Update java image segmenter to always output confidence masks and optionally output category mask.
PiperOrigin-RevId: 521804641
This commit is contained in:
parent
7c2930102d
commit
33cad24a5a
|
@ -79,15 +79,10 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
private static final List<String> INPUT_STREAMS =
|
||||
Collections.unmodifiableList(
|
||||
Arrays.asList("IMAGE:" + IMAGE_IN_STREAM_NAME, "NORM_RECT:" + NORM_RECT_IN_STREAM_NAME));
|
||||
private static final List<String> OUTPUT_STREAMS =
|
||||
Collections.unmodifiableList(
|
||||
Arrays.asList(
|
||||
"GROUPED_SEGMENTATION:segmented_mask_out",
|
||||
"IMAGE:image_out",
|
||||
"SEGMENTATION:0:segmentation"));
|
||||
private static final int GROUPED_SEGMENTATION_OUT_STREAM_INDEX = 0;
|
||||
private static final int CONFIDENCE_MASKS_OUT_STREAM_INDEX = 0;
|
||||
private static final int IMAGE_OUT_STREAM_INDEX = 1;
|
||||
private static final int SEGMENTATION_OUT_STREAM_INDEX = 2;
|
||||
private static final int CONFIDENCE_MASK_OUT_STREAM_INDEX = 2;
|
||||
private static final int CATEGORY_MASK_OUT_STREAM_INDEX = 3;
|
||||
private static final String TASK_GRAPH_NAME =
|
||||
"mediapipe.tasks.vision.image_segmenter.ImageSegmenterGraph";
|
||||
private static final String TENSORS_TO_SEGMENTATION_CALCULATOR_NAME =
|
||||
|
@ -104,6 +99,13 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
*/
|
||||
public static ImageSegmenter createFromOptions(
|
||||
Context context, ImageSegmenterOptions segmenterOptions) {
|
||||
List<String> outputStreams = new ArrayList<>();
|
||||
outputStreams.add("CONFIDENCE_MASKS:confidence_masks");
|
||||
outputStreams.add("IMAGE:image_out");
|
||||
outputStreams.add("CONFIDENCE_MASK:0:confidence_mask");
|
||||
if (segmenterOptions.outputCategoryMask()) {
|
||||
outputStreams.add("CATEGORY_MASK:category_mask");
|
||||
}
|
||||
// TODO: Consolidate OutputHandler and TaskRunner.
|
||||
OutputHandler<ImageSegmenterResult, MPImage> handler = new OutputHandler<>();
|
||||
handler.setOutputPacketConverter(
|
||||
|
@ -111,50 +113,62 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
@Override
|
||||
public ImageSegmenterResult convertToTaskResult(List<Packet> packets)
|
||||
throws MediaPipeException {
|
||||
if (packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX).isEmpty()) {
|
||||
if (packets.get(CONFIDENCE_MASKS_OUT_STREAM_INDEX).isEmpty()) {
|
||||
return ImageSegmenterResult.create(
|
||||
new ArrayList<>(),
|
||||
packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX).getTimestamp());
|
||||
Optional.empty(),
|
||||
packets.get(CONFIDENCE_MASKS_OUT_STREAM_INDEX).getTimestamp());
|
||||
}
|
||||
List<MPImage> segmentedMasks = new ArrayList<>();
|
||||
int width = PacketGetter.getImageWidth(packets.get(SEGMENTATION_OUT_STREAM_INDEX));
|
||||
int height = PacketGetter.getImageHeight(packets.get(SEGMENTATION_OUT_STREAM_INDEX));
|
||||
int imageFormat =
|
||||
segmenterOptions.outputType() == ImageSegmenterOptions.OutputType.CONFIDENCE_MASK
|
||||
? MPImage.IMAGE_FORMAT_VEC32F1
|
||||
: MPImage.IMAGE_FORMAT_ALPHA;
|
||||
int imageListSize =
|
||||
PacketGetter.getImageListSize(packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX));
|
||||
ByteBuffer[] buffersArray = new ByteBuffer[imageListSize];
|
||||
List<MPImage> confidenceMasks = new ArrayList<>();
|
||||
int width = PacketGetter.getImageWidth(packets.get(CONFIDENCE_MASK_OUT_STREAM_INDEX));
|
||||
int height = PacketGetter.getImageHeight(packets.get(CONFIDENCE_MASK_OUT_STREAM_INDEX));
|
||||
int confidenceMasksListSize =
|
||||
PacketGetter.getImageListSize(packets.get(CONFIDENCE_MASKS_OUT_STREAM_INDEX));
|
||||
ByteBuffer[] buffersArray = new ByteBuffer[confidenceMasksListSize];
|
||||
// If resultListener is not provided, the resulted MPImage is deep copied from mediapipe
|
||||
// graph. If provided, the result MPImage is wrapping the mediapipe packet memory.
|
||||
if (!segmenterOptions.resultListener().isPresent()) {
|
||||
for (int i = 0; i < imageListSize; i++) {
|
||||
buffersArray[i] =
|
||||
ByteBuffer.allocateDirect(
|
||||
width * height * (imageFormat == MPImage.IMAGE_FORMAT_VEC32F1 ? 4 : 1));
|
||||
boolean copyImage = !segmenterOptions.resultListener().isPresent();
|
||||
if (copyImage) {
|
||||
for (int i = 0; i < confidenceMasksListSize; i++) {
|
||||
buffersArray[i] = ByteBuffer.allocateDirect(width * height * 4);
|
||||
}
|
||||
}
|
||||
if (!PacketGetter.getImageList(
|
||||
packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX),
|
||||
buffersArray,
|
||||
!segmenterOptions.resultListener().isPresent())) {
|
||||
packets.get(CONFIDENCE_MASKS_OUT_STREAM_INDEX), buffersArray, copyImage)) {
|
||||
throw new MediaPipeException(
|
||||
MediaPipeException.StatusCode.INTERNAL.ordinal(),
|
||||
"There is an error getting segmented masks. It usually results from incorrect"
|
||||
+ " options of unsupported OutputType of given model.");
|
||||
"There is an error getting segmented masks.");
|
||||
}
|
||||
for (ByteBuffer buffer : buffersArray) {
|
||||
ByteBufferImageBuilder builder =
|
||||
new ByteBufferImageBuilder(buffer, width, height, imageFormat);
|
||||
segmentedMasks.add(builder.build());
|
||||
new ByteBufferImageBuilder(buffer, width, height, MPImage.IMAGE_FORMAT_VEC32F1);
|
||||
confidenceMasks.add(builder.build());
|
||||
}
|
||||
Optional<MPImage> categoryMask = Optional.empty();
|
||||
if (segmenterOptions.outputCategoryMask()) {
|
||||
ByteBuffer buffer;
|
||||
if (copyImage) {
|
||||
buffer = ByteBuffer.allocateDirect(width * height);
|
||||
if (!PacketGetter.getImageData(
|
||||
packets.get(CATEGORY_MASK_OUT_STREAM_INDEX), buffer)) {
|
||||
throw new MediaPipeException(
|
||||
MediaPipeException.StatusCode.INTERNAL.ordinal(),
|
||||
"There is an error getting category mask.");
|
||||
}
|
||||
} else {
|
||||
buffer =
|
||||
PacketGetter.getImageDataDirectly(packets.get(CATEGORY_MASK_OUT_STREAM_INDEX));
|
||||
}
|
||||
ByteBufferImageBuilder builder =
|
||||
new ByteBufferImageBuilder(buffer, width, height, MPImage.IMAGE_FORMAT_ALPHA);
|
||||
categoryMask = Optional.of(builder.build());
|
||||
}
|
||||
|
||||
return ImageSegmenterResult.create(
|
||||
segmentedMasks,
|
||||
confidenceMasks,
|
||||
categoryMask,
|
||||
BaseVisionTaskApi.generateResultTimestampMs(
|
||||
segmenterOptions.runningMode(),
|
||||
packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX)));
|
||||
packets.get(CONFIDENCE_MASKS_OUT_STREAM_INDEX)));
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -174,7 +188,7 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
.setTaskRunningModeName(segmenterOptions.runningMode().name())
|
||||
.setTaskGraphName(TASK_GRAPH_NAME)
|
||||
.setInputStreams(INPUT_STREAMS)
|
||||
.setOutputStreams(OUTPUT_STREAMS)
|
||||
.setOutputStreams(outputStreams)
|
||||
.setTaskOptions(segmenterOptions)
|
||||
.setEnableFlowLimiting(segmenterOptions.runningMode() == RunningMode.LIVE_STREAM)
|
||||
.build(),
|
||||
|
@ -553,8 +567,8 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
*/
|
||||
public abstract Builder setDisplayNamesLocale(String value);
|
||||
|
||||
/** The output type from image segmenter. */
|
||||
public abstract Builder setOutputType(OutputType value);
|
||||
/** Whether to output category mask. */
|
||||
public abstract Builder setOutputCategoryMask(boolean value);
|
||||
|
||||
/**
|
||||
* Sets an optional {@link ResultListener} to receive the segmentation results when the graph
|
||||
|
@ -594,27 +608,17 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
|
||||
abstract String displayNamesLocale();
|
||||
|
||||
abstract OutputType outputType();
|
||||
abstract boolean outputCategoryMask();
|
||||
|
||||
abstract Optional<ResultListener<ImageSegmenterResult, MPImage>> resultListener();
|
||||
|
||||
abstract Optional<ErrorListener> errorListener();
|
||||
|
||||
/** The output type of segmentation results. */
|
||||
public enum OutputType {
|
||||
// Gives a single output mask where each pixel represents the class which
|
||||
// the pixel in the original image was predicted to belong to.
|
||||
CATEGORY_MASK,
|
||||
// Gives a list of output masks where, for each mask, each pixel represents
|
||||
// the prediction confidence, usually in the [0, 1] range.
|
||||
CONFIDENCE_MASK
|
||||
}
|
||||
|
||||
public static Builder builder() {
|
||||
return new AutoValue_ImageSegmenter_ImageSegmenterOptions.Builder()
|
||||
.setRunningMode(RunningMode.IMAGE)
|
||||
.setDisplayNamesLocale("en")
|
||||
.setOutputType(OutputType.CATEGORY_MASK);
|
||||
.setOutputCategoryMask(false);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -633,14 +637,6 @@ public final class ImageSegmenter extends BaseVisionTaskApi {
|
|||
|
||||
SegmenterOptionsProto.SegmenterOptions.Builder segmenterOptionsBuilder =
|
||||
SegmenterOptionsProto.SegmenterOptions.newBuilder();
|
||||
if (outputType() == OutputType.CONFIDENCE_MASK) {
|
||||
segmenterOptionsBuilder.setOutputType(
|
||||
SegmenterOptionsProto.SegmenterOptions.OutputType.CONFIDENCE_MASK);
|
||||
} else if (outputType() == OutputType.CATEGORY_MASK) {
|
||||
segmenterOptionsBuilder.setOutputType(
|
||||
SegmenterOptionsProto.SegmenterOptions.OutputType.CATEGORY_MASK);
|
||||
}
|
||||
|
||||
taskOptionsBuilder.setSegmenterOptions(segmenterOptionsBuilder);
|
||||
return CalculatorOptions.newBuilder()
|
||||
.setExtension(
|
||||
|
|
|
@ -19,6 +19,7 @@ import com.google.mediapipe.framework.image.MPImage;
|
|||
import com.google.mediapipe.tasks.core.TaskResult;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
|
||||
/** Represents the segmentation results generated by {@link ImageSegmenter}. */
|
||||
@AutoValue
|
||||
|
@ -27,18 +28,24 @@ public abstract class ImageSegmenterResult implements TaskResult {
|
|||
/**
|
||||
* Creates an {@link ImageSegmenterResult} instance from a list of segmentation MPImage.
|
||||
*
|
||||
* @param segmentations a {@link List} of MPImage representing the segmented masks. If OutputType
|
||||
* is CATEGORY_MASK, the masks will be in IMAGE_FORMAT_ALPHA format. If OutputType is
|
||||
* CONFIDENCE_MASK, the masks will be in IMAGE_FORMAT_VEC32F1 format.
|
||||
* @param confidenceMasks a {@link List} of MPImage in IMAGE_FORMAT_VEC32F1 format representing
|
||||
* the confidence masks, where, for each mask, each pixel represents the prediction
|
||||
* confidence, usually in the [0, 1] range.
|
||||
* @param categoryMask an {@link Optional} MPImage in IMAGE_FORMAT_ALPHA format representing a
|
||||
* category mask, where each pixel represents the class which the pixel in the original image
|
||||
* was predicted to belong to.
|
||||
* @param timestampMs a timestamp for this result.
|
||||
*/
|
||||
// TODO: consolidate output formats across platforms.
|
||||
public static ImageSegmenterResult create(List<MPImage> segmentations, long timestampMs) {
|
||||
public static ImageSegmenterResult create(
|
||||
List<MPImage> confidenceMasks, Optional<MPImage> categoryMask, long timestampMs) {
|
||||
return new AutoValue_ImageSegmenterResult(
|
||||
Collections.unmodifiableList(segmentations), timestampMs);
|
||||
Collections.unmodifiableList(confidenceMasks), categoryMask, timestampMs);
|
||||
}
|
||||
|
||||
public abstract List<MPImage> segmentations();
|
||||
public abstract List<MPImage> confidenceMasks();
|
||||
|
||||
public abstract Optional<MPImage> categoryMask();
|
||||
|
||||
@Override
|
||||
public abstract long timestampMs();
|
||||
|
|
|
@ -133,6 +133,7 @@ public final class InteractiveSegmenter extends BaseVisionTaskApi {
|
|||
if (packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX).isEmpty()) {
|
||||
return ImageSegmenterResult.create(
|
||||
new ArrayList<>(),
|
||||
Optional.empty(),
|
||||
packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX).getTimestamp());
|
||||
}
|
||||
List<MPImage> segmentedMasks = new ArrayList<>();
|
||||
|
@ -172,6 +173,7 @@ public final class InteractiveSegmenter extends BaseVisionTaskApi {
|
|||
|
||||
return ImageSegmenterResult.create(
|
||||
segmentedMasks,
|
||||
Optional.empty(),
|
||||
BaseVisionTaskApi.generateResultTimestampMs(
|
||||
RunningMode.IMAGE, packets.get(GROUPED_SEGMENTATION_OUT_STREAM_INDEX)));
|
||||
}
|
||||
|
|
|
@ -61,14 +61,13 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CATEGORY_MASK)
|
||||
.setOutputCategoryMask(true)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
assertThat(segmentations.size()).isEqualTo(1);
|
||||
MPImage actualMaskBuffer = actualResult.segmentations().get(0);
|
||||
assertThat(actualResult.categoryMask().isPresent()).isTrue();
|
||||
MPImage actualMaskBuffer = actualResult.categoryMask().get();
|
||||
MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
verifyCategoryMask(
|
||||
actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY, MAGNIFICATION_FACTOR);
|
||||
|
@ -81,15 +80,14 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(21);
|
||||
// Cat category index 8.
|
||||
MPImage actualMaskBuffer = actualResult.segmentations().get(8);
|
||||
MPImage actualMaskBuffer = segmentations.get(8);
|
||||
MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
}
|
||||
|
@ -102,40 +100,36 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder().setModelAssetPath(SELFIE_128x128_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(2);
|
||||
// Selfie category index 1.
|
||||
MPImage actualMaskBuffer = actualResult.segmentations().get(1);
|
||||
MPImage actualMaskBuffer = segmentations.get(1);
|
||||
MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
}
|
||||
|
||||
// TODO: enable this unit test once activation option is supported in metadata.
|
||||
// @Test
|
||||
// public void segment_successWith144x256Segmentation() throws Exception {
|
||||
// final String inputImageName = "mozart_square.jpg";
|
||||
// final String goldenImageName = "selfie_segm_144_256_3_expected_mask.jpg";
|
||||
// ImageSegmenterOptions options =
|
||||
// ImageSegmenterOptions.builder()
|
||||
// .setBaseOptions(
|
||||
// BaseOptions.builder().setModelAssetPath(SELFIE_144x256_MODEL_FILE).build())
|
||||
// .setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
// .build();
|
||||
// ImageSegmenter imageSegmenter =
|
||||
// ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
// ImageSegmenterResult actualResult =
|
||||
// imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
// List<MPImage> segmentations = actualResult.segmentations();
|
||||
// assertThat(segmentations.size()).isEqualTo(1);
|
||||
// MPImage actualMaskBuffer = actualResult.segmentations().get(0);
|
||||
// MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
// verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
// }
|
||||
@Test
|
||||
public void segment_successWith144x256Segmentation() throws Exception {
|
||||
final String inputImageName = "mozart_square.jpg";
|
||||
final String goldenImageName = "selfie_segm_144_256_3_expected_mask.jpg";
|
||||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder().setModelAssetPath(SELFIE_144x256_MODEL_FILE).build())
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(1);
|
||||
MPImage actualMaskBuffer = segmentations.get(0);
|
||||
MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void getLabels_success() throws Exception {
|
||||
|
@ -165,7 +159,6 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
|
@ -287,16 +280,15 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.IMAGE)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
ImageSegmenter.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(getImageFromAsset(inputImageName));
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(21);
|
||||
// Cat category index 8.
|
||||
MPImage actualMaskBuffer = actualResult.segmentations().get(8);
|
||||
MPImage actualMaskBuffer = segmentations.get(8);
|
||||
MPImage expectedMaskBuffer = getImageFromAsset(goldenImageName);
|
||||
verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
}
|
||||
|
@ -309,12 +301,11 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.IMAGE)
|
||||
.setResultListener(
|
||||
(segmenterResult, inputImage) -> {
|
||||
verifyConfidenceMask(
|
||||
segmenterResult.segmentations().get(8),
|
||||
segmenterResult.confidenceMasks().get(8),
|
||||
expectedResult,
|
||||
GOLDEN_MASK_SIMILARITY);
|
||||
})
|
||||
|
@ -331,7 +322,6 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.VIDEO)
|
||||
.build();
|
||||
ImageSegmenter imageSegmenter =
|
||||
|
@ -341,10 +331,10 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterResult actualResult =
|
||||
imageSegmenter.segmentForVideo(
|
||||
getImageFromAsset(inputImageName), /* timestampsMs= */ i);
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(21);
|
||||
// Cat category index 8.
|
||||
MPImage actualMaskBuffer = actualResult.segmentations().get(8);
|
||||
MPImage actualMaskBuffer = segmentations.get(8);
|
||||
verifyConfidenceMask(actualMaskBuffer, expectedMaskBuffer, GOLDEN_MASK_SIMILARITY);
|
||||
}
|
||||
}
|
||||
|
@ -357,12 +347,11 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.VIDEO)
|
||||
.setResultListener(
|
||||
(segmenterResult, inputImage) -> {
|
||||
verifyConfidenceMask(
|
||||
segmenterResult.segmentations().get(8),
|
||||
segmenterResult.confidenceMasks().get(8),
|
||||
expectedResult,
|
||||
GOLDEN_MASK_SIMILARITY);
|
||||
})
|
||||
|
@ -384,12 +373,11 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.LIVE_STREAM)
|
||||
.setResultListener(
|
||||
(segmenterResult, inputImage) -> {
|
||||
verifyConfidenceMask(
|
||||
segmenterResult.segmentations().get(8),
|
||||
segmenterResult.confidenceMasks().get(8),
|
||||
expectedResult,
|
||||
GOLDEN_MASK_SIMILARITY);
|
||||
})
|
||||
|
@ -411,12 +399,11 @@ public class ImageSegmenterTest {
|
|||
ImageSegmenterOptions options =
|
||||
ImageSegmenterOptions.builder()
|
||||
.setBaseOptions(BaseOptions.builder().setModelAssetPath(DEEPLAB_MODEL_FILE).build())
|
||||
.setOutputType(ImageSegmenterOptions.OutputType.CONFIDENCE_MASK)
|
||||
.setRunningMode(RunningMode.LIVE_STREAM)
|
||||
.setResultListener(
|
||||
(segmenterResult, inputImage) -> {
|
||||
verifyConfidenceMask(
|
||||
segmenterResult.segmentations().get(8),
|
||||
segmenterResult.confidenceMasks().get(8),
|
||||
expectedResult,
|
||||
GOLDEN_MASK_SIMILARITY);
|
||||
})
|
||||
|
|
|
@ -60,7 +60,10 @@ public class InteractiveSegmenterTest {
|
|||
ApplicationProvider.getApplicationContext(), options);
|
||||
MPImage image = getImageFromAsset(inputImageName);
|
||||
ImageSegmenterResult actualResult = imageSegmenter.segment(image, roi);
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
// TODO update to correct category mask output.
|
||||
// After InteractiveSegmenter updated according to (b/276519300), update this to use
|
||||
// categoryMask field instead of confidenceMasks.
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(1);
|
||||
}
|
||||
|
||||
|
@ -79,7 +82,7 @@ public class InteractiveSegmenterTest {
|
|||
ApplicationProvider.getApplicationContext(), options);
|
||||
ImageSegmenterResult actualResult =
|
||||
imageSegmenter.segment(getImageFromAsset(inputImageName), roi);
|
||||
List<MPImage> segmentations = actualResult.segmentations();
|
||||
List<MPImage> segmentations = actualResult.confidenceMasks();
|
||||
assertThat(segmentations.size()).isEqualTo(2);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user