landmarks without renderdata

This commit is contained in:
mslight 2022-06-24 23:59:54 +04:00
parent 009449a93b
commit 33ed0f7c23
15 changed files with 1062 additions and 69 deletions

View File

@ -0,0 +1,45 @@
# Copyright 2019 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
licenses(["notice"])
package(default_visibility = ["//visibility:public"])
cc_library(
name = "landmarks_to_mask_calculator",
srcs = ["landmarks_to_mask_calculator.cc"],
hdrs = ["landmarks_to_mask_calculator.h"],
visibility = ["//visibility:public"],
deps = [
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework:calculator_options_cc_proto",
"//mediapipe/framework/formats:landmark_cc_proto",
"//mediapipe/framework/formats:location_data_cc_proto",
"//mediapipe/framework/port:ret_check",
"//mediapipe/util:color_cc_proto",
"//mediapipe/util:render_data_cc_proto",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",
"//mediapipe/framework/formats:image_format_cc_proto",
"//mediapipe/framework/formats:image_frame",
"//mediapipe/framework/formats:image_frame_opencv",
"//mediapipe/framework/port:opencv_core",
"//mediapipe/framework/port:opencv_imgproc",
"//mediapipe/framework/port:opencv_highgui",
"//mediapipe/framework/port:vector",
],
alwayslink = 1,
)

View File

@ -0,0 +1,450 @@
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/calculators/landmarks/landmarks_to_mask_calculator.h"
#include <math.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <iostream>
#include <memory>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_options.pb.h"
#include "mediapipe/framework/formats/image_format.pb.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/formats/landmark.pb.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/formats/location_data.pb.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/util/color.pb.h"
#include "mediapipe/util/render_data.pb.h"
#include "absl/strings/str_cat.h"
#include "mediapipe/framework/port/logging.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/vector.h"
namespace mediapipe
{
namespace
{
constexpr char kLandmarksTag[] = "LANDMARKS";
constexpr char kNormLandmarksTag[] = "NORM_LANDMARKS";
constexpr char kLandmarkLabel[] = "KEYPOINT";
constexpr char kVectorTag[] = "VECTOR";
constexpr char kMaskTag[] = "MASK";
constexpr char kFaceBoxTag[] = "FACEBOX";
constexpr char kImageFrameTag[] = "IMAGE";
static const std::vector<int> UPPER_LIP = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 308, 415, 310, 311, 312, 13, 82, 81, 80, 191, 78};
static const std::vector<int> LOWER_LIP = {61, 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
static const std::vector<int> FACE_OVAL = {10, 338, 338, 297, 297, 332, 332, 284, 284, 251, 251, 389, 389, 356, 356,
454, 454, 323, 323, 361, 361, 288, 288, 397, 397, 365, 365, 379, 379, 378,
378, 400, 400, 377, 377, 152, 152, 148, 148, 176, 176, 149, 149, 150, 150,
136, 136, 172, 172, 58, 58, 132, 132, 93, 93, 234, 234, 127, 127, 162, 162,
21, 21, 54, 54, 103, 103, 67, 67, 109, 109, 10};
static const std::vector<int> MOUTH_INSIDE = {78, 191, 80, 81, 13, 312, 311, 310, 415, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95};
static const std::vector<int> PART_FOREHEAD_B = {21, 54, 103, 67, 109, 10, 338, 297, 332, 284, 251, 301, 293, 334, 296, 336, 9, 107, 66, 105, 63, 71};
static const std::vector<int> LEFT_EYE = {130, 33, 246, 161, 160, 159, 157, 173, 133, 155, 154, 153, 145, 144, 163, 7};
static const std::vector<int> RIGHT_EYE = {362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380, 381, 382};
static const std::vector<int> LIPS = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
static const std::vector<int> LEFT_BROW = {70, 63, 105, 66, 107, 55, 65, 52, 53, 46};
static const std::vector<int> RIGHT_BROW = {336, 296, 334, 293, 301, 300, 283, 282, 295, 285};
template <class LandmarkType>
bool IsLandmarkVisibleAndPresent(const LandmarkType &landmark,
bool utilize_visibility,
float visibility_threshold,
bool utilize_presence,
float presence_threshold)
{
if (utilize_visibility && landmark.has_visibility() &&
landmark.visibility() < visibility_threshold)
{
return false;
}
if (utilize_presence && landmark.has_presence() &&
landmark.presence() < presence_threshold)
{
return false;
}
return true;
}
bool NormalizedtoPixelCoordinates(double normalized_x, double normalized_y,
int image_width, int image_height, int *x_px,
int *y_px)
{
CHECK(x_px != nullptr);
CHECK(y_px != nullptr);
CHECK_GT(image_width, 0);
CHECK_GT(image_height, 0);
if (normalized_x < 0 || normalized_x > 1.0 || normalized_y < 0 ||
normalized_y > 1.0)
{
VLOG(1) << "Normalized coordinates must be between 0.0 and 1.0";
}
*x_px = static_cast<int32>(round(normalized_x * image_width));
*y_px = static_cast<int32>(round(normalized_y * image_height));
return true;
}
std::tuple<double, double, double, double> face_box;
float scale_factor_ = 1.0;
bool image_frame_available_ = false;
} // namespace
absl::Status LandmarksToMaskCalculator::GetContract(
CalculatorContract *cc)
{
RET_CHECK(cc->Inputs().HasTag(kLandmarksTag) ||
cc->Inputs().HasTag(kNormLandmarksTag))
<< "None of the input streams are provided.";
RET_CHECK(!(cc->Inputs().HasTag(kLandmarksTag) &&
cc->Inputs().HasTag(kNormLandmarksTag)))
<< "Can only one type of landmark can be taken. Either absolute or "
"normalized landmarks.";
if (cc->Inputs().HasTag(kImageFrameTag))
{
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
}
if (cc->Inputs().HasTag(kLandmarksTag))
{
cc->Inputs().Tag(kLandmarksTag).Set<LandmarkList>();
}
if (cc->Inputs().HasTag(kNormLandmarksTag))
{
cc->Inputs().Tag(kNormLandmarksTag).Set<NormalizedLandmarkList>();
}
if (cc->Outputs().HasTag(kMaskTag))
{
cc->Outputs().Tag(kMaskTag).Set<std::unordered_map<std::string, cv::Mat>>();
}
if (cc->Outputs().HasTag(kFaceBoxTag))
{
cc->Outputs().Tag(kFaceBoxTag).Set<std::tuple<double, double, double, double>>();
}
return absl::OkStatus();
}
absl::Status LandmarksToMaskCalculator::Open(CalculatorContext *cc)
{
cc->SetOffset(TimestampDiff(0));
if (cc->Inputs().HasTag(kImageFrameTag))
{
image_frame_available_ = true;
}
else
{
}
return absl::OkStatus();
}
absl::Status LandmarksToMaskCalculator::Process(CalculatorContext *cc)
{
// Check that landmarks are not empty and skip rendering if so.
// Don't emit an empty packet for this timestamp.
if (cc->Inputs().HasTag(kLandmarksTag) &&
cc->Inputs().Tag(kLandmarksTag).IsEmpty())
{
return absl::OkStatus();
}
if (cc->Inputs().HasTag(kNormLandmarksTag) &&
cc->Inputs().Tag(kNormLandmarksTag).IsEmpty())
{
return absl::OkStatus();
}
if (cc->Inputs().HasTag(kImageFrameTag) &&
cc->Inputs().Tag(kImageFrameTag).IsEmpty())
{
return absl::OkStatus();
}
// Initialize render target, drawn with OpenCV.
std::unique_ptr<cv::Mat> image_mat;
ImageFormat::Format target_format;
std::unordered_map<std::string, cv::Mat> all_masks;
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
int image_width_ = image_mat->cols;
int image_height_ = image_mat->rows;
std::unordered_map<std::string, const std::vector<int>> orderList;
orderList.insert(make_pair("UPPER_LIP", UPPER_LIP));
orderList.insert(make_pair("LOWER_LIP", LOWER_LIP));
orderList.insert(make_pair("FACE_OVAL", FACE_OVAL));
orderList.insert(make_pair("MOUTH_INSIDE", MOUTH_INSIDE));
orderList.insert(make_pair("LEFT_EYE", LEFT_EYE));
orderList.insert(make_pair("RIGHT_EYE", RIGHT_EYE));
orderList.insert(make_pair("LEFT_BROW", LEFT_BROW));
orderList.insert(make_pair("RIGHT_BROW", RIGHT_BROW));
orderList.insert(make_pair("LIPS", LIPS));
orderList.insert(make_pair("PART_FOREHEAD_B", PART_FOREHEAD_B));
if (cc->Inputs().HasTag(kLandmarksTag))
{
const LandmarkList &landmarks =
cc->Inputs().Tag(kLandmarksTag).Get<LandmarkList>();
cv::Mat mask;
std::vector<cv::Point> point_array;
int c = 0;
for (const auto &[key, value] : orderList)
{
for (auto order : value)
{
c = 0;
for (int i = 0; i < landmarks.landmark_size(); ++i)
{
const Landmark &landmark = landmarks.landmark(i);
if (!IsLandmarkVisibleAndPresent<Landmark>(
landmark, false,
0.0, false,
0.0))
{
continue;
}
if (order == c)
{
const auto &point = landmark;
int x = -1;
int y = -1;
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
point_array.push_back(cv::Point(x, y));
}
c += 1;
}
}
std::vector<std::vector<cv::Point>> point_vec;
point_vec.push_back(point_array);
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
mask.convertTo(mask, CV_8U);
all_masks.insert(make_pair(key, mask));
point_vec.clear();
point_array.clear();
}
}
if (cc->Inputs().HasTag(kNormLandmarksTag))
{
const NormalizedLandmarkList &landmarks =
cc->Inputs().Tag(kNormLandmarksTag).Get<NormalizedLandmarkList>();
cv::Mat mask;
std::vector<cv::Point> point_array;
int c = 0;
for (const auto &[key, value] : orderList)
{
for (auto order : value)
{
c = 0;
for (int i = 0; i < landmarks.landmark_size(); ++i)
{
const NormalizedLandmark &landmark = landmarks.landmark(i);
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
landmark, false,
0.0, false,
0.0))
{
continue;
}
if (order == c)
{
const auto &point = landmark;
int x = -1;
int y = -1;
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
point_array.push_back(cv::Point(x, y));
}
c += 1;
}
}
std::vector<std::vector<cv::Point>> point_vec;
point_vec.push_back(point_array);
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
mask.convertTo(mask, CV_8U);
all_masks.insert(make_pair(key, mask));
point_vec.clear();
point_array.clear();
}
}
MP_RETURN_IF_ERROR(RenderToCpu(cc, all_masks));
return absl::OkStatus();
}
absl::Status LandmarksToMaskCalculator::RenderToCpu(CalculatorContext *cc,
std::unordered_map<std::string, cv::Mat> &all_masks)
{
auto output_frame = absl::make_unique<std::unordered_map<std::string, cv::Mat>>(all_masks, all_masks.get_allocator());
if (cc->Outputs().HasTag(kMaskTag))
{
cc->Outputs()
.Tag(kMaskTag)
.Add(output_frame.release(), cc->InputTimestamp());
}
auto output_frame2 = absl::make_unique<std::tuple<double, double, double, double>>(face_box);
if (cc->Outputs().HasTag(kFaceBoxTag))
{
cc->Outputs()
.Tag(kFaceBoxTag)
.Add(output_frame2.release(), cc->InputTimestamp());
}
all_masks.clear();
return absl::OkStatus();
}
absl::Status LandmarksToMaskCalculator::CreateRenderTargetCpu(
CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat,
ImageFormat::Format *target_format)
{
if (image_frame_available_)
{
const auto &input_frame =
cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
int target_mat_type;
switch (input_frame.Format())
{
case ImageFormat::SRGBA:
*target_format = ImageFormat::SRGBA;
target_mat_type = CV_8UC4;
break;
case ImageFormat::SRGB:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
case ImageFormat::GRAY8:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
default:
return absl::UnknownError("Unexpected image frame format.");
break;
}
image_mat = absl::make_unique<cv::Mat>(
input_frame.Height(), input_frame.Width(), target_mat_type);
auto input_mat = formats::MatView(&input_frame);
if (input_frame.Format() == ImageFormat::GRAY8)
{
cv::Mat rgb_mat;
cv::cvtColor(input_mat, rgb_mat, CV_GRAY2RGB);
rgb_mat.copyTo(*image_mat);
}
else
{
input_mat.copyTo(*image_mat);
}
}
else
{
image_mat = absl::make_unique<cv::Mat>(
150, 150, CV_8UC4,
cv::Scalar(255, 255,
255));
*target_format = ImageFormat::SRGBA;
}
return absl::OkStatus();
}
/* absl::Status LandmarksToMaskCalculator::GetFaceBox(std::unique_ptr<cv::Mat> &image_mat,
const RenderData &render_data)
{
cv::Mat mat_image_ = *image_mat.get();
int image_width_ = image_mat->cols;
int image_height_ = image_mat->rows;
std::vector<int> x_s, y_s;
double box_min_y, box_max_y, box_max_x, box_min_x;
for (int i = 0; i < landmarks.landmark_size(); ++i)
{
const Landmark &landmark = landmarks.landmark(i);
if (!IsLandmarkVisibleAndPresent<Landmark>(
landmark, false,
0.0, false,
0.0))
{
continue;
}
const auto &point = landmark.point();
int x = -1;
int y = -1;
if (point.normalized())
{
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
}
else
{
x = static_cast<int>(point.x() * scale_factor_);
y = static_cast<int>(point.y() * scale_factor_);
}
x_s.push_back(point.x());
x_s.push_back(point.y());
}
}
cv::minMaxLoc(y_s, &box_min_y, &box_max_y);
cv::minMaxLoc(x_s, &box_min_x, &box_max_x);
box_min_y = box_min_y * 0.9;
face_box = std::make_tuple(box_min_x, box_min_y, box_max_x, box_max_y);
return absl::OkStatus();
} */
REGISTER_CALCULATOR(LandmarksToMaskCalculator);
} // namespace mediapipe

View File

@ -0,0 +1,96 @@
// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_CALCULATORS_UTIL_LANDMARKS_TO_MASK_CALCULATOR_H_
#define MEDIAPIPE_CALCULATORS_UTIL_LANDMARKS_TO_MASK_CALCULATOR_H_
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_options.pb.h"
#include "mediapipe/framework/formats/landmark.pb.h"
#include "mediapipe/framework/formats/location_data.pb.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/util/color.pb.h"
#include "mediapipe/util/render_data.pb.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_options.pb.h"
#include "mediapipe/framework/formats/image_format.pb.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/formats/landmark.pb.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/formats/location_data.pb.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/util/color.pb.h"
#include "mediapipe/util/render_data.pb.h"
#include "absl/strings/str_cat.h"
#include "mediapipe/framework/port/logging.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/vector.h"
namespace mediapipe
{
// A calculator that converts Landmark proto to RenderData proto for
// visualization. The input should be LandmarkList proto. It is also possible
// to specify the connections between landmarks.
//
// Example config:
// node {
// calculator: "LandmarksToMaskCalculator"
// input_stream: "NORM_LANDMARKS:landmarks"
// output_stream: "RENDER_DATA:render_data"
// options {
// [LandmarksToRenderDataCalculatorOptions.ext] {
// landmark_connections: [0, 1, 1, 2]
// landmark_color { r: 0 g: 255 b: 0 }
// connection_color { r: 0 g: 255 b: 0 }
// thickness: 4.0
// }
// }
// }
class LandmarksToMaskCalculator : public CalculatorBase
{
public:
LandmarksToMaskCalculator() = default;
~LandmarksToMaskCalculator() override = default;
LandmarksToMaskCalculator(const LandmarksToMaskCalculator &) =
delete;
LandmarksToMaskCalculator &operator=(
const LandmarksToMaskCalculator &) = delete;
static absl::Status GetContract(CalculatorContract *cc);
absl::Status Open(CalculatorContext *cc) override;
absl::Status Process(CalculatorContext *cc) override;
private:
absl::Status RenderToCpu(CalculatorContext *cc,
std::unordered_map<std::string, cv::Mat> &all_masks);
absl::Status GetFaceBox(std::unique_ptr<cv::Mat> &image_mat,
const RenderData &render_data);
absl::Status CreateRenderTargetCpu(
CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat,
ImageFormat::Format *target_format);
};
} // namespace mediapipe
#endif // MEDIAPIPE_CALCULATORS_UTIL_LANDMARKS_TO_MASK_CALCULATOR_H_

View File

@ -0,0 +1,36 @@
# Copyright 2021 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
licenses(["notice"])
package(default_visibility = ["//mediapipe/examples:__subpackages__"])
# Linux only
cc_binary(
name = "image_style_cpu",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/image_style:desktop_calculators",
],
)
cc_binary(
name = "image_style_gpu",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/image_style:desktop_calculators",
],
)

View File

@ -50,9 +50,6 @@ node {
input_side_packet: "NUM_FACES:num_faces"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
output_stream: "DETECTIONS:face_detections"
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
}
# Subgraph that renders face-landmark annotation onto the input image.
@ -60,7 +57,5 @@ node {
calculator: "FaceRendererCpu"
input_stream: "IMAGE:throttled_input_video"
input_stream: "LANDMARKS:multi_face_landmarks"
input_stream: "NORM_RECTS:face_rects_from_landmarks"
input_stream: "DETECTIONS:face_detections"
output_stream: "IMAGE:output_video"
}

View File

@ -51,9 +51,6 @@ node {
input_side_packet: "NUM_FACES:num_faces"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
output_stream: "DETECTIONS:face_detections"
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
}
# Defines side packets for further use in the graph.
@ -69,8 +66,6 @@ node {
calculator: "FaceRendererCpu"
input_stream: "IMAGE:throttled_input_video_cpu"
input_stream: "LANDMARKS:multi_face_landmarks"
input_stream: "NORM_RECTS:face_rects_from_landmarks"
input_stream: "DETECTIONS:face_detections"
output_stream: "IMAGE:output_video_cpu"
}

View File

@ -33,6 +33,7 @@ cc_library(
"//mediapipe/calculators/beauty:whiten_teeth_calculator",
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/calculators/util:landmarks_to_render_data_calculator",
"//mediapipe/calculators/landmarks:landmarks_to_mask_calculator",
"//mediapipe/calculators/util:rect_to_render_data_calculator",
"//mediapipe/graphs/beauty/calculators:face_landmarks_to_render_data_calculator",
],

View File

@ -7,11 +7,6 @@ input_stream: "IMAGE:input_image"
# Collection of detected/predicted faces, each represented as a list of
# landmarks. (std::vector<NormalizedLandmarkList>)
input_stream: "LANDMARKS:multi_face_landmarks"
# Regions of interest calculated based on palm detections.
# (std::vector<NormalizedRect>)
input_stream: "NORM_RECTS:rects"
# Detected palms. (std::vector<Detection>)
input_stream: "DETECTIONS:detections"
# CPU image with rendered data. (ImageFrame)
output_stream: "IMAGE:output_image"
@ -22,19 +17,6 @@ node {
output_stream: "SIZE:image_size"
}
# Converts detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:detections"
output_stream: "RENDER_DATA:detections_render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 0 g: 255 b: 0 }
}
}
}
# Outputs each element of multi_face_landmarks at a fake timestamp for the rest
# of the graph to process. At the end of the loop, outputs the BATCH_END
# timestamp for downstream calculators to inform them that all elements in the
@ -42,57 +24,39 @@ node {
node {
calculator: "BeginLoopNormalizedLandmarkListVectorCalculator"
input_stream: "ITERABLE:multi_face_landmarks"
input_stream: "CLONE:input_image"
output_stream: "ITEM:face_landmarks"
output_stream: "CLONE:loop_image"
output_stream: "BATCH_END:landmark_timestamp"
}
# Converts landmarks to drawing primitives for annotation overlay.
node {
calculator: "FaceLandmarksToRenderDataCalculator"
calculator: "LandmarksToMaskCalculator"
input_stream: "IMAGE:loop_image"
input_stream: "NORM_LANDMARKS:face_landmarks"
output_stream: "RENDER_DATA:landmarks_render_data"
node_options: {
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
landmark_color { r: 255 g: 0 b: 0 }
connection_color { r: 0 g: 255 b: 0 }
thickness: 2
visualize_landmark_depth: false
}
}
output_stream: "FACEBOX:face_box"
output_stream: "MASK:mask"
}
# Collects a RenderData object for each hand into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of RenderData at the BATCH_END
# timestamp.
node {
calculator: "EndLoopRenderDataCalculator"
input_stream: "ITEM:landmarks_render_data"
calculator: "EndLoopMapMaskCalculator"
input_stream: "ITEM:mask"
input_stream: "BATCH_END:landmark_timestamp"
output_stream: "ITERABLE:multi_face_landmarks_render_data"
output_stream: "ITERABLE:multi_mask"
}
# Converts normalized rects to drawing primitives for annotation overlay.
#node {
# calculator: "RectToRenderDataCalculator"
# input_stream: "NORM_RECTS:rects"
# output_stream: "RENDER_DATA:rects_render_data"
# node_options: {
# [type.googleapis.com/mediapipe.RectToRenderDataCalculatorOptions] {
# filled: false
# color { r: 255 g: 0 b: 0 }
# thickness: 4.0
# }
# }
#}
node {
calculator: "FormFaceMaskCalculator"
input_stream: "IMAGE:input_image"
input_stream: "VECTOR:0:multi_face_landmarks_render_data"
output_stream: "FACEBOX:face_box"
output_stream: "MASK:multi_mask"
calculator: "EndLoopFaceBoxCalculator"
input_stream: "ITEM:face_box"
input_stream: "BATCH_END:landmark_timestamp"
output_stream: "ITERABLE:multi_face_box"
}
node {
calculator: "DrawLipstickCalculator"
input_stream: "IMAGE:input_image"
@ -111,17 +75,9 @@ node {
calculator: "SmoothFaceCalculator"
input_stream: "IMAGE:input_image_2"
input_stream: "MASK:0:multi_mask"
input_stream: "FACEBOX:face_box"
input_stream: "FACEBOX:multi_face_box"
output_stream: "IMAGE:output_image"
}
# Draws annotations and overlays them on top of the input images.
#node {
# calculator: "AnnotationOverlayCalculator"
# input_stream: "IMAGE:input_image"
# input_stream: "VECTOR:0:multi_face_landmarks_render_data"
# output_stream: "IMAGE:output_image"
#}

View File

@ -0,0 +1,64 @@
# Copyright 2019 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
load(
"//mediapipe/framework/tool:mediapipe_graph.bzl",
"mediapipe_binary_graph",
)
licenses(["notice"])
package(default_visibility = ["//visibility:public"])
cc_library(
name = "mobile_calculators",
deps = [
"//mediapipe/calculators/tensorflow:tensor_to_image_frame_calculator",
"//mediapipe/calculators/tensorflow:vector_float_to_tensor_calculator",
"//mediapipe/calculators/tensor:tensors_to_floats_calculator",
"//mediapipe/calculators/tensor:tensors_to_segmentation_calculator",
"//mediapipe/calculators/util:from_image_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
"//mediapipe/calculators/tensor:inference_calculator",
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/image:image_transformation_calculator",
"//mediapipe/calculators/tflite:tflite_converter_calculator",
"//mediapipe/calculators/tflite:tflite_custom_op_resolver_calculator",
"//mediapipe/calculators/tflite:tflite_inference_calculator",
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
"//mediapipe/gpu:image_frame_to_gpu_buffer_calculator",
"//mediapipe/calculators/tflite:tflite_tensors_to_segmentation_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
],
)
cc_library(
name = "desktop_calculators",
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/image:image_transformation_calculator",
"//mediapipe/calculators/tflite:tflite_converter_calculator",
"//mediapipe/calculators/tflite:tflite_inference_calculator",
"//mediapipe/calculators/tflite:tflite_tensors_to_gpuimage_calculator",
"//mediapipe/calculators/tflite:tflite_custom_op_resolver_calculator",
"//mediapipe/calculators/tflite:tflite_tensors_to_segmentation_calculator",
],
)
mediapipe_binary_graph(
name = "mobile_gpu_binary_graph",
graph = "image_style.pbtxt",
output_name = "mobile_gpu.binarypb",
deps = [":mobile_calculators"],
)

View File

@ -0,0 +1,84 @@
# MediaPipe graph that performs hair segmentation with TensorFlow Lite on GPU.
# Used in the example in
# mediapipie/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE_GPU:throttled_input_video"
output_stream: "IMAGE_GPU:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 256
output_height: 256
}
}
}
# Converts the transformed input image on GPU into an image tensor stored in
# tflite::gpu::GlBuffer. The zero_center option is set to false to normalize the
# pixel values to [0.f, 1.f] as opposed to [-1.f, 1.f]. With the
# max_num_channels option set to 4, all 4 RGBA channels are contained in the
# image tensor.
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE_GPU:transformed_input_video"
output_stream: "TENSORS_GPU:image_tensor"
options {
[mediapipe.TfLiteConverterCalculatorOptions.ext] {
output_tensor_float_range {
min: 0
max: 255
}
}
}
}
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS_GPU:image_tensor"
output_stream: "TENSORS:stylized_tensor"
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/metaf-512-mobile3.tflite"
use_gpu: true
}
}
}
node {
calculator: "TfLiteTensorsToSegmentationCalculator"
input_stream: "TENSORS:stylized_tensor"
output_stream: "MASK:mask_image"
node_options: {
[type.googleapis.com/mediapipe.TfLiteTensorsToSegmentationCalculatorOptions] {
tensor_width: 256
tensor_height: 256
tensor_channels: 3
}
}
}
# Transfers the annotated image from CPU back to GPU memory, to be sent out of
# the graph.
node: {
calculator: "ImageFrameToGpuBufferCalculator"
input_stream: "mask_image"
output_stream: "output_video"
}

View File

@ -0,0 +1,96 @@
# MediaPipe graph that performs object detection on desktop with TensorFlow Lite
# on CPU.
# Used in the example in
# mediapipe/examples/desktop/object_detection:object_detection_tflite.
# max_queue_size limits the number of packets enqueued on any input stream
# by throttling inputs to the graph. This makes the graph only process one
# frame per time.
max_queue_size: 1
# Decodes an input video file into images and a video header.
node {
calculator: "OpenCvVideoDecoderCalculator"
input_side_packet: "INPUT_FILE_PATH:input_video_path"
output_stream: "VIDEO:input_video"
output_stream: "VIDEO_PRESTREAM:input_video_header"
}
# Transforms the input image on CPU to a 320x320 image. To scale the image, by
# default it uses the STRETCH scale mode that maps the entire input image to the
# entire transformed image. As a result, image aspect ratio may be changed and
# objects in the image may be deformed (stretched or squeezed), but the object
# detection model used in this graph is agnostic to that deformation.
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:input_video"
output_stream: "IMAGE:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 512
output_height: 512
}
}
}
# Converts the transformed input image on CPU into an image tensor as a
# TfLiteTensor. The zero_center option is set to true to normalize the
# pixel values to [-1.f, 1.f] as opposed to [0.f, 1.f].
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE:transformed_input_video"
output_stream: "TENSORS:image_tensor"
node_options: {
[type.googleapis.com/mediapipe.TfLiteConverterCalculatorOptions] {
zero_center: true
}
}
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS:image_tensor"
output_stream: "TENSORS:stylized_tensor"
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/metaf-512-mobile3.tflite"
}
}
}
node {
calculator: "TfliteTensorsToGpuImageCalculator"
input_stream: "TENSORS:stylized_tensor"
output_stream: "IMAGE:image"
}
#node {
# calculator: "TfLiteTensorsToSegmentationCalculator"
# input_stream: "TENSORS:stylized_tensor"
# output_stream: "MASK:mask_image"
# node_options: {
# [type.googleapis.com/mediapipe.TfLiteTensorsToSegmentationCalculatorOptions] {
# tensor_width: 512
# tensor_height: 512
# tensor_channels: 3
# }
# }
#}
# Encodes the annotated images into a video file, adopting properties specified
# in the input video header, e.g., video framerate.
node {
calculator: "OpenCvVideoEncoderCalculator"
input_stream: "VIDEO:image"
input_stream: "VIDEO_PRESTREAM:input_video_header"
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
node_options: {
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
codec: "avc1"
video_format: "mp4"
}
}
}

View File

@ -0,0 +1,93 @@
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU.
# Input image. (ImageFrame)
input_stream: "input_video"
# Output image with rendered results. (ImageFrame)
output_stream: "output_video"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Transforms the input image on CPU to a 320x320 image. To scale the image, by
# default it uses the STRETCH scale mode that maps the entire input image to the
# entire transformed image. As a result, image aspect ratio may be changed and
# objects in the image may be deformed (stretched or squeezed), but the object
# detection model used in this graph is agnostic to that deformation.
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:throttled_input_video"
output_stream: "IMAGE:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 256
output_height: 256
}
}
}
# Converts the transformed input image on CPU into an image tensor as a
# TfLiteTensor. The zero_center option is set to true to normalize the
# pixel values to [-1.f, 1.f] as opposed to [0.f, 1.f].
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE:transformed_input_video"
output_stream: "TENSORS:input_tensors"
options {
[mediapipe.TfLiteConverterCalculatorOptions.ext] {
output_tensor_float_range {
min: 0
max: 255
}
max_num_channels: 3
}
}
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:output_tensors"
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/model_float32.tflite"
}
}
}
node {
calculator: "TfLiteTensorsToSegmentationCalculator"
input_stream: "TENSORS:output_tensors"
output_stream: "MASK:output_video"
node_options: {
[type.googleapis.com/mediapipe.TfLiteTensorsToSegmentationCalculatorOptions] {
tensor_width: 256
tensor_height: 256
tensor_channels: 3
}
}
}

View File

@ -0,0 +1,82 @@
# MediaPipe graph that performs hair segmentation with TensorFlow Lite on GPU.
# Used in the example in
# mediapipie/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE_GPU:throttled_input_video"
output_stream: "IMAGE_GPU:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 512
output_height: 512
}
}
}
node: {
calculator: "ImageToTensorCalculator"
input_stream: "IMAGE_GPU:transformed_input_video"
output_stream: "TENSORS:input_tensors"
options {
[mediapipe.ImageToTensorCalculatorOptions.ext] {
output_tensor_width: 512
output_tensor_height: 512
keep_aspect_ratio: true
output_tensor_float_range {
min: 0.0
max: 255.0
}
gpu_origin: TOP_LEFT
border_mode: BORDER_REPLICATE
}
}
}
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS_GPU:input_tensors"
output_stream: "TENSORS_GPU:output_tensors"
options: {
[mediapipe.InferenceCalculatorOptions.ext] {
model_path: "mediapipe/models/metaf-512-mobile3.tflite"
delegate { gpu {} }
}
}
}
# Processes the output tensors into a segmentation mask that has the same size
# as the input image into the graph.
node {
calculator: "TensorsToSegmentationCalculator"
input_stream: "TENSORS:output_tensors"
output_stream: "MASK:mask_image"
options: {
[mediapipe.TensorsToSegmentationCalculatorOptions.ext] {
activation: NONE
}
}
}
node: {
calculator: "FromImageCalculator"
input_stream: "IMAGE:mask_image"
output_stream: "IMAGE_GPU:output_video"
}

Binary file not shown.

BIN
video.mp4 Normal file

Binary file not shown.