Add Java ImageClassifier API.

PiperOrigin-RevId: 480656683
This commit is contained in:
MediaPipe Team 2022-10-12 10:19:45 -07:00 committed by Copybara-Service
parent cbbd4718a0
commit 51a7606083
7 changed files with 1100 additions and 0 deletions

View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.google.mediapipe.tasks.vision.imageclassifier">
<uses-sdk android:minSdkVersion="24"
android:targetSdkVersion="30" />
</manifest>

View File

@ -0,0 +1,46 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
android_library(
name = "imageclassifier",
srcs = [
"ImageClassificationResult.java",
"ImageClassifier.java",
],
javacopts = [
"-Xep:AndroidJdkLibsChecker:OFF",
],
manifest = ":AndroidManifest.xml",
deps = [
"//mediapipe/framework:calculator_options_java_proto_lite",
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
"//mediapipe/java/com/google/mediapipe/framework/image",
"//mediapipe/tasks/cc/components/containers/proto:category_java_proto_lite",
"//mediapipe/tasks/cc/components/containers/proto:classifications_java_proto_lite",
"//mediapipe/tasks/cc/core/proto:base_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/image_classifier/proto:image_classifier_graph_options_java_proto_lite",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:category",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:classification_entry",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:classifications",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/processors:classifieroptions",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/core",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/vision/core",
"//third_party:autovalue",
"@maven//:com_google_guava_guava",
],
)

View File

@ -0,0 +1,102 @@
// Copyright 2022 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.imageclassifier;
import com.google.auto.value.AutoValue;
import com.google.mediapipe.tasks.components.container.proto.CategoryProto;
import com.google.mediapipe.tasks.components.container.proto.ClassificationsProto;
import com.google.mediapipe.tasks.components.containers.Category;
import com.google.mediapipe.tasks.components.containers.ClassificationEntry;
import com.google.mediapipe.tasks.components.containers.Classifications;
import com.google.mediapipe.tasks.core.TaskResult;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/** Represents the classification results generated by {@link ImageClassifier}. */
@AutoValue
public abstract class ImageClassificationResult implements TaskResult {
/**
* Creates an {@link ImageClassificationResult} instance from a {@link
* ClassificationsProto.ClassificationResult} protobuf message.
*
* @param classificationResult a {@link ClassificationsProto.ClassificationResult} protobuf
* message.
* @param timestampMs a timestamp for this result.
*/
// TODO: consolidate output formats across platforms.
static ImageClassificationResult create(
ClassificationsProto.ClassificationResult classificationResult, long timestampMs) {
List<Classifications> classifications = new ArrayList<>();
for (ClassificationsProto.Classifications classificationsProto :
classificationResult.getClassificationsList()) {
classifications.add(classificationsFromProto(classificationsProto));
}
return new AutoValue_ImageClassificationResult(
timestampMs, Collections.unmodifiableList(classifications));
}
@Override
public abstract long timestampMs();
/** Contains one set of results per classifier head. */
public abstract List<Classifications> classifications();
/**
* Converts a {@link CategoryProto.Category} protobuf message to a {@link Category} object.
*
* @param category the {@link CategoryProto.Category} protobuf message to convert.
*/
static Category categoryFromProto(CategoryProto.Category category) {
return Category.create(
category.getScore(),
category.getIndex(),
category.getCategoryName(),
category.getDisplayName());
}
/**
* Converts a {@link ClassificationsProto.ClassificationEntry} protobuf message to a {@link
* ClassificationEntry} object.
*
* @param entry the {@link ClassificationsProto.ClassificationEntry} protobuf message to convert.
*/
static ClassificationEntry classificationEntryFromProto(
ClassificationsProto.ClassificationEntry entry) {
List<Category> categories = new ArrayList<>();
for (CategoryProto.Category category : entry.getCategoriesList()) {
categories.add(categoryFromProto(category));
}
return ClassificationEntry.create(categories, entry.getTimestampMs());
}
/**
* Converts a {@link ClassificationsProto.Classifications} protobuf message to a {@link
* Classifications} object.
*
* @param classifications the {@link ClassificationsProto.Classifications} protobuf message to
* convert.
*/
static Classifications classificationsFromProto(
ClassificationsProto.Classifications classifications) {
List<ClassificationEntry> entries = new ArrayList<>();
for (ClassificationsProto.ClassificationEntry entry : classifications.getEntriesList()) {
entries.add(classificationEntryFromProto(entry));
}
return Classifications.create(
entries, classifications.getHeadIndex(), classifications.getHeadName());
}
}

View File

@ -0,0 +1,456 @@
// Copyright 2022 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.imageclassifier;
import android.content.Context;
import android.graphics.RectF;
import android.os.ParcelFileDescriptor;
import com.google.auto.value.AutoValue;
import com.google.mediapipe.proto.CalculatorOptionsProto.CalculatorOptions;
import com.google.mediapipe.framework.AndroidPacketGetter;
import com.google.mediapipe.framework.MediaPipeException;
import com.google.mediapipe.framework.Packet;
import com.google.mediapipe.framework.PacketGetter;
import com.google.mediapipe.framework.ProtoUtil;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.Image;
import com.google.mediapipe.tasks.components.container.proto.ClassificationsProto;
import com.google.mediapipe.tasks.components.processors.ClassifierOptions;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.core.ErrorListener;
import com.google.mediapipe.tasks.core.OutputHandler;
import com.google.mediapipe.tasks.core.OutputHandler.ResultListener;
import com.google.mediapipe.tasks.core.TaskInfo;
import com.google.mediapipe.tasks.core.TaskOptions;
import com.google.mediapipe.tasks.core.TaskRunner;
import com.google.mediapipe.tasks.core.proto.BaseOptionsProto;
import com.google.mediapipe.tasks.vision.core.BaseVisionTaskApi;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.imageclassifier.proto.ImageClassifierGraphOptionsProto;
import com.google.protobuf.InvalidProtocolBufferException;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Optional;
/**
* Performs classification on images.
*
* <p>The API expects a TFLite model with optional, but strongly recommended, <a
* href="https://www.tensorflow.org/lite/convert/metadata">TFLite Model Metadata.</a>.
*
* <p>The API supports models with one image input tensor and one or more output tensors. To be more
* specific, here are the requirements.
*
* <ul>
* <li>Input image tensor ({@code kTfLiteUInt8}/{@code kTfLiteFloat32})
* <ul>
* <li>image input of size {@code [batch x height x width x channels]}.
* <li>batch inference is not supported ({@code batch} is required to be 1).
* <li>only RGB inputs are supported ({@code channels} is required to be 3).
* <li>if type is kTfLiteFloat32, NormalizationOptions are required to be attached to the
* metadata for input normalization.
* </ul>
* <li>At least one output tensor ({@code kTfLiteUInt8}/{@code kTfLiteFloat32}) with:
* <ul>
* <li>{@code N} classes and either 2 or 4 dimensions, i.e. {@code [1 x N]} or {@code [1 x 1
* x 1 x N]}
* <li>optional (but recommended) label map(s) as AssociatedFile-s with type
* TENSOR_AXIS_LABELS, containing one label per line. The first such AssociatedFile (if
* any) is used to fill the {@code class_name} field of the results. The {@code
* display_name} field is filled from the AssociatedFile (if any) whose locale matches
* the {@code display_names_locale} field of the {@code ImageClassifierOptions} used at
* creation time ("en" by default, i.e. English). If none of these are available, only
* the {@code index} field of the results will be filled.
* <li>optional score calibration can be attached using ScoreCalibrationOptions and an
* AssociatedFile with type TENSOR_AXIS_SCORE_CALIBRATION. See <a
* href="https://github.com/google/mediapipe/blob/master/mediapipe/tasks/metadata/metadata_schema.fbs">
* metadata_schema.fbs</a> for more details.
* </ul>
* </ul>
*
* <p>An example of such model can be found <a
* href="https://tfhub.dev/bohemian-visual-recognition-alliance/lite-model/models/mushroom-identification_v1/1">
* TensorFlow Hub</a>.
*/
public final class ImageClassifier extends BaseVisionTaskApi {
private static final String TAG = ImageClassifier.class.getSimpleName();
private static final String IMAGE_IN_STREAM_NAME = "image_in";
private static final String NORM_RECT_IN_STREAM_NAME = "norm_rect_in";
private static final List<String> INPUT_STREAMS =
Collections.unmodifiableList(
Arrays.asList("IMAGE:" + IMAGE_IN_STREAM_NAME, "NORM_RECT:" + NORM_RECT_IN_STREAM_NAME));
private static final List<String> OUTPUT_STREAMS =
Collections.unmodifiableList(
Arrays.asList("CLASSIFICATION_RESULT:classification_result_out", "IMAGE:image_out"));
private static final int CLASSIFICATION_RESULT_OUT_STREAM_INDEX = 0;
private static final int IMAGE_OUT_STREAM_INDEX = 1;
private static final String TASK_GRAPH_NAME =
"mediapipe.tasks.vision.image_classifier.ImageClassifierGraph";
static {
ProtoUtil.registerTypeName(
ClassificationsProto.ClassificationResult.class,
"mediapipe.tasks.components.containers.proto.ClassificationResult");
}
/**
* Creates an {@link ImageClassifier} instance from a model file and default {@link
* ImageClassifierOptions}.
*
* @param context an Android {@link Context}.
* @param modelPath path to the classification model in the assets.
* @throws MediaPipeException if there is an error during {@link ImageClassifier} creation.
*/
public static ImageClassifier createFromFile(Context context, String modelPath) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetPath(modelPath).build();
return createFromOptions(
context, ImageClassifierOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates an {@link ImageClassifier} instance from a model file and default {@link
* ImageClassifierOptions}.
*
* @param context an Android {@link Context}.
* @param modelFile the classification model {@link File} instance.
* @throws IOException if an I/O error occurs when opening the tflite model file.
* @throws MediaPipeException if there is an error during {@link ImageClassifier} creation.
*/
public static ImageClassifier createFromFile(Context context, File modelFile) throws IOException {
try (ParcelFileDescriptor descriptor =
ParcelFileDescriptor.open(modelFile, ParcelFileDescriptor.MODE_READ_ONLY)) {
BaseOptions baseOptions =
BaseOptions.builder().setModelAssetFileDescriptor(descriptor.getFd()).build();
return createFromOptions(
context, ImageClassifierOptions.builder().setBaseOptions(baseOptions).build());
}
}
/**
* Creates an {@link ImageClassifier} instance from a model buffer and default {@link
* ImageClassifierOptions}.
*
* @param context an Android {@link Context}.
* @param modelBuffer a direct {@link ByteBuffer} or a {@link MappedByteBuffer} of the
* classification model.
* @throws MediaPipeException if there is an error during {@link ImageClassifier} creation.
*/
public static ImageClassifier createFromBuffer(Context context, final ByteBuffer modelBuffer) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetBuffer(modelBuffer).build();
return createFromOptions(
context, ImageClassifierOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates an {@link ImageClassifier} instance from an {@link ImageClassifierOptions} instance.
*
* @param context an Android {@link Context}.
* @param options an {@link ImageClassifierOptions} instance.
* @throws MediaPipeException if there is an error during {@link ImageClassifier} creation.
*/
public static ImageClassifier createFromOptions(Context context, ImageClassifierOptions options) {
OutputHandler<ImageClassificationResult, Image> handler = new OutputHandler<>();
handler.setOutputPacketConverter(
new OutputHandler.OutputPacketConverter<ImageClassificationResult, Image>() {
@Override
public ImageClassificationResult convertToTaskResult(List<Packet> packets) {
try {
return ImageClassificationResult.create(
PacketGetter.getProto(
packets.get(CLASSIFICATION_RESULT_OUT_STREAM_INDEX),
ClassificationsProto.ClassificationResult.getDefaultInstance()),
packets.get(CLASSIFICATION_RESULT_OUT_STREAM_INDEX).getTimestamp());
} catch (InvalidProtocolBufferException e) {
throw new MediaPipeException(
MediaPipeException.StatusCode.INTERNAL.ordinal(), e.getMessage());
}
}
@Override
public Image convertToTaskInput(List<Packet> packets) {
return new BitmapImageBuilder(
AndroidPacketGetter.getBitmapFromRgb(packets.get(IMAGE_OUT_STREAM_INDEX)))
.build();
}
});
options.resultListener().ifPresent(handler::setResultListener);
options.errorListener().ifPresent(handler::setErrorListener);
TaskRunner runner =
TaskRunner.create(
context,
TaskInfo.<ImageClassifierOptions>builder()
.setTaskGraphName(TASK_GRAPH_NAME)
.setInputStreams(INPUT_STREAMS)
.setOutputStreams(OUTPUT_STREAMS)
.setTaskOptions(options)
.setEnableFlowLimiting(options.runningMode() == RunningMode.LIVE_STREAM)
.build(),
handler);
return new ImageClassifier(runner, options.runningMode());
}
/**
* Constructor to initialize an {@link ImageClassifier} from a {@link TaskRunner} and {@link
* RunningMode}.
*
* @param taskRunner a {@link TaskRunner}.
* @param runningMode a mediapipe vision task {@link RunningMode}.
*/
private ImageClassifier(TaskRunner taskRunner, RunningMode runningMode) {
super(taskRunner, runningMode, IMAGE_IN_STREAM_NAME, NORM_RECT_IN_STREAM_NAME);
}
/**
* Performs classification on the provided single image. Only use this method when the {@link
* ImageClassifier} is created with {@link RunningMode.IMAGE}.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @throws MediaPipeException if there is an internal error.
*/
public ImageClassificationResult classify(Image inputImage) {
return (ImageClassificationResult) processImageData(inputImage, buildFullImageRectF());
}
/**
* Performs classification on the provided single image and region-of-interest. Only use this
* method when the {@link ImageClassifier} is created with {@link RunningMode.IMAGE}.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param roi a {@link RectF} specifying the region of interest on which to perform
* classification. Coordinates are expected to be specified as normalized values in [0,1].
* @throws MediaPipeException if there is an internal error.
*/
public ImageClassificationResult classify(Image inputImage, RectF roi) {
return (ImageClassificationResult) processImageData(inputImage, roi);
}
/**
* Performs classification on the provided video frame. Only use this method when the {@link
* ImageClassifier} is created with {@link RunningMode.VIDEO}.
*
* <p>It's required to provide the video frame's timestamp (in milliseconds). The input timestamps
* must be monotonically increasing.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public ImageClassificationResult classifyForVideo(Image inputImage, long inputTimestampMs) {
return (ImageClassificationResult)
processVideoData(inputImage, buildFullImageRectF(), inputTimestampMs);
}
/**
* Performs classification on the provided video frame with additional region-of-interest. Only
* use this method when the {@link ImageClassifier} is created with {@link RunningMode.VIDEO}.
*
* <p>It's required to provide the video frame's timestamp (in milliseconds). The input timestamps
* must be monotonically increasing.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param roi a {@link RectF} specifying the region of interest on which to perform
* classification. Coordinates are expected to be specified as normalized values in [0,1].
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public ImageClassificationResult classifyForVideo(
Image inputImage, RectF roi, long inputTimestampMs) {
return (ImageClassificationResult) processVideoData(inputImage, roi, inputTimestampMs);
}
/**
* Sends live image data to perform classification, and the results will be available via the
* {@link ResultListener} provided in the {@link ImageClassifierOptions}. Only use this method
* when the {@link ImageClassifier} is created with {@link RunningMode.LIVE_STREAM}.
*
* <p>It's required to provide a timestamp (in milliseconds) to indicate when the input image is
* sent to the object detector. The input timestamps must be monotonically increasing.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public void classifyAsync(Image inputImage, long inputTimestampMs) {
sendLiveStreamData(inputImage, buildFullImageRectF(), inputTimestampMs);
}
/**
* Sends live image data and additional region-of-interest to perform classification, and the
* results will be available via the {@link ResultListener} provided in the {@link
* ImageClassifierOptions}. Only use this method when the {@link ImageClassifier} is created with
* {@link RunningMode.LIVE_STREAM}.
*
* <p>It's required to provide a timestamp (in milliseconds) to indicate when the input image is
* sent to the object detector. The input timestamps must be monotonically increasing.
*
* <p>{@link ImageClassifier} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param inputImage a MediaPipe {@link Image} object for processing.
* @param roi a {@link RectF} specifying the region of interest on which to perform
* classification. Coordinates are expected to be specified as normalized values in [0,1].
* @param inputTimestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public void classifyAsync(Image inputImage, RectF roi, long inputTimestampMs) {
sendLiveStreamData(inputImage, roi, inputTimestampMs);
}
/** Options for setting up and {@link ImageClassifier}. */
@AutoValue
public abstract static class ImageClassifierOptions extends TaskOptions {
/** Builder for {@link ImageClassifierOptions}. */
@AutoValue.Builder
public abstract static class Builder {
/** Sets the {@link BaseOptions} for the image classifier task. */
public abstract Builder setBaseOptions(BaseOptions baseOptions);
/**
* Sets the {@link RunningMode} for the image classifier task. Default to the image mode.
* Image classifier has three modes:
*
* <ul>
* <li>IMAGE: The mode for performing classification on single image inputs.
* <li>VIDEO: The mode for performing classification on the decoded frames of a video.
* <li>LIVE_STREAM: The mode for for performing classification on a live stream of input
* data, such as from camera. In this mode, {@code setResultListener} must be called to
* set up a listener to receive the classification results asynchronously.
* </ul>
*/
public abstract Builder setRunningMode(RunningMode runningMode);
/**
* Sets the optional {@link ClassifierOptions} controling classification behavior, such as
* score threshold, number of results, etc.
*/
public abstract Builder setClassifierOptions(ClassifierOptions classifierOptions);
/**
* Sets the {@link ResultListener} to receive the classification results asynchronously when
* the image classifier is in the live stream mode.
*/
public abstract Builder setResultListener(
ResultListener<ImageClassificationResult, Image> resultListener);
/** Sets an optional {@link ErrorListener}. */
public abstract Builder setErrorListener(ErrorListener errorListener);
abstract ImageClassifierOptions autoBuild();
/**
* Validates and builds the {@link ImageClassifierOptions} instance. *
*
* @throws IllegalArgumentException if the result listener and the running mode are not
* properly configured. The result listener should only be set when the image classifier
* is in the live stream mode.
*/
public final ImageClassifierOptions build() {
ImageClassifierOptions options = autoBuild();
if (options.runningMode() == RunningMode.LIVE_STREAM) {
if (!options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The image classifier is in the live stream mode, a user-defined result listener"
+ " must be provided in the ImageClassifierOptions.");
}
} else if (options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The image classifier is in the image or video mode, a user-defined result listener"
+ " shouldn't be provided in ImageClassifierOptions.");
}
return options;
}
}
abstract BaseOptions baseOptions();
abstract RunningMode runningMode();
abstract Optional<ClassifierOptions> classifierOptions();
abstract Optional<ResultListener<ImageClassificationResult, Image>> resultListener();
abstract Optional<ErrorListener> errorListener();
public static Builder builder() {
return new AutoValue_ImageClassifier_ImageClassifierOptions.Builder()
.setRunningMode(RunningMode.IMAGE);
}
/**
* Converts a {@link ImageClassifierOptions} to a {@link CalculatorOptions} protobuf message.
*/
@Override
public CalculatorOptions convertToCalculatorOptionsProto() {
BaseOptionsProto.BaseOptions.Builder baseOptionsBuilder =
BaseOptionsProto.BaseOptions.newBuilder();
baseOptionsBuilder.setUseStreamMode(runningMode() != RunningMode.IMAGE);
baseOptionsBuilder.mergeFrom(convertBaseOptionsToProto(baseOptions()));
ImageClassifierGraphOptionsProto.ImageClassifierGraphOptions.Builder taskOptionsBuilder =
ImageClassifierGraphOptionsProto.ImageClassifierGraphOptions.newBuilder()
.setBaseOptions(baseOptionsBuilder);
if (classifierOptions().isPresent()) {
taskOptionsBuilder.setClassifierOptions(classifierOptions().get().convertToProto());
}
return CalculatorOptions.newBuilder()
.setExtension(
ImageClassifierGraphOptionsProto.ImageClassifierGraphOptions.ext,
taskOptionsBuilder.build())
.build();
}
}
/** Creates a RectF covering the full image. */
private static RectF buildFullImageRectF() {
return new RectF(0, 0, 1, 1);
}
}

View File

@ -0,0 +1,24 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.google.mediapipe.tasks.vision.imageclassifiertest"
android:versionCode="1"
android:versionName="1.0" >
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-sdk android:minSdkVersion="24"
android:targetSdkVersion="30" />
<application
android:label="imageclassifiertest"
android:name="android.support.multidex.MultiDexApplication"
android:taskAffinity="">
<uses-library android:name="android.test.runner" />
</application>
<instrumentation
android:name="com.google.android.apps.common.testing.testrunner.GoogleInstrumentationTestRunner"
android:targetPackage="com.google.mediapipe.tasks.vision.imageclassifiertest" />
</manifest>

View File

@ -0,0 +1,19 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
# TODO: Enable this in OSS

View File

@ -0,0 +1,445 @@
// Copyright 2022 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.imageclassifier;
import static com.google.common.truth.Truth.assertThat;
import static org.junit.Assert.assertThrows;
import android.content.res.AssetManager;
import android.graphics.BitmapFactory;
import android.graphics.RectF;
import androidx.test.core.app.ApplicationProvider;
import androidx.test.ext.junit.runners.AndroidJUnit4;
import com.google.mediapipe.framework.MediaPipeException;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.Image;
import com.google.mediapipe.tasks.components.containers.Category;
import com.google.mediapipe.tasks.components.processors.ClassifierOptions;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.core.TestUtils;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.imageclassifier.ImageClassifier.ImageClassifierOptions;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.List;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;
/** Test for {@link ImageClassifier}/ */
@RunWith(Suite.class)
@SuiteClasses({ImageClassifierTest.General.class, ImageClassifierTest.RunningModeTest.class})
public class ImageClassifierTest {
private static final String FLOAT_MODEL_FILE = "mobilenet_v2_1.0_224.tflite";
private static final String QUANTIZED_MODEL_FILE = "mobilenet_v1_0.25_224_quant.tflite";
private static final String BURGER_IMAGE = "burger.jpg";
private static final String MULTI_OBJECTS_IMAGE = "multi_objects.jpg";
@RunWith(AndroidJUnit4.class)
public static final class General extends ImageClassifierTest {
@Test
public void create_failsWithMissingModel() throws Exception {
String nonExistentFile = "/path/to/non/existent/file";
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() ->
ImageClassifier.createFromFile(
ApplicationProvider.getApplicationContext(), nonExistentFile));
assertThat(exception).hasMessageThat().contains(nonExistentFile);
}
@Test
public void create_failsWithInvalidModelBuffer() throws Exception {
// Create a non-direct model ByteBuffer.
ByteBuffer modelBuffer =
TestUtils.loadToNonDirectByteBuffer(
ApplicationProvider.getApplicationContext(), FLOAT_MODEL_FILE);
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
ImageClassifier.createFromBuffer(
ApplicationProvider.getApplicationContext(), modelBuffer));
assertThat(exception)
.hasMessageThat()
.contains("The model buffer should be either a direct ByteBuffer or a MappedByteBuffer.");
}
@Test
public void classify_succeedsWithNoOptions() throws Exception {
ImageClassifier imageClassifier =
ImageClassifier.createFromFile(
ApplicationProvider.getApplicationContext(), FLOAT_MODEL_FILE);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertThat(results.classifications().get(0).entries().get(0).categories()).hasSize(1001);
assertThat(results.classifications().get(0).entries().get(0).categories().get(0))
.isEqualTo(Category.create(0.7952058f, 934, "cheeseburger", ""));
}
@Test
public void classify_succeedsWithFloatModel() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(3).build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results,
Arrays.asList(
Category.create(0.7952058f, 934, "cheeseburger", ""),
Category.create(0.027329788f, 932, "bagel", ""),
Category.create(0.019334773f, 925, "guacamole", "")));
}
@Test
public void classify_succeedsWithQuantizedModel() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(QUANTIZED_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results, Arrays.asList(Category.create(0.97265625f, 934, "cheeseburger", "")));
}
@Test
public void classify_succeedsWithScoreThreshold() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setScoreThreshold(0.02f).build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results,
Arrays.asList(
Category.create(0.7952058f, 934, "cheeseburger", ""),
Category.create(0.027329788f, 932, "bagel", "")));
}
@Test
public void classify_succeedsWithAllowlist() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(
ClassifierOptions.builder()
.setCategoryAllowlist(Arrays.asList("cheeseburger", "guacamole", "meat loaf"))
.build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results,
Arrays.asList(
Category.create(0.7952058f, 934, "cheeseburger", ""),
Category.create(0.019334773f, 925, "guacamole", ""),
Category.create(0.006279315f, 963, "meat loaf", "")));
}
@Test
public void classify_succeedsWithDenylist() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(
ClassifierOptions.builder()
.setMaxResults(3)
.setCategoryDenylist(Arrays.asList("bagel"))
.build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results,
Arrays.asList(
Category.create(0.7952058f, 934, "cheeseburger", ""),
Category.create(0.019334773f, 925, "guacamole", ""),
Category.create(0.006279315f, 963, "meat loaf", "")));
}
@Test
public void classify_succeedsWithRegionOfInterest() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
// RectF around the soccer ball.
RectF roi = new RectF(0.450f, 0.308f, 0.614f, 0.734f);
ImageClassificationResult results =
imageClassifier.classify(getImageFromAsset(MULTI_OBJECTS_IMAGE), roi);
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results, Arrays.asList(Category.create(0.9969325f, 806, "soccer ball", "")));
}
}
@RunWith(AndroidJUnit4.class)
public static final class RunningModeTest extends ImageClassifierTest {
@Test
public void create_failsWithIllegalResultListenerInNonLiveStreamMode() throws Exception {
for (RunningMode mode : new RunningMode[] {RunningMode.IMAGE, RunningMode.VIDEO}) {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
ImageClassifierOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setRunningMode(mode)
.setResultListener((imageClassificationResult, inputImage) -> {})
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener shouldn't be provided");
}
}
@Test
public void create_failsWithMissingResultListenerInLiveSteamMode() throws Exception {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
ImageClassifierOptions.builder()
.setBaseOptions(
BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener must be provided");
}
@Test
public void classify_failsWithCallingWrongApiInImageMode() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setRunningMode(RunningMode.IMAGE)
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classifyForVideo(getImageFromAsset(BURGER_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classifyAsync(getImageFromAsset(BURGER_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void classify_failsWithCallingWrongApiInVideoMode() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setRunningMode(RunningMode.VIDEO)
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classify(getImageFromAsset(BURGER_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classifyAsync(getImageFromAsset(BURGER_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void classify_failsWithCallingWrongApiInLiveSteamMode() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener((imageClassificationResult, inputImage) -> {})
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classify(getImageFromAsset(BURGER_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() -> imageClassifier.classifyForVideo(getImageFromAsset(BURGER_IMAGE), 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
}
@Test
public void classify_succeedsWithImageMode() throws Exception {
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageClassificationResult results = imageClassifier.classify(getImageFromAsset(BURGER_IMAGE));
assertHasOneHeadAndOneTimestamp(results, 0);
assertCategoriesAre(
results, Arrays.asList(Category.create(0.7952058f, 934, "cheeseburger", "")));
}
@Test
public void classify_succeedsWithVideoMode() throws Exception {
Image image = getImageFromAsset(BURGER_IMAGE);
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.setRunningMode(RunningMode.VIDEO)
.build();
ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options);
for (int i = 0; i < 3; i++) {
ImageClassificationResult results = imageClassifier.classifyForVideo(image, i);
assertHasOneHeadAndOneTimestamp(results, i);
assertCategoriesAre(
results, Arrays.asList(Category.create(0.7952058f, 934, "cheeseburger", "")));
}
}
@Test
public void classify_failsWithOutOfOrderInputTimestamps() throws Exception {
Image image = getImageFromAsset(BURGER_IMAGE);
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(imageClassificationResult, inputImage) -> {
assertCategoriesAre(
imageClassificationResult,
Arrays.asList(Category.create(0.7952058f, 934, "cheeseburger", "")));
assertImageSizeIsExpected(inputImage);
})
.build();
try (ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
imageClassifier.classifyAsync(getImageFromAsset(BURGER_IMAGE), 1);
MediaPipeException exception =
assertThrows(MediaPipeException.class, () -> imageClassifier.classifyAsync(image, 0));
assertThat(exception)
.hasMessageThat()
.contains("having a smaller timestamp than the processed timestamp");
}
}
@Test
public void classify_succeedsWithLiveStreamMode() throws Exception {
Image image = getImageFromAsset(BURGER_IMAGE);
ImageClassifierOptions options =
ImageClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(FLOAT_MODEL_FILE).build())
.setClassifierOptions(ClassifierOptions.builder().setMaxResults(1).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(imageClassificationResult, inputImage) -> {
assertCategoriesAre(
imageClassificationResult,
Arrays.asList(Category.create(0.7952058f, 934, "cheeseburger", "")));
assertImageSizeIsExpected(inputImage);
})
.build();
try (ImageClassifier imageClassifier =
ImageClassifier.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
for (int i = 0; i < 3; ++i) {
imageClassifier.classifyAsync(image, i);
}
}
}
}
private static Image getImageFromAsset(String filePath) throws Exception {
AssetManager assetManager = ApplicationProvider.getApplicationContext().getAssets();
InputStream istr = assetManager.open(filePath);
return new BitmapImageBuilder(BitmapFactory.decodeStream(istr)).build();
}
private static void assertHasOneHeadAndOneTimestamp(
ImageClassificationResult results, long timestampMs) {
assertThat(results.classifications()).hasSize(1);
assertThat(results.classifications().get(0).headIndex()).isEqualTo(0);
assertThat(results.classifications().get(0).headName()).isEqualTo("probability");
assertThat(results.classifications().get(0).entries()).hasSize(1);
assertThat(results.classifications().get(0).entries().get(0).timestampMs())
.isEqualTo(timestampMs);
}
private static void assertCategoriesAre(
ImageClassificationResult results, List<Category> categories) {
assertThat(results.classifications().get(0).entries().get(0).categories())
.hasSize(categories.size());
for (int i = 0; i < categories.size(); i++) {
assertThat(results.classifications().get(0).entries().get(0).categories().get(i))
.isEqualTo(categories.get(i));
}
}
private static void assertImageSizeIsExpected(Image inputImage) {
assertThat(inputImage).isNotNull();
assertThat(inputImage.getWidth()).isEqualTo(480);
assertThat(inputImage.getHeight()).isEqualTo(325);
}
}