Merge pull request #4303 from kinaryml:pose-landmarker-python
PiperOrigin-RevId: 527948047
This commit is contained in:
commit
5cffb3973f
|
@ -99,6 +99,7 @@ cc_library(
|
|||
"//mediapipe/tasks/cc/vision/image_segmenter:image_segmenter_graph",
|
||||
"//mediapipe/tasks/cc/vision/interactive_segmenter:interactive_segmenter_graph",
|
||||
"//mediapipe/tasks/cc/vision/object_detector:object_detector_graph",
|
||||
"//mediapipe/tasks/cc/vision/pose_landmarker:pose_landmarker_graph",
|
||||
] + select({
|
||||
# TODO: Build text_classifier_graph and text_embedder_graph on Windows.
|
||||
"//mediapipe:windows": [],
|
||||
|
|
|
@ -162,3 +162,26 @@ py_test(
|
|||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "pose_landmarker_test",
|
||||
srcs = ["pose_landmarker_test.py"],
|
||||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
"//mediapipe/tasks/testdata/vision:test_protos",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/components/containers:landmark_detection_result",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:pose_landmarker",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
"@com_google_protobuf//:protobuf_python",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -51,24 +51,27 @@ _PORTRAIT_IMAGE = 'portrait.jpg'
|
|||
_CAT_IMAGE = 'cat.jpg'
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS = 'portrait_expected_face_landmarks.pbtxt'
|
||||
_PORTRAIT_EXPECTED_BLENDSHAPES = 'portrait_expected_blendshapes.pbtxt'
|
||||
_LANDMARKS_DIFF_MARGIN = 0.03
|
||||
_BLENDSHAPES_DIFF_MARGIN = 0.13
|
||||
_FACIAL_TRANSFORMATION_MATRIX_DIFF_MARGIN = 0.02
|
||||
_LANDMARKS_MARGIN = 0.03
|
||||
_BLENDSHAPES_MARGIN = 0.13
|
||||
_FACIAL_TRANSFORMATION_MATRIX_MARGIN = 0.02
|
||||
|
||||
|
||||
def _get_expected_face_landmarks(file_path: str):
|
||||
proto_file_path = test_utils.get_test_data_path(file_path)
|
||||
face_landmarks_results = []
|
||||
with open(proto_file_path, 'rb') as f:
|
||||
proto = landmark_pb2.NormalizedLandmarkList()
|
||||
text_format.Parse(f.read(), proto)
|
||||
face_landmarks = []
|
||||
for landmark in proto.landmark:
|
||||
face_landmarks.append(_NormalizedLandmark.create_from_pb2(landmark))
|
||||
return face_landmarks
|
||||
face_landmarks_results.append(face_landmarks)
|
||||
return face_landmarks_results
|
||||
|
||||
|
||||
def _get_expected_face_blendshapes(file_path: str):
|
||||
proto_file_path = test_utils.get_test_data_path(file_path)
|
||||
face_blendshapes_results = []
|
||||
with open(proto_file_path, 'rb') as f:
|
||||
proto = classification_pb2.ClassificationList()
|
||||
text_format.Parse(f.read(), proto)
|
||||
|
@ -84,7 +87,8 @@ def _get_expected_face_blendshapes(file_path: str):
|
|||
category_name=face_blendshapes.label,
|
||||
)
|
||||
)
|
||||
return face_blendshapes_categories
|
||||
face_blendshapes_results.append(face_blendshapes_categories)
|
||||
return face_blendshapes_results
|
||||
|
||||
|
||||
def _get_expected_facial_transformation_matrixes():
|
||||
|
@ -119,13 +123,14 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Expects to have the same number of faces detected.
|
||||
self.assertLen(actual_landmarks, len(expected_landmarks))
|
||||
|
||||
for i, elem in enumerate(actual_landmarks):
|
||||
self.assertAlmostEqual(
|
||||
elem.x, expected_landmarks[i].x, delta=_LANDMARKS_DIFF_MARGIN
|
||||
)
|
||||
self.assertAlmostEqual(
|
||||
elem.y, expected_landmarks[i].y, delta=_LANDMARKS_DIFF_MARGIN
|
||||
)
|
||||
for i, _ in enumerate(actual_landmarks):
|
||||
for j, elem in enumerate(actual_landmarks[i]):
|
||||
self.assertAlmostEqual(
|
||||
elem.x, expected_landmarks[i][j].x, delta=_LANDMARKS_MARGIN
|
||||
)
|
||||
self.assertAlmostEqual(
|
||||
elem.y, expected_landmarks[i][j].y, delta=_LANDMARKS_MARGIN
|
||||
)
|
||||
|
||||
def _expect_blendshapes_correct(
|
||||
self, actual_blendshapes, expected_blendshapes
|
||||
|
@ -133,13 +138,14 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Expects to have the same number of blendshapes.
|
||||
self.assertLen(actual_blendshapes, len(expected_blendshapes))
|
||||
|
||||
for i, elem in enumerate(actual_blendshapes):
|
||||
self.assertEqual(elem.index, expected_blendshapes[i].index)
|
||||
self.assertAlmostEqual(
|
||||
elem.score,
|
||||
expected_blendshapes[i].score,
|
||||
delta=_BLENDSHAPES_DIFF_MARGIN,
|
||||
)
|
||||
for i, _ in enumerate(actual_blendshapes):
|
||||
for j, elem in enumerate(actual_blendshapes[i]):
|
||||
self.assertEqual(elem.index, expected_blendshapes[i][j].index)
|
||||
self.assertAlmostEqual(
|
||||
elem.score,
|
||||
expected_blendshapes[i][j].score,
|
||||
delta=_BLENDSHAPES_MARGIN,
|
||||
)
|
||||
|
||||
def _expect_facial_transformation_matrixes_correct(
|
||||
self, actual_matrix_list, expected_matrix_list
|
||||
|
@ -152,7 +158,7 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
self.assertSequenceAlmostEqual(
|
||||
elem.flatten(),
|
||||
expected_matrix_list[i].flatten(),
|
||||
delta=_FACIAL_TRANSFORMATION_MATRIX_DIFF_MARGIN,
|
||||
delta=_FACIAL_TRANSFORMATION_MATRIX_MARGIN,
|
||||
)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
|
@ -236,11 +242,11 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Comparing results.
|
||||
if expected_face_landmarks is not None:
|
||||
self._expect_landmarks_correct(
|
||||
detection_result.face_landmarks[0], expected_face_landmarks
|
||||
detection_result.face_landmarks, expected_face_landmarks
|
||||
)
|
||||
if expected_face_blendshapes is not None:
|
||||
self._expect_blendshapes_correct(
|
||||
detection_result.face_blendshapes[0], expected_face_blendshapes
|
||||
detection_result.face_blendshapes, expected_face_blendshapes
|
||||
)
|
||||
if expected_facial_transformation_matrixes is not None:
|
||||
self._expect_facial_transformation_matrixes_correct(
|
||||
|
@ -302,11 +308,11 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Comparing results.
|
||||
if expected_face_landmarks is not None:
|
||||
self._expect_landmarks_correct(
|
||||
detection_result.face_landmarks[0], expected_face_landmarks
|
||||
detection_result.face_landmarks, expected_face_landmarks
|
||||
)
|
||||
if expected_face_blendshapes is not None:
|
||||
self._expect_blendshapes_correct(
|
||||
detection_result.face_blendshapes[0], expected_face_blendshapes
|
||||
detection_result.face_blendshapes, expected_face_blendshapes
|
||||
)
|
||||
if expected_facial_transformation_matrixes is not None:
|
||||
self._expect_facial_transformation_matrixes_correct(
|
||||
|
@ -446,11 +452,11 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Comparing results.
|
||||
if expected_face_landmarks is not None:
|
||||
self._expect_landmarks_correct(
|
||||
detection_result.face_landmarks[0], expected_face_landmarks
|
||||
detection_result.face_landmarks, expected_face_landmarks
|
||||
)
|
||||
if expected_face_blendshapes is not None:
|
||||
self._expect_blendshapes_correct(
|
||||
detection_result.face_blendshapes[0], expected_face_blendshapes
|
||||
detection_result.face_blendshapes, expected_face_blendshapes
|
||||
)
|
||||
if expected_facial_transformation_matrixes is not None:
|
||||
self._expect_facial_transformation_matrixes_correct(
|
||||
|
@ -523,11 +529,11 @@ class FaceLandmarkerTest(parameterized.TestCase):
|
|||
# Comparing results.
|
||||
if expected_face_landmarks is not None:
|
||||
self._expect_landmarks_correct(
|
||||
result.face_landmarks[0], expected_face_landmarks
|
||||
result.face_landmarks, expected_face_landmarks
|
||||
)
|
||||
if expected_face_blendshapes is not None:
|
||||
self._expect_blendshapes_correct(
|
||||
result.face_blendshapes[0], expected_face_blendshapes
|
||||
result.face_blendshapes, expected_face_blendshapes
|
||||
)
|
||||
if expected_facial_transformation_matrixes is not None:
|
||||
self._expect_facial_transformation_matrixes_correct(
|
||||
|
|
|
@ -32,12 +32,14 @@ from mediapipe.tasks.python.vision import hand_landmarker
|
|||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
|
||||
_LandmarksDetectionResultProto = (
|
||||
landmarks_detection_result_pb2.LandmarksDetectionResult)
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Rect = rect_module.Rect
|
||||
_Landmark = landmark_module.Landmark
|
||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
|
||||
_LandmarksDetectionResult = landmark_detection_result_module.LandmarksDetectionResult
|
||||
_LandmarksDetectionResult = (
|
||||
landmark_detection_result_module.LandmarksDetectionResult)
|
||||
_Image = image_module.Image
|
||||
_HandLandmarker = hand_landmarker.HandLandmarker
|
||||
_HandLandmarkerOptions = hand_landmarker.HandLandmarkerOptions
|
||||
|
@ -54,7 +56,7 @@ _POINTING_UP_IMAGE = 'pointing_up.jpg'
|
|||
_POINTING_UP_LANDMARKS = 'pointing_up_landmarks.pbtxt'
|
||||
_POINTING_UP_ROTATED_IMAGE = 'pointing_up_rotated.jpg'
|
||||
_POINTING_UP_ROTATED_LANDMARKS = 'pointing_up_rotated_landmarks.pbtxt'
|
||||
_LANDMARKS_ERROR_TOLERANCE = 0.03
|
||||
_LANDMARKS_MARGIN = 0.03
|
||||
_HANDEDNESS_MARGIN = 0.05
|
||||
|
||||
|
||||
|
@ -89,39 +91,43 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
self.model_path = test_utils.get_test_data_path(
|
||||
_HAND_LANDMARKER_BUNDLE_ASSET_FILE)
|
||||
|
||||
def _assert_actual_result_approximately_matches_expected_result(
|
||||
self, actual_result: _HandLandmarkerResult,
|
||||
expected_result: _HandLandmarkerResult):
|
||||
def _expect_hand_landmarks_correct(
|
||||
self, actual_landmarks, expected_landmarks, margin
|
||||
):
|
||||
# Expects to have the same number of hands detected.
|
||||
self.assertLen(actual_result.hand_landmarks,
|
||||
len(expected_result.hand_landmarks))
|
||||
self.assertLen(actual_result.hand_world_landmarks,
|
||||
len(expected_result.hand_world_landmarks))
|
||||
self.assertLen(actual_result.handedness, len(expected_result.handedness))
|
||||
# Actual landmarks match expected landmarks.
|
||||
self.assertLen(actual_result.hand_landmarks[0],
|
||||
len(expected_result.hand_landmarks[0]))
|
||||
actual_landmarks = actual_result.hand_landmarks[0]
|
||||
expected_landmarks = expected_result.hand_landmarks[0]
|
||||
for i, rename_me in enumerate(actual_landmarks):
|
||||
self.assertAlmostEqual(
|
||||
rename_me.x,
|
||||
expected_landmarks[i].x,
|
||||
delta=_LANDMARKS_ERROR_TOLERANCE)
|
||||
self.assertAlmostEqual(
|
||||
rename_me.y,
|
||||
expected_landmarks[i].y,
|
||||
delta=_LANDMARKS_ERROR_TOLERANCE)
|
||||
# Actual handedness matches expected handedness.
|
||||
actual_top_handedness = actual_result.handedness[0][0]
|
||||
expected_top_handedness = expected_result.handedness[0][0]
|
||||
self.assertLen(actual_landmarks, len(expected_landmarks))
|
||||
|
||||
for i, _ in enumerate(actual_landmarks):
|
||||
for j, elem in enumerate(actual_landmarks[i]):
|
||||
self.assertAlmostEqual(elem.x, expected_landmarks[i][j].x, delta=margin)
|
||||
self.assertAlmostEqual(elem.y, expected_landmarks[i][j].y, delta=margin)
|
||||
|
||||
def _expect_handedness_correct(
|
||||
self, actual_handedness, expected_handedness, margin
|
||||
):
|
||||
# Actual top handedness matches expected top handedness.
|
||||
actual_top_handedness = actual_handedness[0][0]
|
||||
expected_top_handedness = expected_handedness[0][0]
|
||||
self.assertEqual(actual_top_handedness.index, expected_top_handedness.index)
|
||||
self.assertEqual(actual_top_handedness.category_name,
|
||||
expected_top_handedness.category_name)
|
||||
self.assertAlmostEqual(
|
||||
actual_top_handedness.score,
|
||||
expected_top_handedness.score,
|
||||
delta=_HANDEDNESS_MARGIN)
|
||||
actual_top_handedness.score, expected_top_handedness.score, delta=margin
|
||||
)
|
||||
|
||||
def _expect_hand_landmarker_results_correct(
|
||||
self,
|
||||
actual_result: _HandLandmarkerResult,
|
||||
expected_result: _HandLandmarkerResult,
|
||||
):
|
||||
self._expect_hand_landmarks_correct(
|
||||
actual_result.hand_landmarks,
|
||||
expected_result.hand_landmarks,
|
||||
_LANDMARKS_MARGIN,
|
||||
)
|
||||
self._expect_handedness_correct(
|
||||
actual_result.handedness, expected_result.handedness, _HANDEDNESS_MARGIN
|
||||
)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
|
@ -175,8 +181,9 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
# Performs hand landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
# Comparing results.
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
detection_result, expected_detection_result)
|
||||
self._expect_hand_landmarker_results_correct(
|
||||
detection_result, expected_detection_result
|
||||
)
|
||||
# Closes the hand landmarker explicitly when the hand landmarker is not used
|
||||
# in a context.
|
||||
landmarker.close()
|
||||
|
@ -203,8 +210,9 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
# Performs hand landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
# Comparing results.
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
detection_result, expected_detection_result)
|
||||
self._expect_hand_landmarker_results_correct(
|
||||
detection_result, expected_detection_result
|
||||
)
|
||||
|
||||
def test_detect_succeeds_with_num_hands(self):
|
||||
# Creates hand landmarker.
|
||||
|
@ -234,8 +242,9 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
expected_detection_result = _get_expected_hand_landmarker_result(
|
||||
_POINTING_UP_ROTATED_LANDMARKS)
|
||||
# Comparing results.
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
detection_result, expected_detection_result)
|
||||
self._expect_hand_landmarker_results_correct(
|
||||
detection_result, expected_detection_result
|
||||
)
|
||||
|
||||
def test_detect_fails_with_region_of_interest(self):
|
||||
# Creates hand landmarker.
|
||||
|
@ -350,9 +359,9 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
for timestamp in range(0, 300, 30):
|
||||
result = landmarker.detect_for_video(test_image, timestamp,
|
||||
image_processing_options)
|
||||
if result.hand_landmarks and result.hand_world_landmarks and result.handedness:
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
result, expected_result)
|
||||
if (result.hand_landmarks and result.hand_world_landmarks and
|
||||
result.handedness):
|
||||
self._expect_hand_landmarker_results_correct(result, expected_result)
|
||||
else:
|
||||
self.assertEqual(result, expected_result)
|
||||
|
||||
|
@ -405,9 +414,9 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
|
||||
def check_result(result: _HandLandmarkerResult, output_image: _Image,
|
||||
timestamp_ms: int):
|
||||
if result.hand_landmarks and result.hand_world_landmarks and result.handedness:
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
result, expected_result)
|
||||
if (result.hand_landmarks and result.hand_world_landmarks and
|
||||
result.handedness):
|
||||
self._expect_hand_landmarker_results_correct(result, expected_result)
|
||||
else:
|
||||
self.assertEqual(result, expected_result)
|
||||
self.assertTrue(
|
||||
|
|
520
mediapipe/tasks/python/test/vision/pose_landmarker_test.py
Normal file
520
mediapipe/tasks/python/test/vision/pose_landmarker_test.py
Normal file
|
@ -0,0 +1,520 @@
|
|||
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for pose landmarker."""
|
||||
|
||||
import enum
|
||||
from typing import List
|
||||
from unittest import mock
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from google.protobuf import text_format
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.components.containers import landmark_detection_result as landmark_detection_result_module
|
||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import pose_landmarker
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
PoseLandmarkerResult = pose_landmarker.PoseLandmarkerResult
|
||||
_LandmarksDetectionResultProto = (
|
||||
landmarks_detection_result_pb2.LandmarksDetectionResult
|
||||
)
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_Rect = rect_module.Rect
|
||||
_Landmark = landmark_module.Landmark
|
||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
|
||||
_LandmarksDetectionResult = (
|
||||
landmark_detection_result_module.LandmarksDetectionResult
|
||||
)
|
||||
_Image = image_module.Image
|
||||
_PoseLandmarker = pose_landmarker.PoseLandmarker
|
||||
_PoseLandmarkerOptions = pose_landmarker.PoseLandmarkerOptions
|
||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
|
||||
_POSE_LANDMARKER_BUNDLE_ASSET_FILE = 'pose_landmarker.task'
|
||||
_BURGER_IMAGE = 'burger.jpg'
|
||||
_POSE_IMAGE = 'pose.jpg'
|
||||
_POSE_LANDMARKS = 'pose_landmarks.pbtxt'
|
||||
_LANDMARKS_MARGIN = 0.03
|
||||
|
||||
|
||||
def _get_expected_pose_landmarker_result(
|
||||
file_path: str,
|
||||
) -> PoseLandmarkerResult:
|
||||
landmarks_detection_result_file_path = test_utils.get_test_data_path(
|
||||
file_path
|
||||
)
|
||||
with open(landmarks_detection_result_file_path, 'rb') as f:
|
||||
landmarks_detection_result_proto = _LandmarksDetectionResultProto()
|
||||
# Use this if a .pb file is available.
|
||||
# landmarks_detection_result_proto.ParseFromString(f.read())
|
||||
text_format.Parse(f.read(), landmarks_detection_result_proto)
|
||||
landmarks_detection_result = _LandmarksDetectionResult.create_from_pb2(
|
||||
landmarks_detection_result_proto
|
||||
)
|
||||
return PoseLandmarkerResult(
|
||||
pose_landmarks=[landmarks_detection_result.landmarks],
|
||||
pose_world_landmarks=[],
|
||||
pose_auxiliary_landmarks=[],
|
||||
)
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
FILE_CONTENT = 1
|
||||
FILE_NAME = 2
|
||||
|
||||
|
||||
class PoseLandmarkerTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(_POSE_IMAGE)
|
||||
)
|
||||
self.model_path = test_utils.get_test_data_path(
|
||||
_POSE_LANDMARKER_BUNDLE_ASSET_FILE
|
||||
)
|
||||
|
||||
def _expect_pose_landmarks_correct(
|
||||
self, actual_landmarks, expected_landmarks, margin
|
||||
):
|
||||
# Expects to have the same number of poses detected.
|
||||
self.assertLen(actual_landmarks, len(expected_landmarks))
|
||||
|
||||
for i, _ in enumerate(actual_landmarks):
|
||||
for j, elem in enumerate(actual_landmarks[i]):
|
||||
self.assertAlmostEqual(elem.x, expected_landmarks[i][j].x, delta=margin)
|
||||
self.assertAlmostEqual(elem.y, expected_landmarks[i][j].y, delta=margin)
|
||||
|
||||
def _expect_pose_landmarker_results_correct(
|
||||
self,
|
||||
actual_result: PoseLandmarkerResult,
|
||||
expected_result: PoseLandmarkerResult,
|
||||
output_segmentation_masks: bool,
|
||||
margin: float,
|
||||
):
|
||||
self._expect_pose_landmarks_correct(
|
||||
actual_result.pose_landmarks, expected_result.pose_landmarks, margin
|
||||
)
|
||||
if output_segmentation_masks:
|
||||
self.assertIsInstance(actual_result.segmentation_masks, List)
|
||||
for _, mask in enumerate(actual_result.segmentation_masks):
|
||||
self.assertIsInstance(mask, _Image)
|
||||
else:
|
||||
self.assertIsNone(actual_result.segmentation_masks)
|
||||
|
||||
def test_create_from_file_succeeds_with_valid_model_path(self):
|
||||
# Creates with default option and valid model file successfully.
|
||||
with _PoseLandmarker.create_from_model_path(self.model_path) as landmarker:
|
||||
self.assertIsInstance(landmarker, _PoseLandmarker)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_path(self):
|
||||
# Creates with options containing model file successfully.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _PoseLandmarkerOptions(base_options=base_options)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
self.assertIsInstance(landmarker, _PoseLandmarker)
|
||||
|
||||
def test_create_from_options_fails_with_invalid_model_path(self):
|
||||
# Invalid empty model path.
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
|
||||
):
|
||||
base_options = _BaseOptions(
|
||||
model_asset_path='/path/to/invalid/model.tflite'
|
||||
)
|
||||
options = _PoseLandmarkerOptions(base_options=base_options)
|
||||
_PoseLandmarker.create_from_options(options)
|
||||
|
||||
def test_create_from_options_succeeds_with_valid_model_content(self):
|
||||
# Creates with options containing model content successfully.
|
||||
with open(self.model_path, 'rb') as f:
|
||||
base_options = _BaseOptions(model_asset_buffer=f.read())
|
||||
options = _PoseLandmarkerOptions(base_options=base_options)
|
||||
landmarker = _PoseLandmarker.create_from_options(options)
|
||||
self.assertIsInstance(landmarker, _PoseLandmarker)
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
)
|
||||
def test_detect(
|
||||
self,
|
||||
model_file_type,
|
||||
output_segmentation_masks,
|
||||
expected_detection_result,
|
||||
):
|
||||
# Creates pose landmarker.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=base_options,
|
||||
output_segmentation_masks=output_segmentation_masks,
|
||||
)
|
||||
landmarker = _PoseLandmarker.create_from_options(options)
|
||||
|
||||
# Performs pose landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
|
||||
# Comparing results.
|
||||
self._expect_pose_landmarker_results_correct(
|
||||
detection_result,
|
||||
expected_detection_result,
|
||||
output_segmentation_masks,
|
||||
_LANDMARKS_MARGIN,
|
||||
)
|
||||
# Closes the pose landmarker explicitly when the pose landmarker is not used
|
||||
# in a context.
|
||||
landmarker.close()
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_NAME,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
ModelFileType.FILE_CONTENT,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
)
|
||||
def test_detect_in_context(
|
||||
self,
|
||||
model_file_type,
|
||||
output_segmentation_masks,
|
||||
expected_detection_result,
|
||||
):
|
||||
# Creates pose landmarker.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=base_options,
|
||||
output_segmentation_masks=output_segmentation_masks,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
# Performs pose landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
|
||||
# Comparing results.
|
||||
self._expect_pose_landmarker_results_correct(
|
||||
detection_result,
|
||||
expected_detection_result,
|
||||
output_segmentation_masks,
|
||||
_LANDMARKS_MARGIN,
|
||||
)
|
||||
|
||||
def test_detect_fails_with_region_of_interest(self):
|
||||
# Creates pose landmarker.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _PoseLandmarkerOptions(base_options=base_options)
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "This task doesn't support region-of-interest."
|
||||
):
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
# Set the `region_of_interest` parameter using `ImageProcessingOptions`.
|
||||
image_processing_options = _ImageProcessingOptions(
|
||||
region_of_interest=_Rect(0, 0, 1, 1)
|
||||
)
|
||||
# Attempt to perform pose landmarks detection on the cropped input.
|
||||
landmarker.detect(self.test_image, image_processing_options)
|
||||
|
||||
def test_empty_detection_outputs(self):
|
||||
# Creates pose landmarker.
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
options = _PoseLandmarkerOptions(base_options=base_options)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
# Load an image with no poses.
|
||||
test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(_BURGER_IMAGE)
|
||||
)
|
||||
# Performs pose landmarks detection on the input.
|
||||
detection_result = landmarker.detect(test_image)
|
||||
# Comparing results.
|
||||
self.assertEmpty(detection_result.pose_landmarks)
|
||||
self.assertEmpty(detection_result.pose_world_landmarks)
|
||||
self.assertEmpty(detection_result.pose_auxiliary_landmarks)
|
||||
|
||||
def test_missing_result_callback(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||
)
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'result callback must be provided'
|
||||
):
|
||||
with _PoseLandmarker.create_from_options(options) as unused_landmarker:
|
||||
pass
|
||||
|
||||
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
|
||||
def test_illegal_result_callback(self, running_mode):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=running_mode,
|
||||
result_callback=mock.MagicMock(),
|
||||
)
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'result callback should not be provided'
|
||||
):
|
||||
with _PoseLandmarker.create_from_options(options) as unused_landmarker:
|
||||
pass
|
||||
|
||||
def test_calling_detect_for_video_in_image_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.IMAGE,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the video mode'
|
||||
):
|
||||
landmarker.detect_for_video(self.test_image, 0)
|
||||
|
||||
def test_calling_detect_async_in_image_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.IMAGE,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the live stream mode'
|
||||
):
|
||||
landmarker.detect_async(self.test_image, 0)
|
||||
|
||||
def test_calling_detect_in_video_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.VIDEO,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the image mode'
|
||||
):
|
||||
landmarker.detect(self.test_image)
|
||||
|
||||
def test_calling_detect_async_in_video_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.VIDEO,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the live stream mode'
|
||||
):
|
||||
landmarker.detect_async(self.test_image, 0)
|
||||
|
||||
def test_detect_for_video_with_out_of_order_timestamp(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.VIDEO,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
unused_result = landmarker.detect_for_video(self.test_image, 1)
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'Input timestamp must be monotonically increasing'
|
||||
):
|
||||
landmarker.detect_for_video(self.test_image, 0)
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
_POSE_IMAGE,
|
||||
0,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
_POSE_IMAGE,
|
||||
0,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(_BURGER_IMAGE, 0, False, PoseLandmarkerResult([], [], [])),
|
||||
)
|
||||
def test_detect_for_video(
|
||||
self, image_path, rotation, output_segmentation_masks, expected_result
|
||||
):
|
||||
test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(image_path)
|
||||
)
|
||||
# Set rotation parameters using ImageProcessingOptions.
|
||||
image_processing_options = _ImageProcessingOptions(
|
||||
rotation_degrees=rotation
|
||||
)
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
output_segmentation_masks=output_segmentation_masks,
|
||||
running_mode=_RUNNING_MODE.VIDEO,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
for timestamp in range(0, 300, 30):
|
||||
result = landmarker.detect_for_video(
|
||||
test_image, timestamp, image_processing_options
|
||||
)
|
||||
if result.pose_landmarks:
|
||||
self._expect_pose_landmarker_results_correct(
|
||||
result,
|
||||
expected_result,
|
||||
output_segmentation_masks,
|
||||
_LANDMARKS_MARGIN,
|
||||
)
|
||||
else:
|
||||
self.assertEqual(result, expected_result)
|
||||
|
||||
def test_calling_detect_in_live_stream_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||
result_callback=mock.MagicMock(),
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the image mode'
|
||||
):
|
||||
landmarker.detect(self.test_image)
|
||||
|
||||
def test_calling_detect_for_video_in_live_stream_mode(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||
result_callback=mock.MagicMock(),
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'not initialized with the video mode'
|
||||
):
|
||||
landmarker.detect_for_video(self.test_image, 0)
|
||||
|
||||
def test_detect_async_calls_with_illegal_timestamp(self):
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||
result_callback=mock.MagicMock(),
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
landmarker.detect_async(self.test_image, 100)
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, r'Input timestamp must be monotonically increasing'
|
||||
):
|
||||
landmarker.detect_async(self.test_image, 0)
|
||||
|
||||
@parameterized.parameters(
|
||||
(
|
||||
_POSE_IMAGE,
|
||||
0,
|
||||
False,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(
|
||||
_POSE_IMAGE,
|
||||
0,
|
||||
True,
|
||||
_get_expected_pose_landmarker_result(_POSE_LANDMARKS),
|
||||
),
|
||||
(_BURGER_IMAGE, 0, False, PoseLandmarkerResult([], [], [])),
|
||||
)
|
||||
def test_detect_async_calls(
|
||||
self, image_path, rotation, output_segmentation_masks, expected_result
|
||||
):
|
||||
test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(image_path)
|
||||
)
|
||||
# Set rotation parameters using ImageProcessingOptions.
|
||||
image_processing_options = _ImageProcessingOptions(
|
||||
rotation_degrees=rotation
|
||||
)
|
||||
observed_timestamp_ms = -1
|
||||
|
||||
def check_result(
|
||||
result: PoseLandmarkerResult, output_image: _Image, timestamp_ms: int
|
||||
):
|
||||
if result.pose_landmarks:
|
||||
self._expect_pose_landmarker_results_correct(
|
||||
result,
|
||||
expected_result,
|
||||
output_segmentation_masks,
|
||||
_LANDMARKS_MARGIN,
|
||||
)
|
||||
else:
|
||||
self.assertEqual(result, expected_result)
|
||||
self.assertTrue(
|
||||
np.array_equal(output_image.numpy_view(), test_image.numpy_view())
|
||||
)
|
||||
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
||||
self.observed_timestamp_ms = timestamp_ms
|
||||
|
||||
options = _PoseLandmarkerOptions(
|
||||
base_options=_BaseOptions(model_asset_path=self.model_path),
|
||||
output_segmentation_masks=output_segmentation_masks,
|
||||
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
||||
result_callback=check_result,
|
||||
)
|
||||
with _PoseLandmarker.create_from_options(options) as landmarker:
|
||||
for timestamp in range(0, 300, 30):
|
||||
landmarker.detect_async(test_image, timestamp, image_processing_options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
|
@ -180,6 +180,27 @@ py_library(
|
|||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "pose_landmarker",
|
||||
srcs = [
|
||||
"pose_landmarker.py",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/framework/formats:landmark_py_pb2",
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/python:packet_creator",
|
||||
"//mediapipe/python:packet_getter",
|
||||
"//mediapipe/tasks/cc/vision/pose_landmarker/proto:pose_landmarker_graph_options_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
"//mediapipe/tasks/python/core:task_info",
|
||||
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
|
||||
"//mediapipe/tasks/python/vision/core:image_processing_options",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "face_detector",
|
||||
srcs = [
|
||||
|
|
|
@ -71,8 +71,8 @@ class FaceDetectorOptions:
|
|||
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
min_detection_confidence: Optional[float] = None
|
||||
min_suppression_threshold: Optional[float] = None
|
||||
min_detection_confidence: float = 0.5
|
||||
min_suppression_threshold: float = 0.3
|
||||
result_callback: Optional[
|
||||
Callable[
|
||||
[detections_module.DetectionResult, image_module.Image, int], None
|
||||
|
|
|
@ -2966,12 +2966,12 @@ class FaceLandmarkerOptions:
|
|||
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
num_faces: Optional[int] = 1
|
||||
min_face_detection_confidence: Optional[float] = 0.5
|
||||
min_face_presence_confidence: Optional[float] = 0.5
|
||||
min_tracking_confidence: Optional[float] = 0.5
|
||||
output_face_blendshapes: Optional[bool] = False
|
||||
output_facial_transformation_matrixes: Optional[bool] = False
|
||||
num_faces: int = 1
|
||||
min_face_detection_confidence: float = 0.5
|
||||
min_face_presence_confidence: float = 0.5
|
||||
min_tracking_confidence: float = 0.5
|
||||
output_face_blendshapes: bool = False
|
||||
output_facial_transformation_matrixes: bool = False
|
||||
result_callback: Optional[
|
||||
Callable[[FaceLandmarkerResult, image_module.Image, int], None]
|
||||
] = None
|
||||
|
|
|
@ -194,15 +194,15 @@ class GestureRecognizerOptions:
|
|||
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
num_hands: Optional[int] = 1
|
||||
min_hand_detection_confidence: Optional[float] = 0.5
|
||||
min_hand_presence_confidence: Optional[float] = 0.5
|
||||
min_tracking_confidence: Optional[float] = 0.5
|
||||
canned_gesture_classifier_options: Optional[_ClassifierOptions] = (
|
||||
dataclasses.field(default_factory=_ClassifierOptions)
|
||||
num_hands: int = 1
|
||||
min_hand_detection_confidence: float = 0.5
|
||||
min_hand_presence_confidence: float = 0.5
|
||||
min_tracking_confidence: float = 0.5
|
||||
canned_gesture_classifier_options: _ClassifierOptions = dataclasses.field(
|
||||
default_factory=_ClassifierOptions
|
||||
)
|
||||
custom_gesture_classifier_options: Optional[_ClassifierOptions] = (
|
||||
dataclasses.field(default_factory=_ClassifierOptions)
|
||||
custom_gesture_classifier_options: _ClassifierOptions = dataclasses.field(
|
||||
default_factory=_ClassifierOptions
|
||||
)
|
||||
result_callback: Optional[
|
||||
Callable[[GestureRecognizerResult, image_module.Image, int], None]
|
||||
|
|
|
@ -182,10 +182,10 @@ class HandLandmarkerOptions:
|
|||
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
num_hands: Optional[int] = 1
|
||||
min_hand_detection_confidence: Optional[float] = 0.5
|
||||
min_hand_presence_confidence: Optional[float] = 0.5
|
||||
min_tracking_confidence: Optional[float] = 0.5
|
||||
num_hands: int = 1
|
||||
min_hand_detection_confidence: float = 0.5
|
||||
min_hand_presence_confidence: float = 0.5
|
||||
min_tracking_confidence: float = 0.5
|
||||
result_callback: Optional[
|
||||
Callable[[HandLandmarkerResult, image_module.Image, int], None]
|
||||
] = None
|
||||
|
|
431
mediapipe/tasks/python/vision/pose_landmarker.py
Normal file
431
mediapipe/tasks/python/vision/pose_landmarker.py
Normal file
|
@ -0,0 +1,431 @@
|
|||
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MediaPipe pose landmarker task."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Callable, Mapping, Optional, List
|
||||
|
||||
from mediapipe.framework.formats import landmark_pb2
|
||||
from mediapipe.python import packet_creator
|
||||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet as packet_module
|
||||
from mediapipe.tasks.cc.vision.pose_landmarker.proto import pose_landmarker_graph_options_pb2
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.core import task_info as task_info_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
||||
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_PoseLandmarkerGraphOptionsProto = (
|
||||
pose_landmarker_graph_options_pb2.PoseLandmarkerGraphOptions
|
||||
)
|
||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
|
||||
_IMAGE_IN_STREAM_NAME = 'image_in'
|
||||
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
||||
_IMAGE_TAG = 'IMAGE'
|
||||
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
||||
_NORM_RECT_TAG = 'NORM_RECT'
|
||||
_SEGMENTATION_MASK_STREAM_NAME = 'segmentation_mask'
|
||||
_SEGMENTATION_MASK_TAG = 'SEGMENTATION_MASK'
|
||||
_NORM_LANDMARKS_STREAM_NAME = 'norm_landmarks'
|
||||
_NORM_LANDMARKS_TAG = 'NORM_LANDMARKS'
|
||||
_POSE_WORLD_LANDMARKS_STREAM_NAME = 'world_landmarks'
|
||||
_POSE_WORLD_LANDMARKS_TAG = 'WORLD_LANDMARKS'
|
||||
_POSE_AUXILIARY_LANDMARKS_STREAM_NAME = 'auxiliary_landmarks'
|
||||
_POSE_AUXILIARY_LANDMARKS_TAG = 'AUXILIARY_LANDMARKS'
|
||||
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.pose_landmarker.PoseLandmarkerGraph'
|
||||
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class PoseLandmarkerResult:
|
||||
"""The pose landmarks detection result from PoseLandmarker, where each vector element represents a single pose detected in the image.
|
||||
|
||||
Attributes:
|
||||
pose_landmarks: Detected pose landmarks in normalized image coordinates.
|
||||
pose_world_landmarks: Detected pose landmarks in world coordinates.
|
||||
pose_auxiliary_landmarks: Detected auxiliary landmarks, used for deriving
|
||||
ROI for next frame.
|
||||
segmentation_masks: Optional segmentation masks for pose.
|
||||
"""
|
||||
|
||||
pose_landmarks: List[List[landmark_module.NormalizedLandmark]]
|
||||
pose_world_landmarks: List[List[landmark_module.Landmark]]
|
||||
pose_auxiliary_landmarks: List[List[landmark_module.NormalizedLandmark]]
|
||||
segmentation_masks: Optional[List[image_module.Image]] = None
|
||||
|
||||
|
||||
def _build_landmarker_result(
|
||||
output_packets: Mapping[str, packet_module.Packet]
|
||||
) -> PoseLandmarkerResult:
|
||||
"""Constructs a `PoseLandmarkerResult` from output packets."""
|
||||
pose_landmarker_result = PoseLandmarkerResult([], [], [])
|
||||
|
||||
if _SEGMENTATION_MASK_STREAM_NAME in output_packets:
|
||||
pose_landmarker_result.segmentation_masks = packet_getter.get_image_list(
|
||||
output_packets[_SEGMENTATION_MASK_STREAM_NAME]
|
||||
)
|
||||
|
||||
pose_landmarks_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
||||
)
|
||||
pose_world_landmarks_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_POSE_WORLD_LANDMARKS_STREAM_NAME]
|
||||
)
|
||||
pose_auxiliary_landmarks_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_POSE_AUXILIARY_LANDMARKS_STREAM_NAME]
|
||||
)
|
||||
|
||||
for proto in pose_landmarks_proto_list:
|
||||
pose_landmarks = landmark_pb2.NormalizedLandmarkList()
|
||||
pose_landmarks.MergeFrom(proto)
|
||||
pose_landmarks_list = []
|
||||
for pose_landmark in pose_landmarks.landmark:
|
||||
pose_landmarks_list.append(
|
||||
landmark_module.NormalizedLandmark.create_from_pb2(pose_landmark)
|
||||
)
|
||||
pose_landmarker_result.pose_landmarks.append(pose_landmarks_list)
|
||||
|
||||
for proto in pose_world_landmarks_proto_list:
|
||||
pose_world_landmarks = landmark_pb2.LandmarkList()
|
||||
pose_world_landmarks.MergeFrom(proto)
|
||||
pose_world_landmarks_list = []
|
||||
for pose_world_landmark in pose_world_landmarks.landmark:
|
||||
pose_world_landmarks_list.append(
|
||||
landmark_module.Landmark.create_from_pb2(pose_world_landmark)
|
||||
)
|
||||
pose_landmarker_result.pose_world_landmarks.append(
|
||||
pose_world_landmarks_list
|
||||
)
|
||||
|
||||
for proto in pose_auxiliary_landmarks_proto_list:
|
||||
pose_auxiliary_landmarks = landmark_pb2.NormalizedLandmarkList()
|
||||
pose_auxiliary_landmarks.MergeFrom(proto)
|
||||
pose_auxiliary_landmarks_list = []
|
||||
for pose_auxiliary_landmark in pose_auxiliary_landmarks.landmark:
|
||||
pose_auxiliary_landmarks_list.append(
|
||||
landmark_module.NormalizedLandmark.create_from_pb2(
|
||||
pose_auxiliary_landmark
|
||||
)
|
||||
)
|
||||
pose_landmarker_result.pose_auxiliary_landmarks.append(
|
||||
pose_auxiliary_landmarks_list
|
||||
)
|
||||
return pose_landmarker_result
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class PoseLandmarkerOptions:
|
||||
"""Options for the pose landmarker task.
|
||||
|
||||
Attributes:
|
||||
base_options: Base options for the pose landmarker task.
|
||||
running_mode: The running mode of the task. Default to the image mode.
|
||||
PoseLandmarker has three running modes: 1) The image mode for detecting
|
||||
pose landmarks on single image inputs. 2) The video mode for detecting
|
||||
pose landmarks on the decoded frames of a video. 3) The live stream mode
|
||||
for detecting pose landmarks on the live stream of input data, such as
|
||||
from camera. In this mode, the "result_callback" below must be specified
|
||||
to receive the detection results asynchronously.
|
||||
num_poses: The maximum number of poses can be detected by the
|
||||
PoseLandmarker.
|
||||
min_pose_detection_confidence: The minimum confidence score for the pose
|
||||
detection to be considered successful.
|
||||
min_pose_presence_confidence: The minimum confidence score of pose presence
|
||||
score in the pose landmark detection.
|
||||
min_tracking_confidence: The minimum confidence score for the pose tracking
|
||||
to be considered successful.
|
||||
output_segmentation_masks: whether to output segmentation masks.
|
||||
result_callback: The user-defined result callback for processing live stream
|
||||
data. The result callback should only be specified when the running mode
|
||||
is set to the live stream mode.
|
||||
"""
|
||||
|
||||
base_options: _BaseOptions
|
||||
running_mode: _RunningMode = _RunningMode.IMAGE
|
||||
num_poses: int = 1
|
||||
min_pose_detection_confidence: float = 0.5
|
||||
min_pose_presence_confidence: float = 0.5
|
||||
min_tracking_confidence: float = 0.5
|
||||
output_segmentation_masks: bool = False
|
||||
result_callback: Optional[
|
||||
Callable[[PoseLandmarkerResult, image_module.Image, int], None]
|
||||
] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _PoseLandmarkerGraphOptionsProto:
|
||||
"""Generates an PoseLandmarkerGraphOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = (
|
||||
False if self.running_mode == _RunningMode.IMAGE else True
|
||||
)
|
||||
|
||||
# Initialize the pose landmarker options from base options.
|
||||
pose_landmarker_options_proto = _PoseLandmarkerGraphOptionsProto(
|
||||
base_options=base_options_proto
|
||||
)
|
||||
pose_landmarker_options_proto.min_tracking_confidence = (
|
||||
self.min_tracking_confidence
|
||||
)
|
||||
pose_landmarker_options_proto.pose_detector_graph_options.num_poses = (
|
||||
self.num_poses
|
||||
)
|
||||
pose_landmarker_options_proto.pose_detector_graph_options.min_detection_confidence = (
|
||||
self.min_pose_detection_confidence
|
||||
)
|
||||
pose_landmarker_options_proto.pose_landmarks_detector_graph_options.min_detection_confidence = (
|
||||
self.min_pose_presence_confidence
|
||||
)
|
||||
return pose_landmarker_options_proto
|
||||
|
||||
|
||||
class PoseLandmarker(base_vision_task_api.BaseVisionTaskApi):
|
||||
"""Class that performs pose landmarks detection on images."""
|
||||
|
||||
@classmethod
|
||||
def create_from_model_path(cls, model_path: str) -> 'PoseLandmarker':
|
||||
"""Creates a `PoseLandmarker` object from a model bundle file and the default `PoseLandmarkerOptions`.
|
||||
|
||||
Note that the created `PoseLandmarker` instance is in image mode, for
|
||||
detecting pose landmarks on single image inputs.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model.
|
||||
|
||||
Returns:
|
||||
`PoseLandmarker` object that's created from the model file and the
|
||||
default `PoseLandmarkerOptions`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `PoseLandmarker` object from the
|
||||
provided file such as invalid file path.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
options = PoseLandmarkerOptions(
|
||||
base_options=base_options, running_mode=_RunningMode.IMAGE
|
||||
)
|
||||
return cls.create_from_options(options)
|
||||
|
||||
@classmethod
|
||||
def create_from_options(
|
||||
cls, options: PoseLandmarkerOptions
|
||||
) -> 'PoseLandmarker':
|
||||
"""Creates the `PoseLandmarker` object from pose landmarker options.
|
||||
|
||||
Args:
|
||||
options: Options for the pose landmarker task.
|
||||
|
||||
Returns:
|
||||
`PoseLandmarker` object that's created from `options`.
|
||||
|
||||
Raises:
|
||||
ValueError: If failed to create `PoseLandmarker` object from
|
||||
`PoseLandmarkerOptions` such as missing the model.
|
||||
RuntimeError: If other types of error occurred.
|
||||
"""
|
||||
|
||||
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
||||
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
||||
return
|
||||
|
||||
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
empty_packet = output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
||||
options.result_callback(
|
||||
PoseLandmarkerResult([], [], []),
|
||||
image,
|
||||
empty_packet.timestamp.value // _MICRO_SECONDS_PER_MILLISECOND,
|
||||
)
|
||||
return
|
||||
|
||||
pose_landmarker_result = _build_landmarker_result(output_packets)
|
||||
timestamp = output_packets[_NORM_LANDMARKS_STREAM_NAME].timestamp
|
||||
options.result_callback(
|
||||
pose_landmarker_result,
|
||||
image,
|
||||
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND,
|
||||
)
|
||||
|
||||
output_streams = [
|
||||
':'.join([_NORM_LANDMARKS_TAG, _NORM_LANDMARKS_STREAM_NAME]),
|
||||
':'.join(
|
||||
[_POSE_WORLD_LANDMARKS_TAG, _POSE_WORLD_LANDMARKS_STREAM_NAME]
|
||||
),
|
||||
':'.join([
|
||||
_POSE_AUXILIARY_LANDMARKS_TAG,
|
||||
_POSE_AUXILIARY_LANDMARKS_STREAM_NAME,
|
||||
]),
|
||||
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
||||
]
|
||||
|
||||
if options.output_segmentation_masks:
|
||||
output_streams.append(
|
||||
':'.join([_SEGMENTATION_MASK_TAG, _SEGMENTATION_MASK_STREAM_NAME])
|
||||
)
|
||||
|
||||
task_info = _TaskInfo(
|
||||
task_graph=_TASK_GRAPH_NAME,
|
||||
input_streams=[
|
||||
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
||||
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
||||
],
|
||||
output_streams=output_streams,
|
||||
task_options=options,
|
||||
)
|
||||
return cls(
|
||||
task_info.generate_graph_config(
|
||||
enable_flow_limiting=options.running_mode
|
||||
== _RunningMode.LIVE_STREAM
|
||||
),
|
||||
options.running_mode,
|
||||
packets_callback if options.result_callback else None,
|
||||
)
|
||||
|
||||
def detect(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||
) -> PoseLandmarkerResult:
|
||||
"""Performs pose landmarks detection on the given image.
|
||||
|
||||
Only use this method when the PoseLandmarker is created with the image
|
||||
running mode.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The pose landmarker detection results.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If pose landmarker detection failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, image, roi_allowed=False
|
||||
)
|
||||
output_packets = self._process_image_data({
|
||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||
normalized_rect.to_pb2()
|
||||
),
|
||||
})
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
return PoseLandmarkerResult([], [], [])
|
||||
|
||||
return _build_landmarker_result(output_packets)
|
||||
|
||||
def detect_for_video(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||
) -> PoseLandmarkerResult:
|
||||
"""Performs pose landmarks detection on the provided video frame.
|
||||
|
||||
Only use this method when the PoseLandmarker is created with the video
|
||||
running mode.
|
||||
|
||||
Only use this method when the PoseLandmarker is created with the video
|
||||
running mode. It's required to provide the video frame's timestamp (in
|
||||
milliseconds) along with the video frame. The input timestamps should be
|
||||
monotonically increasing for adjacent calls of this method.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Returns:
|
||||
The pose landmarker detection results.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the input arguments is invalid.
|
||||
RuntimeError: If pose landmarker detection failed to run.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, image, roi_allowed=False
|
||||
)
|
||||
output_packets = self._process_video_data({
|
||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
||||
),
|
||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||
normalized_rect.to_pb2()
|
||||
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
})
|
||||
|
||||
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
||||
return PoseLandmarkerResult([], [], [])
|
||||
|
||||
return _build_landmarker_result(output_packets)
|
||||
|
||||
def detect_async(
|
||||
self,
|
||||
image: image_module.Image,
|
||||
timestamp_ms: int,
|
||||
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
||||
) -> None:
|
||||
"""Sends live image data to perform pose landmarks detection.
|
||||
|
||||
The results will be available via the "result_callback" provided in the
|
||||
PoseLandmarkerOptions. Only use this method when the PoseLandmarker is
|
||||
created with the live stream running mode.
|
||||
|
||||
Only use this method when the PoseLandmarker is created with the live
|
||||
stream running mode. The input timestamps should be monotonically increasing
|
||||
for adjacent calls of this method. This method will return immediately after
|
||||
the input image is accepted. The results will be available via the
|
||||
`result_callback` provided in the `PoseLandmarkerOptions`. The
|
||||
`detect_async` method is designed to process live stream data such as
|
||||
camera input. To lower the overall latency, pose landmarker may drop the
|
||||
input images if needed. In other words, it's not guaranteed to have output
|
||||
per input image.
|
||||
|
||||
The `result_callback` provides:
|
||||
- The pose landmarker detection results.
|
||||
- The input image that the pose landmarker runs on.
|
||||
- The input timestamp in milliseconds.
|
||||
|
||||
Args:
|
||||
image: MediaPipe Image.
|
||||
timestamp_ms: The timestamp of the input image in milliseconds.
|
||||
image_processing_options: Options for image processing.
|
||||
|
||||
Raises:
|
||||
ValueError: If the current input timestamp is smaller than what the
|
||||
pose landmarker has already processed.
|
||||
"""
|
||||
normalized_rect = self.convert_to_normalized_rect(
|
||||
image_processing_options, image, roi_allowed=False
|
||||
)
|
||||
self._send_live_stream_data({
|
||||
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
||||
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
||||
),
|
||||
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
||||
normalized_rect.to_pb2()
|
||||
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
||||
})
|
Loading…
Reference in New Issue
Block a user