputs().Tag(kTensorsTag).Get<std::vector<Tensor>>();
|
||||||
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
ASSIGN_OR_RETURN(auto hwc, GetHwcFromDims(input_tensors[0].shape().dims));
|
||||||
auto [tensor_height, tensor_width, tensor_channels] = hwc;
|
auto [tensor_height, tensor_width, tensor_channels] = hwc;
|
||||||
int output_width = tensor_width, output_height = tensor_height;
|
int output_width = tensor_width, output_height = tensor_height;
|
||||||
if (cc->Inputs().HasTag(kOutputSizeTag))
|
if (cc->Inputs().HasTag(kOutputSizeTag)) {
|
||||||
{
|
const auto& size =
|
||||||
const auto &size =
|
|
||||||
cc->Inputs().Tag(kOutputSizeTag).Get<std::pair<int, int>>();
|
cc->Inputs().Tag(kOutputSizeTag).Get<std::pair<int, int>>();
|
||||||
output_width = size.first;
|
output_width = size.first;
|
||||||
output_height = size.second;
|
output_height = size.second;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Wrap input tensor.
|
// Create initial working mask texture.
|
||||||
auto raw_input_tensor = &input_tensors[0];
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
auto raw_input_view = raw_input_tensor->GetCpuReadView();
|
tflite::gpu::gl::GlTexture small_mask_texture;
|
||||||
const float *raw_input_data = raw_input_view.buffer<float>();
|
#else
|
||||||
cv::Mat tensor_mat(cv::Size(tensor_width, tensor_height),
|
mediapipe::GlTexture small_mask_texture;
|
||||||
CV_MAKETYPE(CV_32F, tensor_channels),
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
const_cast<float *>(raw_input_data));
|
|
||||||
|
|
||||||
// std::cout << tensor_mat.channels() << std::endl;
|
// Run shader, process mask tensor.
|
||||||
std::vector<cv::Mat> channels(4);
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
cv::split(tensor_mat, channels);
|
{
|
||||||
for (auto ch : channels)
|
MP_RETURN_IF_ERROR(CreateReadWriteRgbaImageTexture(
|
||||||
ch = (ch + 1) * 127.5;
|
tflite::gpu::DataType::UINT8, // GL_RGBA8
|
||||||
|
{tensor_width, tensor_height}, &small_mask_texture));
|
||||||
|
|
||||||
cv::merge(channels, tensor_mat);
|
const int output_index = 0;
|
||||||
|
glBindImageTexture(output_index, small_mask_texture.id(), 0, GL_FALSE, 0,
|
||||||
|
GL_WRITE_ONLY, GL_RGBA8);
|
||||||
|
|
||||||
cv::convertScaleAbs(tensor_mat, tensor_mat);
|
auto read_view = input_tensors[0].GetOpenGlBufferReadView();
|
||||||
// std::cout << "R (numpy) = " << std::endl << cv::format(tensor_mat, cv::Formatter::FMT_NUMPY ) << std::endl << std::endl;
|
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, read_view.name());
|
||||||
|
|
||||||
|
const tflite::gpu::uint3 workgroups = {
|
||||||
|
NumGroups(tensor_width, kWorkgroupSize),
|
||||||
|
NumGroups(tensor_height, kWorkgroupSize), 1};
|
||||||
|
|
||||||
|
glUseProgram(mask_program_31_->id());
|
||||||
|
glUniform2i(glGetUniformLocation(mask_program_31_->id(), "out_size"),
|
||||||
|
tensor_width, tensor_height);
|
||||||
|
|
||||||
|
MP_RETURN_IF_ERROR(mask_program_31_->Dispatch(workgroups));
|
||||||
|
}
|
||||||
|
#elif MEDIAPIPE_METAL_ENABLED
|
||||||
|
{
|
||||||
|
id<MTLCommandBuffer> command_buffer = [metal_helper_ commandBuffer];
|
||||||
|
command_buffer.label = @"SegmentationKernel";
|
||||||
|
id<MTLComputeCommandEncoder> command_encoder =
|
||||||
|
[command_buffer computeCommandEncoder];
|
||||||
|
[command_encoder setComputePipelineState:mask_program_];
|
||||||
|
|
||||||
|
auto read_view = input_tensors[0].GetMtlBufferReadView(command_buffer);
|
||||||
|
[command_encoder setBuffer:read_view.buffer() offset:0 atIndex:0];
|
||||||
|
|
||||||
|
mediapipe::GpuBuffer small_mask_buffer = [metal_helper_
|
||||||
|
mediapipeGpuBufferWithWidth:tensor_width
|
||||||
|
height:tensor_height
|
||||||
|
format:mediapipe::GpuBufferFormat::kBGRA32];
|
||||||
|
id<MTLTexture> small_mask_texture_metal =
|
||||||
|
[metal_helper_ metalTextureWithGpuBuffer:small_mask_buffer];
|
||||||
|
[command_encoder setTexture:small_mask_texture_metal atIndex:1];
|
||||||
|
|
||||||
|
unsigned int out_size[] = {static_cast<unsigned int>(tensor_width),
|
||||||
|
static_cast<unsigned int>(tensor_height)};
|
||||||
|
[command_encoder setBytes:&out_size length:sizeof(out_size) atIndex:2];
|
||||||
|
|
||||||
|
MTLSize threads_per_group = MTLSizeMake(kWorkgroupSize, kWorkgroupSize, 1);
|
||||||
|
MTLSize threadgroups =
|
||||||
|
MTLSizeMake(NumGroups(tensor_width, kWorkgroupSize),
|
||||||
|
NumGroups(tensor_height, kWorkgroupSize), 1);
|
||||||
|
[command_encoder dispatchThreadgroups:threadgroups
|
||||||
|
threadsPerThreadgroup:threads_per_group];
|
||||||
|
[command_encoder endEncoding];
|
||||||
|
[command_buffer commit];
|
||||||
|
|
||||||
|
small_mask_texture = gpu_helper_.CreateSourceTexture(small_mask_buffer);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
{
|
||||||
|
small_mask_texture = gpu_helper_.CreateDestinationTexture(
|
||||||
|
tensor_width, tensor_height,
|
||||||
|
mediapipe::GpuBufferFormat::kBGRA32); // actually GL_RGBA8
|
||||||
|
|
||||||
|
// Go through CPU if not already texture 2D (no direct conversion yet).
|
||||||
|
// Tensor::GetOpenGlTexture2dReadView() doesn't automatically convert types.
|
||||||
|
if (!input_tensors[0].ready_as_opengl_texture_2d()) {
|
||||||
|
(void)input_tensors[0].GetCpuReadView();
|
||||||
|
}
|
||||||
|
|
||||||
|
auto read_view = input_tensors[0].GetOpenGlTexture2dReadView();
|
||||||
|
|
||||||
|
gpu_helper_.BindFramebuffer(small_mask_texture);
|
||||||
|
glActiveTexture(GL_TEXTURE1);
|
||||||
|
glBindTexture(GL_TEXTURE_2D, read_view.name());
|
||||||
|
glUseProgram(mask_program_20_);
|
||||||
|
GlRender();
|
||||||
|
glBindTexture(GL_TEXTURE_2D, 0);
|
||||||
|
glFlush();
|
||||||
|
}
|
||||||
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
|
|
||||||
// Send out image as CPU packet.
|
|
||||||
std::shared_ptr<ImageFrame> mask_frame = std::make_shared<ImageFrame>(
|
|
||||||
ImageFormat::SRGB, output_width, output_height);
|
|
||||||
std::unique_ptr<Image> output_mask = absl::make_unique<Image>(mask_frame);
|
|
||||||
auto output_mat = formats::MatView(output_mask.get());
|
|
||||||
// Upsample small mask into output.
|
// Upsample small mask into output.
|
||||||
cv::resize(tensor_mat, *output_mat,
|
mediapipe::GlTexture output_texture = gpu_helper_.CreateDestinationTexture(
|
||||||
cv::Size(output_width, output_height));
|
output_width, output_height,
|
||||||
cc->Outputs().Tag(kMaskTag).Add(output_mask.release(), cc->InputTimestamp());
|
mediapipe::GpuBufferFormat::kBGRA32); // actually GL_RGBA8
|
||||||
|
|
||||||
|
// Run shader, upsample result.
|
||||||
|
{
|
||||||
|
gpu_helper_.BindFramebuffer(output_texture);
|
||||||
|
glActiveTexture(GL_TEXTURE1);
|
||||||
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
|
glBindTexture(GL_TEXTURE_2D, small_mask_texture.id());
|
||||||
|
#else
|
||||||
|
glBindTexture(GL_TEXTURE_2D, small_mask_texture.name());
|
||||||
|
#endif // MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
|
glUseProgram(upsample_program_);
|
||||||
|
GlRender();
|
||||||
|
glBindTexture(GL_TEXTURE_2D, 0);
|
||||||
|
glFlush();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Send out image as GPU packet.
|
||||||
|
auto output_image = output_texture.GetFrame<Image>();
|
||||||
|
cc->Outputs().Tag(kMaskTag).Add(output_image.release(), cc->InputTimestamp());
|
||||||
|
|
||||||
|
// Cleanup
|
||||||
|
output_texture.Release();
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
void TensorsToSegmentationCalculator::GlRender()
|
void TensorsToSegmentationCalculator::GlRender() {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
static const GLfloat square_vertices[] = {
|
static const GLfloat square_vertices[] = {
|
||||||
-1.0f, -1.0f, // bottom left
|
-1.0f, -1.0f, // bottom left
|
||||||
|
@ -559,22 +611,19 @@ namespace mediapipe
|
||||||
glDeleteVertexArrays(1, &vao);
|
glDeleteVertexArrays(1, &vao);
|
||||||
glDeleteBuffers(2, vbo);
|
glDeleteBuffers(2, vbo);
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::LoadOptions(
|
absl::Status TensorsToSegmentationCalculator::LoadOptions(
|
||||||
CalculatorContext *cc)
|
CalculatorContext* cc) {
|
||||||
{
|
|
||||||
// Get calculator options specified in the graph.
|
// Get calculator options specified in the graph.
|
||||||
options_ = cc->Options<::mediapipe::TensorsToSegmentationCalculatorOptions>();
|
options_ = cc->Options<::mediapipe::TensorsToSegmentationCalculatorOptions>();
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
absl::Status TensorsToSegmentationCalculator::InitGpu(CalculatorContext *cc)
|
absl::Status TensorsToSegmentationCalculator::InitGpu(CalculatorContext* cc) {
|
||||||
{
|
|
||||||
#if !MEDIAPIPE_DISABLE_GPU
|
#if !MEDIAPIPE_DISABLE_GPU
|
||||||
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this]() -> absl::Status
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this]() -> absl::Status {
|
||||||
{
|
|
||||||
// A shader to process a segmentation tensor into an output mask.
|
// A shader to process a segmentation tensor into an output mask.
|
||||||
// Currently uses 4 channels for output, and sets R+A channels as mask value.
|
// Currently uses 4 channels for output, and sets R+A channels as mask value.
|
||||||
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
#if MEDIAPIPE_OPENGL_ES_VERSION >= MEDIAPIPE_OPENGL_ES_31
|
||||||
|
@ -835,10 +884,11 @@ void main() {
|
||||||
glUseProgram(upsample_program_);
|
glUseProgram(upsample_program_);
|
||||||
glUniform1i(glGetUniformLocation(upsample_program_, "video_frame"), 1);
|
glUniform1i(glGetUniformLocation(upsample_program_, "video_frame"), 1);
|
||||||
|
|
||||||
return absl::OkStatus(); }));
|
return absl::OkStatus();
|
||||||
|
}));
|
||||||
#endif // !MEDIAPIPE_DISABLE_GPU
|
#endif // !MEDIAPIPE_DISABLE_GPU
|
||||||
|
|
||||||
return absl::OkStatus();
|
return absl::OkStatus();
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace mediapipe
|
} // namespace mediapipe
|
||||||
|
|
|
@ -14,7 +14,7 @@ profiler_config {
|
||||||
trace_enabled: true
|
trace_enabled: true
|
||||||
enable_profiler: true
|
enable_profiler: true
|
||||||
trace_log_interval_count: 200
|
trace_log_interval_count: 200
|
||||||
trace_log_path: "/Users/alena/Workdir/mediapipe/logs/beauty/"
|
trace_log_path: "/home/mslight/Work/clone/mediapipe/mediapipe/logs/beauty/"
|
||||||
}
|
}
|
||||||
|
|
||||||
# Throttles the images flowing downstream for flow control. It passes through
|
# Throttles the images flowing downstream for flow control. It passes through
|
||||||
|
|
|
@ -19,7 +19,6 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
//#include <android/log.h>
|
|
||||||
|
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include "Tensor.h"
|
#include "Tensor.h"
|
||||||
|
|
|
@ -16,18 +16,6 @@ licenses(["notice"])
|
||||||
|
|
||||||
package(default_visibility = ["//visibility:public"])
|
package(default_visibility = ["//visibility:public"])
|
||||||
|
|
||||||
load("//mediapipe/framework:encode_binary_proto.bzl", "encode_binary_proto")
|
|
||||||
|
|
||||||
encode_binary_proto(
|
|
||||||
name = "triangles",
|
|
||||||
input = "triangles.pbtxt",
|
|
||||||
message_type = "mediapipe.face_geometry.Mesh3d",
|
|
||||||
output = "triangles.binarypb",
|
|
||||||
deps = [
|
|
||||||
"//mediapipe/modules/face_geometry/protos:mesh_3d_proto",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
exports_files(
|
exports_files(
|
||||||
srcs = glob(["**"]),
|
srcs = glob(["**"]),
|
||||||
)
|
)
|
||||||
|
|
|
@ -29,14 +29,16 @@ cc_library(
|
||||||
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
||||||
"//mediapipe/calculators/tensor:inference_calculator",
|
"//mediapipe/calculators/tensor:inference_calculator",
|
||||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||||
"//mediapipe/calculators/tensor:tensors_to_segmentation_calculator",
|
|
||||||
"//mediapipe/calculators/util:to_image_calculator",
|
"//mediapipe/calculators/util:to_image_calculator",
|
||||||
"//mediapipe/calculators/util:from_image_calculator",
|
"//mediapipe/calculators/util:from_image_calculator",
|
||||||
"//mediapipe/calculators/image:image_properties_calculator",
|
"//mediapipe/calculators/image:image_properties_calculator",
|
||||||
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
|
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
|
||||||
|
"//mediapipe/calculators/image_style:apply_mask_calculator",
|
||||||
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
||||||
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
|
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
|
||||||
|
"//mediapipe/gpu:image_frame_to_gpu_buffer_calculator",
|
||||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||||
|
"//mediapipe/calculators/tensor:tensors_to_image_calculator",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -48,11 +50,12 @@ cc_library(
|
||||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||||
"//mediapipe/calculators/tensor:inference_calculator",
|
"//mediapipe/calculators/tensor:inference_calculator",
|
||||||
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
||||||
"//mediapipe/calculators/tensor:tensors_to_segmentation_calculator",
|
"//mediapipe/calculators/tensor:tensors_to_image_calculator",
|
||||||
"//mediapipe/calculators/util:to_image_calculator",
|
"//mediapipe/calculators/util:to_image_calculator",
|
||||||
"//mediapipe/calculators/util:from_image_calculator",
|
"//mediapipe/calculators/util:from_image_calculator",
|
||||||
"//mediapipe/modules/face_landmark:face_landmark_front_cpu",
|
"//mediapipe/modules/face_landmark:face_landmark_front_cpu",
|
||||||
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
||||||
|
"//mediapipe/calculators/image_style:apply_mask_calculator",
|
||||||
"//mediapipe/calculators/image:image_properties_calculator",
|
"//mediapipe/calculators/image:image_properties_calculator",
|
||||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||||
],
|
],
|
||||||
|
|
|
@ -17,6 +17,12 @@ node {
|
||||||
output_stream: "throttled_input_video"
|
output_stream: "throttled_input_video"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ImagePropertiesCalculator"
|
||||||
|
input_stream: "IMAGE:input_video"
|
||||||
|
output_stream: "SIZE:original_size"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
# Defines side packets for further use in the graph.
|
# Defines side packets for further use in the graph.
|
||||||
node {
|
node {
|
||||||
|
@ -44,7 +50,14 @@ node {
|
||||||
calculator: "FastUtilsCalculator"
|
calculator: "FastUtilsCalculator"
|
||||||
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||||
input_stream: "IMAGE:throttled_input_video"
|
input_stream: "IMAGE:throttled_input_video"
|
||||||
|
input_stream: "SIZE:original_size"
|
||||||
output_stream: "IMAGE:out_image_frame"
|
output_stream: "IMAGE:out_image_frame"
|
||||||
|
output_stream: "LM_MASK:lm_mask"
|
||||||
|
options {
|
||||||
|
[mediapipe.FastUtilsCalculatorOptions.ext] {
|
||||||
|
back_to_image: false
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
node: {
|
node: {
|
||||||
|
@ -83,26 +96,91 @@ node {
|
||||||
}
|
}
|
||||||
|
|
||||||
node {
|
node {
|
||||||
calculator: "ImagePropertiesCalculator"
|
calculator: "TensorsToImageCalculator"
|
||||||
input_stream: "IMAGE:transformed_input_video"
|
input_stream: "TENSORS:output_tensor"
|
||||||
output_stream: "SIZE:input_size"
|
output_stream: "IMAGE:fake_image"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
node{
|
||||||
|
calculator: "FromImageCalculator"
|
||||||
|
input_stream: "IMAGE:fake_image"
|
||||||
|
output_stream: "IMAGE_CPU:fake_image2"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
node: {
|
||||||
|
calculator: "ImageTransformationCalculator"
|
||||||
|
input_stream: "IMAGE:input_video"
|
||||||
|
output_stream: "IMAGE:transformed_input_img"
|
||||||
|
node_options: {
|
||||||
|
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||||
|
output_width: 256
|
||||||
|
output_height: 256
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
node {
|
node {
|
||||||
calculator: "TensorsToSegmentationCalculator"
|
calculator: "TensorConverterCalculator"
|
||||||
input_stream: "TENSORS:output_tensor"
|
input_stream: "IMAGE:transformed_input_img"
|
||||||
input_stream: "OUTPUT_SIZE:input_size"
|
output_stream: "TENSORS:input_tensor_img"
|
||||||
output_stream: "MASK:output"
|
|
||||||
options: {
|
options: {
|
||||||
[mediapipe.TensorsToSegmentationCalculatorOptions.ext] {
|
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
||||||
activation: NONE
|
zero_center: true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "InferenceCalculator"
|
||||||
|
input_stream: "TENSORS:input_tensor_img"
|
||||||
|
output_stream: "TENSORS:output_tensor_img"
|
||||||
|
options: {
|
||||||
|
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||||
|
model_path: "mediapipe/models/model_float32.tflite"
|
||||||
|
delegate { xnnpack {} }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ImagePropertiesCalculator"
|
||||||
|
input_stream: "IMAGE:transformed_input_img"
|
||||||
|
output_stream: "SIZE:input_size_img"
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "TensorsToImageCalculator"
|
||||||
|
input_stream: "TENSORS:output_tensor_img"
|
||||||
|
input_stream: "OUTPUT_SIZE:input_size_img"
|
||||||
|
output_stream: "IMAGE:fake_bg2"
|
||||||
|
}
|
||||||
|
|
||||||
node{
|
node{
|
||||||
calculator: "FromImageCalculator"
|
calculator: "FromImageCalculator"
|
||||||
input_stream: "IMAGE:output"
|
input_stream: "IMAGE:fake_bg2"
|
||||||
output_stream: "IMAGE_CPU:output_video"
|
output_stream: "IMAGE_CPU:fake_bg"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "FastUtilsCalculator"
|
||||||
|
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||||
|
input_stream: "IMAGE:fake_image2"
|
||||||
|
input_stream: "SIZE:original_size"
|
||||||
|
output_stream: "IMAGE:back_image"
|
||||||
|
options {
|
||||||
|
[mediapipe.FastUtilsCalculatorOptions.ext] {
|
||||||
|
back_to_image: true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ApplyMaskCalculator"
|
||||||
|
input_stream: "IMAGE:back_image"
|
||||||
|
input_stream: "FAKE_BG:fake_bg"
|
||||||
|
input_stream: "LM_MASK:lm_mask"
|
||||||
|
output_stream: "IMAGE:output_video"
|
||||||
|
}
|
||||||
|
|
|
@ -36,6 +36,12 @@ node {
|
||||||
output_stream: "throttled_input_video_cpu"
|
output_stream: "throttled_input_video_cpu"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ImagePropertiesCalculator"
|
||||||
|
input_stream: "IMAGE_CPU:throttled_input_video_cpu"
|
||||||
|
output_stream: "SIZE:original_size"
|
||||||
|
}
|
||||||
|
|
||||||
# Subgraph that detects faces and corresponding landmarks.
|
# Subgraph that detects faces and corresponding landmarks.
|
||||||
node {
|
node {
|
||||||
calculator: "FaceLandmarkFrontGpu"
|
calculator: "FaceLandmarkFrontGpu"
|
||||||
|
@ -48,26 +54,33 @@ node {
|
||||||
calculator: "FastUtilsCalculator"
|
calculator: "FastUtilsCalculator"
|
||||||
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||||
input_stream: "IMAGE:throttled_input_video_cpu"
|
input_stream: "IMAGE:throttled_input_video_cpu"
|
||||||
|
input_stream: "SIZE:original_size"
|
||||||
output_stream: "IMAGE:out_image_frame"
|
output_stream: "IMAGE:out_image_frame"
|
||||||
|
output_stream: "LM_MASK:lm_mask"
|
||||||
|
options {
|
||||||
|
[mediapipe.FastUtilsCalculatorOptions.ext] {
|
||||||
|
back_to_image: false
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#node: {
|
node: {
|
||||||
# calculator: "ImageTransformationCalculator"
|
calculator: "ImageTransformationCalculator"
|
||||||
# input_stream: "IMAGE:out_image_frame"
|
input_stream: "IMAGE:out_image_frame"
|
||||||
# output_stream: "IMAGE:out_image_frame1"
|
output_stream: "IMAGE:image_frame"
|
||||||
# node_options: {
|
node_options: {
|
||||||
# [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||||
# output_width: 256
|
output_width: 256
|
||||||
# output_height: 256
|
output_height: 256
|
||||||
# }
|
}
|
||||||
# }
|
}
|
||||||
#}
|
}
|
||||||
|
|
||||||
|
|
||||||
node {
|
node {
|
||||||
calculator: "TensorConverterCalculator"
|
calculator: "TensorConverterCalculator"
|
||||||
input_stream: "IMAGE:out_image_frame"
|
input_stream: "IMAGE:image_frame"
|
||||||
output_stream: "TENSORS:input_tensors"
|
output_stream: "TENSORS:input_tensor"
|
||||||
options: {
|
options: {
|
||||||
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
||||||
zero_center: true
|
zero_center: true
|
||||||
|
@ -75,35 +88,109 @@ node {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#node {
|
|
||||||
# calculator: "InferenceCalculator"
|
|
||||||
# input_stream: "TENSORS:input_tensors"
|
|
||||||
# output_stream: "TENSORS:output_tensors"
|
|
||||||
# options: {
|
|
||||||
# [mediapipe.InferenceCalculatorOptions.ext] {
|
|
||||||
# model_path:"mediapipe/models/model_float32.tflite"
|
|
||||||
# delegate { gpu {} }
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
#}
|
|
||||||
|
|
||||||
# Processes the output tensors into a segmentation mask that has the same size
|
|
||||||
# as the input image into the graph.
|
|
||||||
node {
|
node {
|
||||||
calculator: "TensorsToSegmentationCalculator"
|
calculator: "InferenceCalculator"
|
||||||
input_stream: "TENSORS:input_tensors"
|
input_stream: "TENSORS:input_tensor"
|
||||||
#input_stream: "OUTPUT_SIZE:input_size"
|
output_stream: "TENSORS:output_tensor"
|
||||||
output_stream: "MASK:mask_image"
|
|
||||||
options: {
|
options: {
|
||||||
[mediapipe.TensorsToSegmentationCalculatorOptions.ext] {
|
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||||
activation: NONE
|
model_path:"mediapipe/models/model_float32.tflite"
|
||||||
gpu_origin: TOP_LEFT
|
delegate { gpu {} }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "TensorsToImageCalculator"
|
||||||
|
input_stream: "TENSORS:output_tensor"
|
||||||
|
output_stream: "IMAGE:fake_image"
|
||||||
|
}
|
||||||
|
|
||||||
node: {
|
node: {
|
||||||
calculator: "FromImageCalculator"
|
calculator: "FromImageCalculator"
|
||||||
input_stream: "IMAGE:mask_image"
|
input_stream: "IMAGE:fake_image"
|
||||||
output_stream: "IMAGE_GPU:output_video"
|
output_stream: "IMAGE_CPU:cpu_fake_image"
|
||||||
|
}
|
||||||
|
|
||||||
|
node: {
|
||||||
|
calculator: "ImageTransformationCalculator"
|
||||||
|
input_stream: "IMAGE:throttled_input_video_cpu"
|
||||||
|
output_stream: "IMAGE:transformed_input_img"
|
||||||
|
node_options: {
|
||||||
|
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||||
|
output_width: 256
|
||||||
|
output_height: 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "TensorConverterCalculator"
|
||||||
|
input_stream: "IMAGE:transformed_input_img"
|
||||||
|
output_stream: "TENSORS:input_tensor_img"
|
||||||
|
options: {
|
||||||
|
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
||||||
|
zero_center: true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "InferenceCalculator"
|
||||||
|
input_stream: "TENSORS:input_tensor_img"
|
||||||
|
output_stream: "TENSORS:output_tensor_img"
|
||||||
|
options: {
|
||||||
|
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||||
|
model_path: "mediapipe/models/model_float32.tflite"
|
||||||
|
delegate { xnnpack {} }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ImagePropertiesCalculator"
|
||||||
|
input_stream: "IMAGE_CPU:transformed_input_img"
|
||||||
|
output_stream: "SIZE:input_size_img"
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "TensorsToImageCalculator"
|
||||||
|
input_stream: "TENSORS:output_tensor_img"
|
||||||
|
input_stream: "OUTPUT_SIZE:input_size_img"
|
||||||
|
output_stream: "IMAGE:fake_bg2"
|
||||||
|
}
|
||||||
|
|
||||||
|
node{
|
||||||
|
calculator: "FromImageCalculator"
|
||||||
|
input_stream: "IMAGE:fake_bg2"
|
||||||
|
output_stream: "IMAGE_CPU:fake_bg"
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "FastUtilsCalculator"
|
||||||
|
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||||
|
input_stream: "IMAGE:cpu_fake_image"
|
||||||
|
input_stream: "SIZE:original_size"
|
||||||
|
output_stream: "IMAGE:back_image"
|
||||||
|
options {
|
||||||
|
[mediapipe.FastUtilsCalculatorOptions.ext] {
|
||||||
|
back_to_image: true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
node {
|
||||||
|
calculator: "ApplyMaskCalculator"
|
||||||
|
input_stream: "IMAGE:back_image"
|
||||||
|
input_stream: "FAKE_BG:fake_bg"
|
||||||
|
input_stream: "LM_MASK:lm_mask"
|
||||||
|
output_stream: "IMAGE:out_image"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Defines side packets for further use in the graph.
|
||||||
|
node {
|
||||||
|
calculator: "ImageFrameToGpuBufferCalculator"
|
||||||
|
input_stream: "out_image"
|
||||||
|
output_stream: "output_video"
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user