Project import generated by Copybara.
GitOrigin-RevId: ba1d851bc868c2f8037a6fa96ee90e4b8ab9bd40
This commit is contained in:
parent
48bcbb115f
commit
37287925b0
|
@ -74,10 +74,6 @@ class PreviousLoopbackCalculator : public CalculatorBase {
|
|||
}
|
||||
|
||||
::mediapipe::Status Process(CalculatorContext* cc) final {
|
||||
Packet& main_packet = cc->Inputs().Get(main_id_).Value();
|
||||
if (!main_packet.IsEmpty()) {
|
||||
main_ts_.push_back(main_packet.Timestamp());
|
||||
}
|
||||
Packet& loopback_packet = cc->Inputs().Get(loop_id_).Value();
|
||||
if (!loopback_packet.IsEmpty()) {
|
||||
loopback_packets_.push_back(loopback_packet);
|
||||
|
@ -87,6 +83,23 @@ class PreviousLoopbackCalculator : public CalculatorBase {
|
|||
}
|
||||
}
|
||||
|
||||
Packet& main_packet = cc->Inputs().Get(main_id_).Value();
|
||||
if (!main_packet.IsEmpty()) {
|
||||
main_ts_.push_back(main_packet.Timestamp());
|
||||
|
||||
// In case of an empty "LOOP" input, truncate timestamp is set to the
|
||||
// lowest possible timestamp for a successive non-empty "LOOP" input. This
|
||||
// truncates main_ts_ as soon as possible, and produces the highest legal
|
||||
// output timestamp bound.
|
||||
if (loopback_packet.IsEmpty() &&
|
||||
loopback_packet.Timestamp() != Timestamp::Unstarted()) {
|
||||
while (!main_ts_.empty() &&
|
||||
main_ts_.front() <= loopback_packet.Timestamp() + 1) {
|
||||
main_ts_.pop_front();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while (!main_ts_.empty() && !loopback_packets_.empty()) {
|
||||
Timestamp main_timestamp = main_ts_.front();
|
||||
main_ts_.pop_front();
|
||||
|
|
|
@ -198,5 +198,64 @@ TEST(PreviousLoopbackCalculator, ClosesCorrectly) {
|
|||
MP_EXPECT_OK(graph_.WaitUntilDone());
|
||||
}
|
||||
|
||||
// Demonstrates that downstream calculators won't be blocked by
|
||||
// always-empty-LOOP-stream.
|
||||
TEST(PreviousLoopbackCalculator, EmptyLoopForever) {
|
||||
std::vector<Packet> outputs;
|
||||
CalculatorGraphConfig graph_config_ =
|
||||
ParseTextProtoOrDie<CalculatorGraphConfig>(R"(
|
||||
input_stream: 'in'
|
||||
node {
|
||||
calculator: 'PreviousLoopbackCalculator'
|
||||
input_stream: 'MAIN:in'
|
||||
input_stream: 'LOOP:previous'
|
||||
input_stream_info: { tag_index: 'LOOP' back_edge: true }
|
||||
output_stream: 'PREV_LOOP:previous'
|
||||
}
|
||||
# This calculator synchronizes its inputs as normal, so it is used
|
||||
# to check that both "in" and "previous" are ready.
|
||||
node {
|
||||
calculator: 'PassThroughCalculator'
|
||||
input_stream: 'in'
|
||||
input_stream: 'previous'
|
||||
output_stream: 'out'
|
||||
output_stream: 'previous2'
|
||||
}
|
||||
node {
|
||||
calculator: 'PacketOnCloseCalculator'
|
||||
input_stream: 'out'
|
||||
output_stream: 'close_out'
|
||||
}
|
||||
)");
|
||||
tool::AddVectorSink("close_out", &graph_config_, &outputs);
|
||||
|
||||
CalculatorGraph graph_;
|
||||
MP_ASSERT_OK(graph_.Initialize(graph_config_, {}));
|
||||
MP_ASSERT_OK(graph_.StartRun({}));
|
||||
|
||||
auto send_packet = [&graph_](const std::string& input_name, int n) {
|
||||
MP_EXPECT_OK(graph_.AddPacketToInputStream(
|
||||
input_name, MakePacket<int>(n).At(Timestamp(n))));
|
||||
};
|
||||
|
||||
send_packet("in", 0);
|
||||
MP_EXPECT_OK(graph_.WaitUntilIdle());
|
||||
EXPECT_EQ(TimestampValues(outputs), (std::vector<int64>{0}));
|
||||
|
||||
for (int main_ts = 1; main_ts < 50; ++main_ts) {
|
||||
send_packet("in", main_ts);
|
||||
MP_EXPECT_OK(graph_.WaitUntilIdle());
|
||||
std::vector<int64> ts_values = TimestampValues(outputs);
|
||||
EXPECT_EQ(ts_values.size(), main_ts);
|
||||
for (int j = 0; j < main_ts; ++j) {
|
||||
CHECK_EQ(ts_values[j], j);
|
||||
}
|
||||
}
|
||||
|
||||
MP_EXPECT_OK(graph_.CloseAllInputStreams());
|
||||
MP_EXPECT_OK(graph_.WaitUntilIdle());
|
||||
MP_EXPECT_OK(graph_.WaitUntilDone());
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -164,13 +164,13 @@ Below are code samples on how to run MediaPipe on Google Coral Dev Board.
|
|||
|
||||
### Object Detection on Coral
|
||||
|
||||
[Object Detection on Coral with Webcam](https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/README.md)
|
||||
[Object Detection on Coral with Webcam](./object_detection_coral_devboard.md)
|
||||
shows how to run quantized object detection TFlite model accelerated with
|
||||
EdgeTPU on
|
||||
[Google Coral Dev Board](https://coral.withgoogle.com/products/dev-board).
|
||||
|
||||
### Face Detection on Coral
|
||||
|
||||
[Face Detection on Coral with Webcam](https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/README.md)
|
||||
shows how to use quantized face detection TFlite model accelerated with EdgeTPU
|
||||
on [Google Coral Dev Board](https://coral.withgoogle.com/products/dev-board).
|
||||
[Face Detection on Coral with Webcam](./face_detection_coral_devboard.md) shows
|
||||
how to use quantized face detection TFlite model accelerated with EdgeTPU on
|
||||
[Google Coral Dev Board](https://coral.withgoogle.com/products/dev-board).
|
||||
|
|
20
mediapipe/docs/face_detection_coral_devboard.md
Normal file
20
mediapipe/docs/face_detection_coral_devboard.md
Normal file
|
@ -0,0 +1,20 @@
|
|||
## Face Detection on Coral with Webcam
|
||||
|
||||
MediaPipe is able to run cross platform across device types like desktop, mobile
|
||||
and edge devices. Here is an example of running MediaPipe
|
||||
[face detection pipeline](./face_detection_desktop.md) on edge device like
|
||||
[Google Coral dev board](https://coral.withgoogle.com/products/dev-board) with
|
||||
[Edge TPU](https://cloud.google.com/edge-tpu/). This MediaPipe Coral face
|
||||
detection pipeline is running [coral specific quantized version](https://github.com/google/mediapipe/blob/master/mediapipe/examples/coral/models/face-detector-quantized_edgetpu.tflite)
|
||||
of the [MediaPipe face detection TFLite model](https://github.com/google/mediapipe/blob/master/mediapipe/models/face_detection_front.tflite)
|
||||
accelerated on Edge TPU.
|
||||
|
||||
### Cross compilation of MediaPipe Coral binaries in Docker
|
||||
|
||||
We recommend building the MediaPipe binaries not on the edge device due to
|
||||
limited compute resulting in long build times. Instead, we will build MediaPipe
|
||||
binaries using Docker containers on a more powerful host machine. For step by
|
||||
step details of cross compiling and running MediaPipe binaries on Coral dev
|
||||
board, please refer to [README.md in MediaPipe Coral example folder](https://github.com/google/mediapipe/blob/master/mediapipe/examples/coral/README.md).
|
||||
|
||||
![Face Detection running on Coral](images/face_detection_demo_coral.jpg)
|
BIN
mediapipe/docs/images/face_detection_demo_coral.jpg
Normal file
BIN
mediapipe/docs/images/face_detection_demo_coral.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.8 MiB |
BIN
mediapipe/docs/images/multi_hand_tracking_android_gpu_small.gif
Normal file
BIN
mediapipe/docs/images/multi_hand_tracking_android_gpu_small.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.0 MiB |
BIN
mediapipe/docs/images/object_detection_demo_coral.jpg
Normal file
BIN
mediapipe/docs/images/object_detection_demo_coral.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.6 MiB |
20
mediapipe/docs/object_detection_coral_devboard.md
Normal file
20
mediapipe/docs/object_detection_coral_devboard.md
Normal file
|
@ -0,0 +1,20 @@
|
|||
## Object Detection on Coral with Webcam
|
||||
|
||||
MediaPipe is able to run cross platform across device types like desktop, mobile
|
||||
and edge devices. Here is an example of running MediaPipe
|
||||
[object detection pipeline](./object_detection_desktop.md) on edge device like
|
||||
[Google Coral dev board](https://coral.withgoogle.com/products/dev-board) with
|
||||
[Edge TPU](https://cloud.google.com/edge-tpu/). This MediaPipe Coral object
|
||||
detection pipeline is running [coral specific quantized version](https://github.com/google/mediapipe/blob/master/mediapipe/examples/coral/models/object-detector-quantized_edgetpu.tflite)
|
||||
of the [MediaPipe object detection TFLite model](https://github.com/google/mediapipe/blob/master/mediapipe/models/object_detection_front.tflite)
|
||||
accelerated on Edge TPU.
|
||||
|
||||
### Cross compilation of MediaPipe Coral binaries in Docker
|
||||
|
||||
We recommend building the MediaPipe binaries not on the edge device due to
|
||||
limited compute resulting in long build times. Instead, we will build MediaPipe
|
||||
binaries using Docker containers on a more powerful host machine. For step by
|
||||
step details of cross compiling and running MediaPipe binaries on Coral dev
|
||||
board, please refer to [README.md in MediaPipe Coral example folder](https://github.com/google/mediapipe/blob/master/mediapipe/examples/coral/README.md).
|
||||
|
||||
![Object Detection running on Coral](images/object_detection_demo_coral.jpg)
|
Loading…
Reference in New Issue
Block a user