Merge pull request #3845 from kinaryml:image-embedder-python
PiperOrigin-RevId: 487950862
This commit is contained in:
commit
5d9ea88815
|
@ -89,6 +89,7 @@ cc_library(
|
||||||
deps = [
|
deps = [
|
||||||
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
|
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
|
||||||
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
|
||||||
|
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
|
||||||
"//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph",
|
"//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph",
|
||||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||||
] + select({
|
] + select({
|
||||||
|
|
|
@ -95,3 +95,12 @@ py_library(
|
||||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "embedding_result",
|
||||||
|
srcs = ["embedding_result.py"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/tasks/cc/components/containers/proto:embeddings_py_pb2",
|
||||||
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
125
mediapipe/tasks/python/components/containers/embedding_result.py
Normal file
125
mediapipe/tasks/python/components/containers/embedding_result.py
Normal file
|
@ -0,0 +1,125 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Embeddings data class."""
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Optional, List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
|
||||||
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
|
|
||||||
|
_FloatEmbeddingProto = embeddings_pb2.FloatEmbedding
|
||||||
|
_QuantizedEmbeddingProto = embeddings_pb2.QuantizedEmbedding
|
||||||
|
_EmbeddingProto = embeddings_pb2.Embedding
|
||||||
|
_EmbeddingResultProto = embeddings_pb2.EmbeddingResult
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class FloatEmbedding:
|
||||||
|
"""Defines a dense floating-point embedding.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
values: A NumPy array indicating the raw output of the embedding layer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
values: np.ndarray
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def create_from_pb2(cls, pb2_obj: _FloatEmbeddingProto) -> 'FloatEmbedding':
|
||||||
|
"""Creates a `FloatEmbedding` object from the given protobuf object."""
|
||||||
|
return FloatEmbedding(values=np.array(pb2_obj.values, dtype=float))
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class QuantizedEmbedding:
|
||||||
|
"""Defines a dense scalar-quantized embedding.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
values: A NumPy array indicating the raw output of the embedding layer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
values: np.ndarray
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def create_from_pb2(
|
||||||
|
cls, pb2_obj: _QuantizedEmbeddingProto) -> 'QuantizedEmbedding':
|
||||||
|
"""Creates a `QuantizedEmbedding` object from the given protobuf object."""
|
||||||
|
return QuantizedEmbedding(
|
||||||
|
values=np.array(bytearray(pb2_obj.values), dtype=np.uint8))
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class Embedding:
|
||||||
|
"""Embedding result for a given embedder head.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
embedding: The actual embedding, either floating-point or scalar-quantized.
|
||||||
|
head_index: The index of the embedder head that produced this embedding.
|
||||||
|
This is useful for multi-head models.
|
||||||
|
head_name: The name of the embedder head, which is the corresponding tensor
|
||||||
|
metadata name (if any). This is useful for multi-head models.
|
||||||
|
"""
|
||||||
|
|
||||||
|
embedding: np.ndarray
|
||||||
|
head_index: Optional[int] = None
|
||||||
|
head_name: Optional[str] = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def create_from_pb2(cls, pb2_obj: _EmbeddingProto) -> 'Embedding':
|
||||||
|
"""Creates a `Embedding` object from the given protobuf object."""
|
||||||
|
|
||||||
|
quantized_embedding = np.array(
|
||||||
|
bytearray(pb2_obj.quantized_embedding.values))
|
||||||
|
float_embedding = np.array(pb2_obj.float_embedding.values, dtype=float)
|
||||||
|
|
||||||
|
if not quantized_embedding:
|
||||||
|
return Embedding(
|
||||||
|
embedding=float_embedding,
|
||||||
|
head_index=pb2_obj.head_index,
|
||||||
|
head_name=pb2_obj.head_name)
|
||||||
|
else:
|
||||||
|
return Embedding(
|
||||||
|
embedding=quantized_embedding,
|
||||||
|
head_index=pb2_obj.head_index,
|
||||||
|
head_name=pb2_obj.head_name)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class EmbeddingResult:
|
||||||
|
"""Embedding results for a given embedder model.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
embeddings: A list of `Embedding` objects.
|
||||||
|
timestamp_ms: The optional timestamp (in milliseconds) of the start of the
|
||||||
|
chunk of data corresponding to these results. This is only used for
|
||||||
|
embedding extraction on time series (e.g. audio embedding). In these use
|
||||||
|
cases, the amount of data to process might exceed the maximum size that
|
||||||
|
the model can process: to solve this, the input data is split into
|
||||||
|
multiple chunks starting at different timestamps.
|
||||||
|
"""
|
||||||
|
|
||||||
|
embeddings: List[Embedding]
|
||||||
|
timestamp_ms: Optional[int] = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def create_from_pb2(cls, pb2_obj: _EmbeddingResultProto) -> 'EmbeddingResult':
|
||||||
|
"""Creates a `EmbeddingResult` object from the given protobuf object."""
|
||||||
|
return EmbeddingResult(embeddings=[
|
||||||
|
Embedding.create_from_pb2(embedding) for embedding in pb2_obj.embeddings
|
||||||
|
])
|
|
@ -28,3 +28,12 @@ py_library(
|
||||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "embedder_options",
|
||||||
|
srcs = ["embedder_options.py"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/tasks/cc/components/processors/proto:embedder_options_py_pb2",
|
||||||
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
|
@ -0,0 +1,68 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Embedder options data class."""
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
from mediapipe.tasks.cc.components.processors.proto import embedder_options_pb2
|
||||||
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
|
|
||||||
|
_EmbedderOptionsProto = embedder_options_pb2.EmbedderOptions
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class EmbedderOptions:
|
||||||
|
"""Shared options used by all embedding extraction tasks.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
l2_normalize: Whether to normalize the returned feature vector with L2 norm.
|
||||||
|
Use this option only if the model does not already contain a native
|
||||||
|
L2_NORMALIZATION TF Lite Op. In most cases, this is already the case and
|
||||||
|
L2 norm is thus achieved through TF Lite inference.
|
||||||
|
quantize: Whether the returned embedding should be quantized to bytes via
|
||||||
|
scalar quantization. Embeddings are implicitly assumed to be unit-norm and
|
||||||
|
therefore any dimension is guaranteed to have a value in [-1.0, 1.0]. Use
|
||||||
|
the l2_normalize option if this is not the case.
|
||||||
|
"""
|
||||||
|
|
||||||
|
l2_normalize: Optional[bool] = None
|
||||||
|
quantize: Optional[bool] = None
|
||||||
|
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def to_pb2(self) -> _EmbedderOptionsProto:
|
||||||
|
"""Generates a EmbedderOptions protobuf object."""
|
||||||
|
return _EmbedderOptionsProto(
|
||||||
|
l2_normalize=self.l2_normalize, quantize=self.quantize)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def create_from_pb2(cls, pb2_obj: _EmbedderOptionsProto) -> 'EmbedderOptions':
|
||||||
|
"""Creates a `EmbedderOptions` object from the given protobuf object."""
|
||||||
|
return EmbedderOptions(
|
||||||
|
l2_normalize=pb2_obj.l2_normalize, quantize=pb2_obj.quantize)
|
||||||
|
|
||||||
|
def __eq__(self, other: Any) -> bool:
|
||||||
|
"""Checks if this object is equal to the given object.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
other: The object to be compared with.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if the objects are equal.
|
||||||
|
"""
|
||||||
|
if not isinstance(other, EmbedderOptions):
|
||||||
|
return False
|
||||||
|
|
||||||
|
return self.to_pb2().__eq__(other.to_pb2())
|
30
mediapipe/tasks/python/components/utils/BUILD
Normal file
30
mediapipe/tasks/python/components/utils/BUILD
Normal file
|
@ -0,0 +1,30 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# Placeholder for internal Python strict library compatibility macro.
|
||||||
|
|
||||||
|
# Placeholder for internal Python strict library and test compatibility macro.
|
||||||
|
|
||||||
|
package(default_visibility = ["//mediapipe/tasks:internal"])
|
||||||
|
|
||||||
|
licenses(["notice"])
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "cosine_similarity",
|
||||||
|
srcs = ["cosine_similarity.py"],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/tasks/python/components/containers:embedding_result",
|
||||||
|
"//mediapipe/tasks/python/components/processors:embedder_options",
|
||||||
|
],
|
||||||
|
)
|
13
mediapipe/tasks/python/components/utils/__init__.py
Normal file
13
mediapipe/tasks/python/components/utils/__init__.py
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
67
mediapipe/tasks/python/components/utils/cosine_similarity.py
Normal file
67
mediapipe/tasks/python/components/utils/cosine_similarity.py
Normal file
|
@ -0,0 +1,67 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Cosine similarity utilities."""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mediapipe.tasks.python.components.containers import embedding_result
|
||||||
|
from mediapipe.tasks.python.components.processors import embedder_options
|
||||||
|
|
||||||
|
_Embedding = embedding_result.Embedding
|
||||||
|
_EmbedderOptions = embedder_options.EmbedderOptions
|
||||||
|
|
||||||
|
|
||||||
|
def _compute_cosine_similarity(u, v):
|
||||||
|
"""Computes cosine similarity between two embeddings."""
|
||||||
|
|
||||||
|
if len(u.embedding) <= 0:
|
||||||
|
raise ValueError("Cannot compute cosing similarity on empty embeddings.")
|
||||||
|
|
||||||
|
norm_u = np.linalg.norm(u.embedding)
|
||||||
|
norm_v = np.linalg.norm(v.embedding)
|
||||||
|
|
||||||
|
if norm_u <= 0 or norm_v <= 0:
|
||||||
|
raise ValueError(
|
||||||
|
"Cannot compute cosine similarity on embedding with 0 norm.")
|
||||||
|
|
||||||
|
return np.dot(u.embedding, v.embedding.T) / (norm_u * norm_v)
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_similarity(u: _Embedding, v: _Embedding) -> float:
|
||||||
|
"""Utility function to compute cosine similarity between two embedding.
|
||||||
|
|
||||||
|
May return an InvalidArgumentError if e.g. the feature vectors are of
|
||||||
|
different types (quantized vs. float), have different sizes, or have an
|
||||||
|
L2-norm of 0.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
u: An embedding.
|
||||||
|
v: An embedding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Cosine similarity value.
|
||||||
|
"""
|
||||||
|
if len(u.embedding) != len(v.embedding):
|
||||||
|
raise ValueError(f"Cannot compute cosine similarity between embeddings "
|
||||||
|
f"of different sizes "
|
||||||
|
f"({len(u.embedding)} vs. {len(v.embedding)}).")
|
||||||
|
|
||||||
|
if u.embedding.dtype == float and v.embedding.dtype == float:
|
||||||
|
return _compute_cosine_similarity(u, v)
|
||||||
|
|
||||||
|
if u.embedding.dtype == np.uint8 and v.embedding.dtype == np.uint8:
|
||||||
|
return _compute_cosine_similarity(u, v)
|
||||||
|
|
||||||
|
raise ValueError("Cannot compute cosine similarity between quantized and "
|
||||||
|
"float embeddings.")
|
|
@ -58,6 +58,26 @@ py_test(
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "image_embedder_test",
|
||||||
|
srcs = ["image_embedder_test.py"],
|
||||||
|
data = [
|
||||||
|
"//mediapipe/tasks/testdata/vision:test_images",
|
||||||
|
"//mediapipe/tasks/testdata/vision:test_models",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/python:_framework_bindings",
|
||||||
|
"//mediapipe/tasks/python/components/containers:embedding_result",
|
||||||
|
"//mediapipe/tasks/python/components/containers:rect",
|
||||||
|
"//mediapipe/tasks/python/components/processors:embedder_options",
|
||||||
|
"//mediapipe/tasks/python/core:base_options",
|
||||||
|
"//mediapipe/tasks/python/test:test_utils",
|
||||||
|
"//mediapipe/tasks/python/vision:image_embedder",
|
||||||
|
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||||
|
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
py_test(
|
py_test(
|
||||||
name = "image_segmenter_test",
|
name = "image_segmenter_test",
|
||||||
srcs = ["image_segmenter_test.py"],
|
srcs = ["image_segmenter_test.py"],
|
||||||
|
|
402
mediapipe/tasks/python/test/vision/image_embedder_test.py
Normal file
402
mediapipe/tasks/python/test/vision/image_embedder_test.py
Normal file
|
@ -0,0 +1,402 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Tests for image embedder."""
|
||||||
|
|
||||||
|
import enum
|
||||||
|
import os
|
||||||
|
from unittest import mock
|
||||||
|
|
||||||
|
from absl.testing import absltest
|
||||||
|
from absl.testing import parameterized
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mediapipe.python._framework_bindings import image as image_module
|
||||||
|
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
|
||||||
|
from mediapipe.tasks.python.components.containers import rect
|
||||||
|
from mediapipe.tasks.python.components.processors import embedder_options as embedder_options_module
|
||||||
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||||
|
from mediapipe.tasks.python.test import test_utils
|
||||||
|
from mediapipe.tasks.python.vision import image_embedder
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
|
||||||
|
ImageEmbedderResult = embedding_result_module.EmbeddingResult
|
||||||
|
_Rect = rect.Rect
|
||||||
|
_BaseOptions = base_options_module.BaseOptions
|
||||||
|
_EmbedderOptions = embedder_options_module.EmbedderOptions
|
||||||
|
_FloatEmbedding = embedding_result_module.FloatEmbedding
|
||||||
|
_QuantizedEmbedding = embedding_result_module.QuantizedEmbedding
|
||||||
|
_Embedding = embedding_result_module.Embedding
|
||||||
|
_Image = image_module.Image
|
||||||
|
_ImageEmbedder = image_embedder.ImageEmbedder
|
||||||
|
_ImageEmbedderOptions = image_embedder.ImageEmbedderOptions
|
||||||
|
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
|
|
||||||
|
_MODEL_FILE = 'mobilenet_v3_small_100_224_embedder.tflite'
|
||||||
|
_BURGER_IMAGE_FILE = 'burger.jpg'
|
||||||
|
_BURGER_CROPPED_IMAGE_FILE = 'burger_crop.jpg'
|
||||||
|
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
||||||
|
# Tolerance for embedding vector coordinate values.
|
||||||
|
_EPSILON = 1e-4
|
||||||
|
# Tolerance for cosine similarity evaluation.
|
||||||
|
_SIMILARITY_TOLERANCE = 1e-6
|
||||||
|
|
||||||
|
|
||||||
|
class ModelFileType(enum.Enum):
|
||||||
|
FILE_CONTENT = 1
|
||||||
|
FILE_NAME = 2
|
||||||
|
|
||||||
|
|
||||||
|
class ImageEmbedderTest(parameterized.TestCase):
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
super().setUp()
|
||||||
|
self.test_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(
|
||||||
|
os.path.join(_TEST_DATA_DIR, _BURGER_IMAGE_FILE)))
|
||||||
|
self.test_cropped_image = _Image.create_from_file(
|
||||||
|
test_utils.get_test_data_path(
|
||||||
|
os.path.join(_TEST_DATA_DIR, _BURGER_CROPPED_IMAGE_FILE)))
|
||||||
|
self.model_path = test_utils.get_test_data_path(
|
||||||
|
os.path.join(_TEST_DATA_DIR, _MODEL_FILE))
|
||||||
|
|
||||||
|
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||||
|
# Creates with default option and valid model file successfully.
|
||||||
|
with _ImageEmbedder.create_from_model_path(self.model_path) as embedder:
|
||||||
|
self.assertIsInstance(embedder, _ImageEmbedder)
|
||||||
|
|
||||||
|
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||||
|
# Creates with options containing model file successfully.
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
options = _ImageEmbedderOptions(base_options=base_options)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
self.assertIsInstance(embedder, _ImageEmbedder)
|
||||||
|
|
||||||
|
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
|
||||||
|
base_options = _BaseOptions(
|
||||||
|
model_asset_path='/path/to/invalid/model.tflite')
|
||||||
|
options = _ImageEmbedderOptions(base_options=base_options)
|
||||||
|
_ImageEmbedder.create_from_options(options)
|
||||||
|
|
||||||
|
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||||
|
# Creates with options containing model content successfully.
|
||||||
|
with open(self.model_path, 'rb') as f:
|
||||||
|
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||||
|
options = _ImageEmbedderOptions(base_options=base_options)
|
||||||
|
embedder = _ImageEmbedder.create_from_options(options)
|
||||||
|
self.assertIsInstance(embedder, _ImageEmbedder)
|
||||||
|
|
||||||
|
def _check_embedding_value(self, result, expected_first_value):
|
||||||
|
# Check embedding first value.
|
||||||
|
self.assertAlmostEqual(
|
||||||
|
result.embeddings[0].embedding[0], expected_first_value, delta=_EPSILON)
|
||||||
|
|
||||||
|
def _check_embedding_size(self, result, quantize, expected_embedding_size):
|
||||||
|
# Check embedding size.
|
||||||
|
self.assertLen(result.embeddings, 1)
|
||||||
|
embedding_result = result.embeddings[0]
|
||||||
|
self.assertLen(embedding_result.embedding, expected_embedding_size)
|
||||||
|
if quantize:
|
||||||
|
self.assertEqual(embedding_result.embedding.dtype, np.uint8)
|
||||||
|
else:
|
||||||
|
self.assertEqual(embedding_result.embedding.dtype, float)
|
||||||
|
|
||||||
|
def _check_cosine_similarity(self, result0, result1, expected_similarity):
|
||||||
|
# Checks cosine similarity.
|
||||||
|
similarity = _ImageEmbedder.cosine_similarity(result0.embeddings[0],
|
||||||
|
result1.embeddings[0])
|
||||||
|
self.assertAlmostEqual(
|
||||||
|
similarity, expected_similarity, delta=_SIMILARITY_TOLERANCE)
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
(False, False, False, ModelFileType.FILE_NAME, 0.925519, 1024,
|
||||||
|
(-0.2101883, -0.193027)),
|
||||||
|
(True, False, False, ModelFileType.FILE_NAME, 0.925519, 1024,
|
||||||
|
(-0.0142344, -0.0131606)),
|
||||||
|
# (False, True, False, ModelFileType.FILE_NAME,
|
||||||
|
# 0.926791, 1024, (229, 231)),
|
||||||
|
(False, False, True, ModelFileType.FILE_CONTENT, 0.999931, 1024,
|
||||||
|
(-0.195062, -0.193027)))
|
||||||
|
def test_embed(self, l2_normalize, quantize, with_roi, model_file_type,
|
||||||
|
expected_similarity, expected_size, expected_first_values):
|
||||||
|
# Creates embedder.
|
||||||
|
if model_file_type is ModelFileType.FILE_NAME:
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||||
|
with open(self.model_path, 'rb') as f:
|
||||||
|
model_content = f.read()
|
||||||
|
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||||
|
else:
|
||||||
|
# Should never happen
|
||||||
|
raise ValueError('model_file_type is invalid.')
|
||||||
|
|
||||||
|
embedder_options = _EmbedderOptions(
|
||||||
|
l2_normalize=l2_normalize, quantize=quantize)
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=base_options, embedder_options=embedder_options)
|
||||||
|
embedder = _ImageEmbedder.create_from_options(options)
|
||||||
|
|
||||||
|
image_processing_options = None
|
||||||
|
if with_roi:
|
||||||
|
# Region-of-interest in "burger.jpg" corresponding to "burger_crop.jpg".
|
||||||
|
roi = _Rect(left=0, top=0, right=0.833333, bottom=1)
|
||||||
|
image_processing_options = _ImageProcessingOptions(roi)
|
||||||
|
|
||||||
|
# Extracts both embeddings.
|
||||||
|
image_result = embedder.embed(self.test_image, image_processing_options)
|
||||||
|
crop_result = embedder.embed(self.test_cropped_image)
|
||||||
|
|
||||||
|
# Checks embeddings and cosine similarity.
|
||||||
|
expected_result0_value, expected_result1_value = expected_first_values
|
||||||
|
self._check_embedding_size(image_result, quantize, expected_size)
|
||||||
|
self._check_embedding_size(crop_result, quantize, expected_size)
|
||||||
|
self._check_embedding_value(image_result, expected_result0_value)
|
||||||
|
self._check_embedding_value(crop_result, expected_result1_value)
|
||||||
|
self._check_cosine_similarity(image_result, crop_result,
|
||||||
|
expected_similarity)
|
||||||
|
# Closes the embedder explicitly when the embedder is not used in
|
||||||
|
# a context.
|
||||||
|
embedder.close()
|
||||||
|
|
||||||
|
@parameterized.parameters(
|
||||||
|
(False, False, ModelFileType.FILE_NAME, 0.925519),
|
||||||
|
(False, False, ModelFileType.FILE_CONTENT, 0.925519))
|
||||||
|
def test_embed_in_context(self, l2_normalize, quantize, model_file_type,
|
||||||
|
expected_similarity):
|
||||||
|
# Creates embedder.
|
||||||
|
if model_file_type is ModelFileType.FILE_NAME:
|
||||||
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||||
|
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||||
|
with open(self.model_path, 'rb') as f:
|
||||||
|
model_content = f.read()
|
||||||
|
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||||
|
else:
|
||||||
|
# Should never happen
|
||||||
|
raise ValueError('model_file_type is invalid.')
|
||||||
|
|
||||||
|
embedder_options = _EmbedderOptions(
|
||||||
|
l2_normalize=l2_normalize, quantize=quantize)
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=base_options, embedder_options=embedder_options)
|
||||||
|
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
# Extracts both embeddings.
|
||||||
|
image_result = embedder.embed(self.test_image)
|
||||||
|
crop_result = embedder.embed(self.test_cropped_image)
|
||||||
|
|
||||||
|
# Checks cosine similarity.
|
||||||
|
self._check_cosine_similarity(image_result, crop_result,
|
||||||
|
expected_similarity)
|
||||||
|
|
||||||
|
def test_missing_result_callback(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM)
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'result callback must be provided'):
|
||||||
|
with _ImageEmbedder.create_from_options(options) as unused_embedder:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
|
||||||
|
def test_illegal_result_callback(self, running_mode):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=running_mode,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'result callback should not be provided'):
|
||||||
|
with _ImageEmbedder.create_from_options(options) as unused_embedder:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def test_calling_embed_for_video_in_image_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the video mode'):
|
||||||
|
embedder.embed_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_calling_embed_async_in_image_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the live stream mode'):
|
||||||
|
embedder.embed_async(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_calling_embed_in_video_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the image mode'):
|
||||||
|
embedder.embed(self.test_image)
|
||||||
|
|
||||||
|
def test_calling_embed_async_in_video_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the live stream mode'):
|
||||||
|
embedder.embed_async(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_embed_for_video_with_out_of_order_timestamp(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
unused_result = embedder.embed_for_video(self.test_image, 1)
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError, r'Input timestamp must be monotonically increasing'):
|
||||||
|
embedder.embed_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_embed_for_video(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder0, \
|
||||||
|
_ImageEmbedder.create_from_options(options) as embedder1:
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
# Extracts both embeddings.
|
||||||
|
image_result = embedder0.embed_for_video(self.test_image, timestamp)
|
||||||
|
crop_result = embedder1.embed_for_video(self.test_cropped_image,
|
||||||
|
timestamp)
|
||||||
|
# Checks cosine similarity.
|
||||||
|
self._check_cosine_similarity(
|
||||||
|
image_result, crop_result, expected_similarity=0.925519)
|
||||||
|
|
||||||
|
def test_embed_for_video_succeeds_with_region_of_interest(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.VIDEO)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder0, \
|
||||||
|
_ImageEmbedder.create_from_options(options) as embedder1:
|
||||||
|
# Region-of-interest in "burger.jpg" corresponding to "burger_crop.jpg".
|
||||||
|
roi = _Rect(left=0, top=0, right=0.833333, bottom=1)
|
||||||
|
image_processing_options = _ImageProcessingOptions(roi)
|
||||||
|
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
# Extracts both embeddings.
|
||||||
|
image_result = embedder0.embed_for_video(self.test_image, timestamp,
|
||||||
|
image_processing_options)
|
||||||
|
crop_result = embedder1.embed_for_video(self.test_cropped_image,
|
||||||
|
timestamp)
|
||||||
|
|
||||||
|
# Checks cosine similarity.
|
||||||
|
self._check_cosine_similarity(
|
||||||
|
image_result, crop_result, expected_similarity=0.999931)
|
||||||
|
|
||||||
|
def test_calling_embed_in_live_stream_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the image mode'):
|
||||||
|
embedder.embed(self.test_image)
|
||||||
|
|
||||||
|
def test_calling_embed_for_video_in_live_stream_mode(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
with self.assertRaisesRegex(ValueError,
|
||||||
|
r'not initialized with the video mode'):
|
||||||
|
embedder.embed_for_video(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_embed_async_calls_with_illegal_timestamp(self):
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=mock.MagicMock())
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
embedder.embed_async(self.test_image, 100)
|
||||||
|
with self.assertRaisesRegex(
|
||||||
|
ValueError, r'Input timestamp must be monotonically increasing'):
|
||||||
|
embedder.embed_async(self.test_image, 0)
|
||||||
|
|
||||||
|
def test_embed_async_calls(self):
|
||||||
|
# Get the embedding result for the cropped image.
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
crop_result = embedder.embed(self.test_cropped_image)
|
||||||
|
|
||||||
|
observed_timestamp_ms = -1
|
||||||
|
|
||||||
|
def check_result(result: ImageEmbedderResult, output_image: _Image,
|
||||||
|
timestamp_ms: int):
|
||||||
|
# Checks cosine similarity.
|
||||||
|
self._check_cosine_similarity(
|
||||||
|
result, crop_result, expected_similarity=0.925519)
|
||||||
|
self.assertTrue(
|
||||||
|
np.array_equal(output_image.numpy_view(),
|
||||||
|
self.test_image.numpy_view()))
|
||||||
|
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
||||||
|
self.observed_timestamp_ms = timestamp_ms
|
||||||
|
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=check_result)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
embedder.embed_async(self.test_image, timestamp)
|
||||||
|
|
||||||
|
def test_embed_async_succeeds_with_region_of_interest(self):
|
||||||
|
# Get the embedding result for the cropped image.
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.IMAGE)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
crop_result = embedder.embed(self.test_cropped_image)
|
||||||
|
|
||||||
|
# Region-of-interest in "burger.jpg" corresponding to "burger_crop.jpg".
|
||||||
|
roi = _Rect(left=0, top=0, right=0.833333, bottom=1)
|
||||||
|
image_processing_options = _ImageProcessingOptions(roi)
|
||||||
|
observed_timestamp_ms = -1
|
||||||
|
|
||||||
|
def check_result(result: ImageEmbedderResult, output_image: _Image,
|
||||||
|
timestamp_ms: int):
|
||||||
|
# Checks cosine similarity.
|
||||||
|
self._check_cosine_similarity(
|
||||||
|
result, crop_result, expected_similarity=0.999931)
|
||||||
|
self.assertTrue(
|
||||||
|
np.array_equal(output_image.numpy_view(),
|
||||||
|
self.test_image.numpy_view()))
|
||||||
|
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
||||||
|
self.observed_timestamp_ms = timestamp_ms
|
||||||
|
|
||||||
|
options = _ImageEmbedderOptions(
|
||||||
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||||
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||||
|
result_callback=check_result)
|
||||||
|
with _ImageEmbedder.create_from_options(options) as embedder:
|
||||||
|
for timestamp in range(0, 300, 30):
|
||||||
|
embedder.embed_async(self.test_image, timestamp,
|
||||||
|
image_processing_options)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
absltest.main()
|
|
@ -79,6 +79,29 @@ py_library(
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "image_embedder",
|
||||||
|
srcs = [
|
||||||
|
"image_embedder.py",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
"//mediapipe/python:_framework_bindings",
|
||||||
|
"//mediapipe/python:packet_creator",
|
||||||
|
"//mediapipe/python:packet_getter",
|
||||||
|
"//mediapipe/tasks/cc/components/containers/proto:embeddings_py_pb2",
|
||||||
|
"//mediapipe/tasks/cc/vision/image_embedder/proto:image_embedder_graph_options_py_pb2",
|
||||||
|
"//mediapipe/tasks/python/components/containers:embedding_result",
|
||||||
|
"//mediapipe/tasks/python/components/processors:embedder_options",
|
||||||
|
"//mediapipe/tasks/python/components/utils:cosine_similarity",
|
||||||
|
"//mediapipe/tasks/python/core:base_options",
|
||||||
|
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||||
|
"//mediapipe/tasks/python/core:task_info",
|
||||||
|
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||||
|
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||||
|
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
py_library(
|
py_library(
|
||||||
name = "gesture_recognizer",
|
name = "gesture_recognizer",
|
||||||
srcs = [
|
srcs = [
|
||||||
|
|
309
mediapipe/tasks/python/vision/image_embedder.py
Normal file
309
mediapipe/tasks/python/vision/image_embedder.py
Normal file
|
@ -0,0 +1,309 @@
|
||||||
|
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""MediaPipe image embedder task."""
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Callable, Mapping, Optional
|
||||||
|
|
||||||
|
from mediapipe.python import packet_creator
|
||||||
|
from mediapipe.python import packet_getter
|
||||||
|
from mediapipe.python._framework_bindings import image as image_module
|
||||||
|
from mediapipe.python._framework_bindings import packet as packet_module
|
||||||
|
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
|
||||||
|
from mediapipe.tasks.cc.vision.image_embedder.proto import image_embedder_graph_options_pb2
|
||||||
|
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
|
||||||
|
from mediapipe.tasks.python.components.processors import embedder_options
|
||||||
|
from mediapipe.tasks.python.components.utils import cosine_similarity
|
||||||
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||||
|
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||||
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||||
|
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||||
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||||
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||||
|
|
||||||
|
ImageEmbedderResult = embedding_result_module.EmbeddingResult
|
||||||
|
_BaseOptions = base_options_module.BaseOptions
|
||||||
|
_ImageEmbedderGraphOptionsProto = image_embedder_graph_options_pb2.ImageEmbedderGraphOptions
|
||||||
|
_EmbedderOptions = embedder_options.EmbedderOptions
|
||||||
|
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||||
|
_TaskInfo = task_info_module.TaskInfo
|
||||||
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||||
|
|
||||||
|
_EMBEDDINGS_OUT_STREAM_NAME = 'embeddings_out'
|
||||||
|
_EMBEDDINGS_TAG = 'EMBEDDINGS'
|
||||||
|
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||||
|
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||||
|
_IMAGE_TAG = 'IMAGE'
|
||||||
|
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||||
|
_NORM_RECT_TAG = 'NORM_RECT'
|
||||||
|
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.image_embedder.ImageEmbedderGraph'
|
||||||
|
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class ImageEmbedderOptions:
|
||||||
|
"""Options for the image embedder task.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
base_options: Base options for the image embedder task.
|
||||||
|
running_mode: The running mode of the task. Default to the image mode. Image
|
||||||
|
embedder task has three running modes: 1) The image mode for embedding
|
||||||
|
image on single image inputs. 2) The video mode for embedding image on the
|
||||||
|
decoded frames of a video. 3) The live stream mode for embedding image on
|
||||||
|
a live stream of input data, such as from camera.
|
||||||
|
embedder_options: Options for the image embedder task.
|
||||||
|
result_callback: The user-defined result callback for processing live stream
|
||||||
|
data. The result callback should only be specified when the running mode
|
||||||
|
is set to the live stream mode.
|
||||||
|
"""
|
||||||
|
base_options: _BaseOptions
|
||||||
|
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||||
|
embedder_options: _EmbedderOptions = _EmbedderOptions()
|
||||||
|
result_callback: Optional[Callable[
|
||||||
|
[ImageEmbedderResult, image_module.Image, int], None]] = None
|
||||||
|
|
||||||
|
@doc_controls.do_not_generate_docs
|
||||||
|
def to_pb2(self) -> _ImageEmbedderGraphOptionsProto:
|
||||||
|
"""Generates an ImageEmbedderOptions protobuf object."""
|
||||||
|
base_options_proto = self.base_options.to_pb2()
|
||||||
|
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||||
|
embedder_options_proto = self.embedder_options.to_pb2()
|
||||||
|
|
||||||
|
return _ImageEmbedderGraphOptionsProto(
|
||||||
|
base_options=base_options_proto,
|
||||||
|
embedder_options=embedder_options_proto)
|
||||||
|
|
||||||
|
|
||||||
|
class ImageEmbedder(base_vision_task_api.BaseVisionTaskApi):
|
||||||
|
"""Class that performs embedding extraction on images."""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_from_model_path(cls, model_path: str) -> 'ImageEmbedder':
|
||||||
|
"""Creates an `ImageEmbedder` object from a TensorFlow Lite model and the default `ImageEmbedderOptions`.
|
||||||
|
|
||||||
|
Note that the created `ImageEmbedder` instance is in image mode, for
|
||||||
|
embedding image on single image inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_path: Path to the model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`ImageEmbedder` object that's created from the model file and the default
|
||||||
|
`ImageEmbedderOptions`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If failed to create `ImageEmbedder` object from the provided
|
||||||
|
file such as invalid file path.
|
||||||
|
RuntimeError: If other types of error occurred.
|
||||||
|
"""
|
||||||
|
base_options = _BaseOptions(model_asset_path=model_path)
|
||||||
|
options = ImageEmbedderOptions(
|
||||||
|
base_options=base_options, running_mode=_RunningMode.IMAGE)
|
||||||
|
return cls.create_from_options(options)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_from_options(cls,
|
||||||
|
options: ImageEmbedderOptions) -> 'ImageEmbedder':
|
||||||
|
"""Creates the `ImageEmbedder` object from image embedder options.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
options: Options for the image embedder task.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`ImageEmbedder` object that's created from `options`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If failed to create `ImageEmbedder` object from
|
||||||
|
`ImageEmbedderOptions` such as missing the model.
|
||||||
|
RuntimeError: If other types of error occurred.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
||||||
|
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||||
|
return
|
||||||
|
|
||||||
|
embedding_result_proto = embeddings_pb2.EmbeddingResult()
|
||||||
|
embedding_result_proto.CopyFrom(
|
||||||
|
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
|
||||||
|
|
||||||
|
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
||||||
|
timestamp = output_packets[_IMAGE_OUT_STREAM_NAME].timestamp
|
||||||
|
options.result_callback(
|
||||||
|
ImageEmbedderResult.create_from_pb2(embedding_result_proto), image,
|
||||||
|
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
|
||||||
|
|
||||||
|
task_info = _TaskInfo(
|
||||||
|
task_graph=_TASK_GRAPH_NAME,
|
||||||
|
input_streams=[
|
||||||
|
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||||
|
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||||
|
],
|
||||||
|
output_streams=[
|
||||||
|
':'.join([_EMBEDDINGS_TAG, _EMBEDDINGS_OUT_STREAM_NAME]),
|
||||||
|
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME])
|
||||||
|
],
|
||||||
|
task_options=options)
|
||||||
|
return cls(
|
||||||
|
task_info.generate_graph_config(
|
||||||
|
enable_flow_limiting=options.running_mode ==
|
||||||
|
_RunningMode.LIVE_STREAM), options.running_mode,
|
||||||
|
packets_callback if options.result_callback else None)
|
||||||
|
|
||||||
|
def embed(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
|
) -> ImageEmbedderResult:
|
||||||
|
"""Performs image embedding extraction on the provided MediaPipe Image.
|
||||||
|
|
||||||
|
Extraction is performed on the region of interest specified by the `roi`
|
||||||
|
argument if provided, or on the entire image otherwise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
An embedding result object that contains a list of embeddings.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If any of the input arguments is invalid.
|
||||||
|
RuntimeError: If image embedder failed to run.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
output_packets = self._process_image_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME:
|
||||||
|
packet_creator.create_image(image),
|
||||||
|
_NORM_RECT_STREAM_NAME:
|
||||||
|
packet_creator.create_proto(normalized_rect.to_pb2())
|
||||||
|
})
|
||||||
|
|
||||||
|
embedding_result_proto = embeddings_pb2.EmbeddingResult()
|
||||||
|
embedding_result_proto.CopyFrom(
|
||||||
|
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
|
||||||
|
|
||||||
|
return ImageEmbedderResult.create_from_pb2(embedding_result_proto)
|
||||||
|
|
||||||
|
def embed_for_video(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
timestamp_ms: int,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
|
) -> ImageEmbedderResult:
|
||||||
|
"""Performs image embedding extraction on the provided video frames.
|
||||||
|
|
||||||
|
Extraction is performed on the region of interested specified by the `roi`
|
||||||
|
argument if provided, or on the entire image otherwise.
|
||||||
|
|
||||||
|
Only use this method when the ImageEmbedder is created with the video
|
||||||
|
running mode. It's required to provide the video frame's timestamp (in
|
||||||
|
milliseconds) along with the video frame. The input timestamps should be
|
||||||
|
monotonically increasing for adjacent calls of this method.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
An embedding result object that contains a list of embeddings.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If any of the input arguments is invalid.
|
||||||
|
RuntimeError: If image embedder failed to run.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
output_packets = self._process_video_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME:
|
||||||
|
packet_creator.create_image(image).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
|
_NORM_RECT_STREAM_NAME:
|
||||||
|
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||||
|
})
|
||||||
|
embedding_result_proto = embeddings_pb2.EmbeddingResult()
|
||||||
|
embedding_result_proto.CopyFrom(
|
||||||
|
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
|
||||||
|
|
||||||
|
return ImageEmbedderResult.create_from_pb2(embedding_result_proto)
|
||||||
|
|
||||||
|
def embed_async(
|
||||||
|
self,
|
||||||
|
image: image_module.Image,
|
||||||
|
timestamp_ms: int,
|
||||||
|
image_processing_options: Optional[_ImageProcessingOptions] = None
|
||||||
|
) -> None:
|
||||||
|
"""Sends live image data to embedder.
|
||||||
|
|
||||||
|
The results will be available via the "result_callback" provided in the
|
||||||
|
ImageEmbedderOptions. Embedding extraction is performed on the region of
|
||||||
|
interested specified by the `roi` argument if provided, or on the entire
|
||||||
|
image otherwise.
|
||||||
|
|
||||||
|
Only use this method when the ImageEmbedder is created with the live
|
||||||
|
stream running mode. The input timestamps should be monotonically increasing
|
||||||
|
for adjacent calls of this method. This method will return immediately after
|
||||||
|
the input image is accepted. The results will be available via the
|
||||||
|
`result_callback` provided in the `ImageEmbedderOptions`. The
|
||||||
|
`embed_async` method is designed to process live stream data such as
|
||||||
|
camera input. To lower the overall latency, image embedder may drop the
|
||||||
|
input images if needed. In other words, it's not guaranteed to have output
|
||||||
|
per input image.
|
||||||
|
|
||||||
|
The `result_callback` provides:
|
||||||
|
- An embedding result object that contains a list of embeddings.
|
||||||
|
- The input image that the image embedder runs on.
|
||||||
|
- The input timestamp in milliseconds.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image: MediaPipe Image.
|
||||||
|
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||||
|
image_processing_options: Options for image processing.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the current input timestamp is smaller than what the image
|
||||||
|
embedder has already processed.
|
||||||
|
"""
|
||||||
|
normalized_rect = self.convert_to_normalized_rect(image_processing_options)
|
||||||
|
self._send_live_stream_data({
|
||||||
|
_IMAGE_IN_STREAM_NAME:
|
||||||
|
packet_creator.create_image(image).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||||
|
_NORM_RECT_STREAM_NAME:
|
||||||
|
packet_creator.create_proto(normalized_rect.to_pb2()).at(
|
||||||
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
|
||||||
|
})
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def cosine_similarity(cls, u: embedding_result_module.Embedding,
|
||||||
|
v: embedding_result_module.Embedding) -> float:
|
||||||
|
"""Utility function to compute cosine similarity between two embedding entries.
|
||||||
|
|
||||||
|
May return an InvalidArgumentError if e.g. the feature vectors are of
|
||||||
|
different types (quantized vs. float), have different sizes, or have an
|
||||||
|
L2-norm of 0.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
u: An embedding entry.
|
||||||
|
v: An embedding entry.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The cosine similarity for the two embeddings.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: May return an error if e.g. the feature vectors are of
|
||||||
|
different types (quantized vs. float), have different sizes, or have
|
||||||
|
an L2-norm of 0.
|
||||||
|
"""
|
||||||
|
return cosine_similarity.cosine_similarity(u, v)
|
Loading…
Reference in New Issue
Block a user