Revised implementation and added more tests
This commit is contained in:
		
							parent
							
								
									88463aeb9e
								
							
						
					
					
						commit
						30e6b766d4
					
				| 
						 | 
					@ -204,13 +204,8 @@ py_test(
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
    tags = ["not_run:arm"],
 | 
					    tags = ["not_run:arm"],
 | 
				
			||||||
    deps = [
 | 
					    deps = [
 | 
				
			||||||
        "//mediapipe/framework/formats:classification_py_pb2",
 | 
					 | 
				
			||||||
        "//mediapipe/framework/formats:landmark_py_pb2",
 | 
					 | 
				
			||||||
        "//mediapipe/tasks/cc/vision/holistic_landmarker/proto:holistic_result_py_pb2",
 | 
					        "//mediapipe/tasks/cc/vision/holistic_landmarker/proto:holistic_result_py_pb2",
 | 
				
			||||||
        "//mediapipe/python:_framework_bindings",
 | 
					        "//mediapipe/python:_framework_bindings",
 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:category",
 | 
					 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:landmark",
 | 
					 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:rect",
 | 
					 | 
				
			||||||
        "//mediapipe/tasks/python/core:base_options",
 | 
					        "//mediapipe/tasks/python/core:base_options",
 | 
				
			||||||
        "//mediapipe/tasks/python/test:test_utils",
 | 
					        "//mediapipe/tasks/python/test:test_utils",
 | 
				
			||||||
        "//mediapipe/tasks/python/vision:holistic_landmarker",
 | 
					        "//mediapipe/tasks/python/vision:holistic_landmarker",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -14,7 +14,6 @@
 | 
				
			||||||
"""Tests for holistic landmarker."""
 | 
					"""Tests for holistic landmarker."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import enum
 | 
					import enum
 | 
				
			||||||
from typing import List
 | 
					 | 
				
			||||||
from unittest import mock
 | 
					from unittest import mock
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from absl.testing import absltest
 | 
					from absl.testing import absltest
 | 
				
			||||||
| 
						 | 
					@ -22,13 +21,8 @@ from absl.testing import parameterized
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from google.protobuf import text_format
 | 
					from google.protobuf import text_format
 | 
				
			||||||
from mediapipe.framework.formats import classification_pb2
 | 
					 | 
				
			||||||
from mediapipe.framework.formats import landmark_pb2
 | 
					 | 
				
			||||||
from mediapipe.tasks.cc.vision.holistic_landmarker.proto import holistic_result_pb2
 | 
					from mediapipe.tasks.cc.vision.holistic_landmarker.proto import holistic_result_pb2
 | 
				
			||||||
from mediapipe.python._framework_bindings import image as image_module
 | 
					from mediapipe.python._framework_bindings import image as image_module
 | 
				
			||||||
from mediapipe.tasks.python.components.containers import category as category_module
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.components.containers import rect as rect_module
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
					from mediapipe.tasks.python.core import base_options as base_options_module
 | 
				
			||||||
from mediapipe.tasks.python.test import test_utils
 | 
					from mediapipe.tasks.python.test import test_utils
 | 
				
			||||||
from mediapipe.tasks.python.vision import holistic_landmarker
 | 
					from mediapipe.tasks.python.vision import holistic_landmarker
 | 
				
			||||||
| 
						 | 
					@ -39,10 +33,6 @@ from mediapipe.tasks.python.vision.core import vision_task_running_mode as runni
 | 
				
			||||||
HolisticLandmarkerResult = holistic_landmarker.HolisticLandmarkerResult
 | 
					HolisticLandmarkerResult = holistic_landmarker.HolisticLandmarkerResult
 | 
				
			||||||
_HolisticResultProto = holistic_result_pb2.HolisticResult
 | 
					_HolisticResultProto = holistic_result_pb2.HolisticResult
 | 
				
			||||||
_BaseOptions = base_options_module.BaseOptions
 | 
					_BaseOptions = base_options_module.BaseOptions
 | 
				
			||||||
_Category = category_module.Category
 | 
					 | 
				
			||||||
_Rect = rect_module.Rect
 | 
					 | 
				
			||||||
_Landmark = landmark_module.Landmark
 | 
					 | 
				
			||||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
 | 
					 | 
				
			||||||
_Image = image_module.Image
 | 
					_Image = image_module.Image
 | 
				
			||||||
_HolisticLandmarker = holistic_landmarker.HolisticLandmarker
 | 
					_HolisticLandmarker = holistic_landmarker.HolisticLandmarker
 | 
				
			||||||
_HolisticLandmarkerOptions = holistic_landmarker.HolisticLandmarkerOptions
 | 
					_HolisticLandmarkerOptions = holistic_landmarker.HolisticLandmarkerOptions
 | 
				
			||||||
| 
						 | 
					@ -53,16 +43,20 @@ _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE = 'holistic_landmarker.task'
 | 
				
			||||||
_POSE_IMAGE = 'male_full_height_hands.jpg'
 | 
					_POSE_IMAGE = 'male_full_height_hands.jpg'
 | 
				
			||||||
_CAT_IMAGE = 'cat.jpg'
 | 
					_CAT_IMAGE = 'cat.jpg'
 | 
				
			||||||
_EXPECTED_HOLISTIC_RESULT = "male_full_height_hands_result_cpu.pbtxt"
 | 
					_EXPECTED_HOLISTIC_RESULT = "male_full_height_hands_result_cpu.pbtxt"
 | 
				
			||||||
 | 
					_IMAGE_WIDTH = 638
 | 
				
			||||||
 | 
					_IMAGE_HEIGHT = 1000
 | 
				
			||||||
_LANDMARKS_MARGIN = 0.03
 | 
					_LANDMARKS_MARGIN = 0.03
 | 
				
			||||||
_BLENDSHAPES_MARGIN = 0.13
 | 
					_BLENDSHAPES_MARGIN = 0.13
 | 
				
			||||||
 | 
					_VIDEO_LANDMARKS_MARGIN = 0.03
 | 
				
			||||||
 | 
					_VIDEO_BLENDSHAPES_MARGIN = 0.31
 | 
				
			||||||
 | 
					_LIVE_STREAM_LANDMARKS_MARGIN = 0.03
 | 
				
			||||||
 | 
					_LIVE_STREAM_BLENDSHAPES_MARGIN = 0.31
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _get_expected_holistic_landmarker_result(
 | 
					def _get_expected_holistic_landmarker_result(
 | 
				
			||||||
    file_path: str,
 | 
					    file_path: str,
 | 
				
			||||||
) -> HolisticLandmarkerResult:
 | 
					) -> HolisticLandmarkerResult:
 | 
				
			||||||
  holistic_result_file_path = test_utils.get_test_data_path(
 | 
					  holistic_result_file_path = test_utils.get_test_data_path(file_path)
 | 
				
			||||||
    file_path
 | 
					 | 
				
			||||||
  )
 | 
					 | 
				
			||||||
  with open(holistic_result_file_path, 'rb') as f:
 | 
					  with open(holistic_result_file_path, 'rb') as f:
 | 
				
			||||||
    holistic_result_proto = _HolisticResultProto()
 | 
					    holistic_result_proto = _HolisticResultProto()
 | 
				
			||||||
    # Use this if a .pb file is available.
 | 
					    # Use this if a .pb file is available.
 | 
				
			||||||
| 
						 | 
					@ -108,6 +102,7 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for i, elem in enumerate(actual_blendshapes):
 | 
					    for i, elem in enumerate(actual_blendshapes):
 | 
				
			||||||
      self.assertEqual(elem.index, expected_blendshapes[i].index)
 | 
					      self.assertEqual(elem.index, expected_blendshapes[i].index)
 | 
				
			||||||
 | 
					      self.assertEqual(elem.category_name, expected_blendshapes[i].category_name)
 | 
				
			||||||
      self.assertAlmostEqual(
 | 
					      self.assertAlmostEqual(
 | 
				
			||||||
          elem.score,
 | 
					          elem.score,
 | 
				
			||||||
          expected_blendshapes[i].score,
 | 
					          expected_blendshapes[i].score,
 | 
				
			||||||
| 
						 | 
					@ -118,7 +113,7 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
      self,
 | 
					      self,
 | 
				
			||||||
      actual_result: HolisticLandmarkerResult,
 | 
					      actual_result: HolisticLandmarkerResult,
 | 
				
			||||||
      expected_result: HolisticLandmarkerResult,
 | 
					      expected_result: HolisticLandmarkerResult,
 | 
				
			||||||
      output_segmentation_masks: bool,
 | 
					      output_segmentation_mask: bool,
 | 
				
			||||||
      landmarks_margin: float,
 | 
					      landmarks_margin: float,
 | 
				
			||||||
      blendshapes_margin: float,
 | 
					      blendshapes_margin: float,
 | 
				
			||||||
  ):
 | 
					  ):
 | 
				
			||||||
| 
						 | 
					@ -134,12 +129,43 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
        actual_result.face_blendshapes, expected_result.face_blendshapes,
 | 
					        actual_result.face_blendshapes, expected_result.face_blendshapes,
 | 
				
			||||||
        blendshapes_margin
 | 
					        blendshapes_margin
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    if output_segmentation_masks:
 | 
					    if output_segmentation_mask:
 | 
				
			||||||
      self.assertIsInstance(actual_result.segmentation_masks, List)
 | 
					      self.assertIsInstance(actual_result.segmentation_mask, _Image)
 | 
				
			||||||
      for _, mask in enumerate(actual_result.segmentation_masks):
 | 
					      self.assertEqual(actual_result.segmentation_mask.width, _IMAGE_WIDTH)
 | 
				
			||||||
        self.assertIsInstance(mask, _Image)
 | 
					      self.assertEqual(actual_result.segmentation_mask.height, _IMAGE_HEIGHT)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
      self.assertIsNone(actual_result.segmentation_masks)
 | 
					      self.assertIsNone(actual_result.segmentation_mask)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_create_from_file_succeeds_with_valid_model_path(self):
 | 
				
			||||||
 | 
					    # Creates with default option and valid model file successfully.
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_model_path(self.model_path) as landmarker:
 | 
				
			||||||
 | 
					      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_create_from_options_succeeds_with_valid_model_path(self):
 | 
				
			||||||
 | 
					    # Creates with options containing model file successfully.
 | 
				
			||||||
 | 
					    base_options = _BaseOptions(model_asset_path=self.model_path)
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_create_from_options_fails_with_invalid_model_path(self):
 | 
				
			||||||
 | 
					    # Invalid empty model path.
 | 
				
			||||||
 | 
					    with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					        RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(
 | 
				
			||||||
 | 
					        model_asset_path='/path/to/invalid/model.tflite'
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					      options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
				
			||||||
 | 
					      _HolisticLandmarker.create_from_options(options)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_create_from_options_succeeds_with_valid_model_content(self):
 | 
				
			||||||
 | 
					    # Creates with options containing model content successfully.
 | 
				
			||||||
 | 
					    with open(self.model_path, 'rb') as f:
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(model_asset_buffer=f.read())
 | 
				
			||||||
 | 
					      options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
				
			||||||
 | 
					      landmarker = _HolisticLandmarker.create_from_options(options)
 | 
				
			||||||
 | 
					      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @parameterized.parameters(
 | 
					  @parameterized.parameters(
 | 
				
			||||||
      (
 | 
					      (
 | 
				
			||||||
| 
						 | 
					@ -154,13 +180,25 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
          False,
 | 
					          False,
 | 
				
			||||||
          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
					          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
      ),
 | 
					      ),
 | 
				
			||||||
 | 
					      (
 | 
				
			||||||
 | 
					          ModelFileType.FILE_NAME,
 | 
				
			||||||
 | 
					          _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					          True,
 | 
				
			||||||
 | 
					          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					      ),
 | 
				
			||||||
 | 
					      (
 | 
				
			||||||
 | 
					          ModelFileType.FILE_CONTENT,
 | 
				
			||||||
 | 
					          _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					          True,
 | 
				
			||||||
 | 
					          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					      ),
 | 
				
			||||||
  )
 | 
					  )
 | 
				
			||||||
  def test_detect(
 | 
					  def test_detect(
 | 
				
			||||||
      self,
 | 
					      self,
 | 
				
			||||||
      model_file_type,
 | 
					      model_file_type,
 | 
				
			||||||
      model_name,
 | 
					      model_name,
 | 
				
			||||||
      output_segmentation_masks,
 | 
					      output_segmentation_mask,
 | 
				
			||||||
      expected_holistic_landmarker_result: HolisticLandmarkerResult
 | 
					      expected_holistic_landmarker_result
 | 
				
			||||||
  ):
 | 
					  ):
 | 
				
			||||||
    # Creates holistic landmarker.
 | 
					    # Creates holistic landmarker.
 | 
				
			||||||
    model_path = test_utils.get_test_data_path(model_name)
 | 
					    model_path = test_utils.get_test_data_path(model_name)
 | 
				
			||||||
| 
						 | 
					@ -178,7 +216,7 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
        base_options=base_options,
 | 
					        base_options=base_options,
 | 
				
			||||||
        output_face_blendshapes=True
 | 
					        output_face_blendshapes=True
 | 
				
			||||||
        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
					        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
				
			||||||
        output_segmentation_masks=output_segmentation_masks,
 | 
					        output_segmentation_mask=output_segmentation_mask,
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    landmarker = _HolisticLandmarker.create_from_options(options)
 | 
					    landmarker = _HolisticLandmarker.create_from_options(options)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -186,12 +224,294 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
				
			||||||
    detection_result = landmarker.detect(self.test_image)
 | 
					    detection_result = landmarker.detect(self.test_image)
 | 
				
			||||||
    self._expect_holistic_landmarker_results_correct(
 | 
					    self._expect_holistic_landmarker_results_correct(
 | 
				
			||||||
        detection_result, expected_holistic_landmarker_result,
 | 
					        detection_result, expected_holistic_landmarker_result,
 | 
				
			||||||
        output_segmentation_masks, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
					        output_segmentation_mask, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    # Closes the holistic landmarker explicitly when the holistic landmarker is
 | 
					    # Closes the holistic landmarker explicitly when the holistic landmarker is
 | 
				
			||||||
    # not used in a context.
 | 
					    # not used in a context.
 | 
				
			||||||
    landmarker.close()
 | 
					    landmarker.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters(
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        ModelFileType.FILE_NAME,
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        False,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        ModelFileType.FILE_CONTENT,
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        True,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					  )
 | 
				
			||||||
 | 
					  def test_detect_in_context(
 | 
				
			||||||
 | 
					      self,
 | 
				
			||||||
 | 
					      model_file_type,
 | 
				
			||||||
 | 
					      model_name,
 | 
				
			||||||
 | 
					      output_segmentation_mask,
 | 
				
			||||||
 | 
					      expected_holistic_landmarker_result
 | 
				
			||||||
 | 
					  ):
 | 
				
			||||||
 | 
					    # Creates holistic landmarker.
 | 
				
			||||||
 | 
					    model_path = test_utils.get_test_data_path(model_name)
 | 
				
			||||||
 | 
					    if model_file_type is ModelFileType.FILE_NAME:
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(model_asset_path=model_path)
 | 
				
			||||||
 | 
					    elif model_file_type is ModelFileType.FILE_CONTENT:
 | 
				
			||||||
 | 
					      with open(model_path, 'rb') as f:
 | 
				
			||||||
 | 
					        model_content = f.read()
 | 
				
			||||||
 | 
					      base_options = _BaseOptions(model_asset_buffer=model_content)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					      # Should never happen
 | 
				
			||||||
 | 
					      raise ValueError('model_file_type is invalid.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=base_options,
 | 
				
			||||||
 | 
					        output_face_blendshapes=True
 | 
				
			||||||
 | 
					        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
				
			||||||
 | 
					        output_segmentation_mask=output_segmentation_mask,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      # Performs holistic landmarks detection on the input.
 | 
				
			||||||
 | 
					      detection_result = landmarker.detect(self.test_image)
 | 
				
			||||||
 | 
					      self._expect_holistic_landmarker_results_correct(
 | 
				
			||||||
 | 
					          detection_result, expected_holistic_landmarker_result,
 | 
				
			||||||
 | 
					          output_segmentation_mask, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_empty_detection_outputs(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path)
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      # Load the cat image.
 | 
				
			||||||
 | 
					      cat_test_image = _Image.create_from_file(
 | 
				
			||||||
 | 
					        test_utils.get_test_data_path(_CAT_IMAGE)
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					      # Performs holistic landmarks detection on the input.
 | 
				
			||||||
 | 
					      detection_result = landmarker.detect(cat_test_image)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.face_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.pose_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.pose_world_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.left_hand_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.left_hand_world_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.right_hand_landmarks)
 | 
				
			||||||
 | 
					      self.assertEmpty(detection_result.right_hand_world_landmarks)
 | 
				
			||||||
 | 
					      self.assertIsNone(detection_result.face_blendshapes)
 | 
				
			||||||
 | 
					      self.assertIsNone(detection_result.segmentation_mask)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_missing_result_callback(self):
 | 
				
			||||||
 | 
					      options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					          base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					          running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'result callback must be provided'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        with _HolisticLandmarker.create_from_options(options) as unused_landmarker:
 | 
				
			||||||
 | 
					          pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
 | 
				
			||||||
 | 
					  def test_illegal_result_callback(self, running_mode):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=running_mode,
 | 
				
			||||||
 | 
					        result_callback=mock.MagicMock(),
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					        ValueError, r'result callback should not be provided'
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					      with _HolisticLandmarker.create_from_options(options) as unused_landmarker:
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_for_video_in_image_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.IMAGE,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the video mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_async_in_image_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.IMAGE,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the live stream mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_in_video_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.VIDEO,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the image mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect(self.test_image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_async_in_video_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.VIDEO,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the live stream mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_detect_for_video_with_out_of_order_timestamp(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.VIDEO,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      unused_result = landmarker.detect_for_video(self.test_image, 1)
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'Input timestamp must be monotonically increasing'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters(
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        False,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        True,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					  )
 | 
				
			||||||
 | 
					  def test_detect_for_video(
 | 
				
			||||||
 | 
					      self,
 | 
				
			||||||
 | 
					      model_name,
 | 
				
			||||||
 | 
					      output_segmentation_mask,
 | 
				
			||||||
 | 
					      expected_holistic_landmarker_result
 | 
				
			||||||
 | 
					  ):
 | 
				
			||||||
 | 
					    # Creates holistic landmarker.
 | 
				
			||||||
 | 
					    model_path = test_utils.get_test_data_path(model_name)
 | 
				
			||||||
 | 
					    base_options = _BaseOptions(model_asset_path=model_path)
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=base_options,
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.VIDEO,
 | 
				
			||||||
 | 
					        output_face_blendshapes=True
 | 
				
			||||||
 | 
					        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
				
			||||||
 | 
					        output_segmentation_mask=output_segmentation_mask,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      for timestamp in range(0, 300, 30):
 | 
				
			||||||
 | 
					        # Performs holistic landmarks detection on the input.
 | 
				
			||||||
 | 
					        detection_result = landmarker.detect_for_video(
 | 
				
			||||||
 | 
					            self.test_image, timestamp
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        # Comparing results.
 | 
				
			||||||
 | 
					        self._expect_holistic_landmarker_results_correct(
 | 
				
			||||||
 | 
					            detection_result, expected_holistic_landmarker_result,
 | 
				
			||||||
 | 
					            output_segmentation_mask,
 | 
				
			||||||
 | 
					            _VIDEO_LANDMARKS_MARGIN, _VIDEO_BLENDSHAPES_MARGIN
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_in_live_stream_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock(),
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the image mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect(self.test_image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_calling_detect_for_video_in_live_stream_mode(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					      result_callback=mock.MagicMock(),
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'not initialized with the video mode'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_for_video(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def test_detect_async_calls_with_illegal_timestamp(self):
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					        result_callback=mock.MagicMock(),
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      landmarker.detect_async(self.test_image, 100)
 | 
				
			||||||
 | 
					      with self.assertRaisesRegex(
 | 
				
			||||||
 | 
					          ValueError, r'Input timestamp must be monotonically increasing'
 | 
				
			||||||
 | 
					      ):
 | 
				
			||||||
 | 
					        landmarker.detect_async(self.test_image, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @parameterized.parameters(
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        _POSE_IMAGE,
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        False,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					    (
 | 
				
			||||||
 | 
					        _POSE_IMAGE,
 | 
				
			||||||
 | 
					        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
				
			||||||
 | 
					        True,
 | 
				
			||||||
 | 
					        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					  )
 | 
				
			||||||
 | 
					  def test_detect_async_calls(
 | 
				
			||||||
 | 
					      self,
 | 
				
			||||||
 | 
					      image_path,
 | 
				
			||||||
 | 
					      model_name,
 | 
				
			||||||
 | 
					      output_segmentation_mask,
 | 
				
			||||||
 | 
					      expected_holistic_landmarker_result
 | 
				
			||||||
 | 
					  ):
 | 
				
			||||||
 | 
					    test_image = _Image.create_from_file(
 | 
				
			||||||
 | 
					        test_utils.get_test_data_path(image_path)
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    observed_timestamp_ms = -1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def check_result(
 | 
				
			||||||
 | 
					        result: HolisticLandmarkerResult, output_image: _Image, timestamp_ms: int
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					      # Comparing results.
 | 
				
			||||||
 | 
					      self._expect_holistic_landmarker_results_correct(
 | 
				
			||||||
 | 
					          result, expected_holistic_landmarker_result,
 | 
				
			||||||
 | 
					          output_segmentation_mask,
 | 
				
			||||||
 | 
					          _LIVE_STREAM_LANDMARKS_MARGIN, _LIVE_STREAM_BLENDSHAPES_MARGIN
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					      self.assertTrue(
 | 
				
			||||||
 | 
					          np.array_equal(output_image.numpy_view(), test_image.numpy_view())
 | 
				
			||||||
 | 
					      )
 | 
				
			||||||
 | 
					      self.assertLess(observed_timestamp_ms, timestamp_ms)
 | 
				
			||||||
 | 
					      self.observed_timestamp_ms = timestamp_ms
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model_path = test_utils.get_test_data_path(model_name)
 | 
				
			||||||
 | 
					    options = _HolisticLandmarkerOptions(
 | 
				
			||||||
 | 
					        base_options=_BaseOptions(model_asset_path=model_path),
 | 
				
			||||||
 | 
					        running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
				
			||||||
 | 
					        output_face_blendshapes=True
 | 
				
			||||||
 | 
					        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
				
			||||||
 | 
					        output_segmentation_mask=output_segmentation_mask,
 | 
				
			||||||
 | 
					        result_callback=check_result,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
				
			||||||
 | 
					      for timestamp in range(0, 300, 30):
 | 
				
			||||||
 | 
					        landmarker.detect_async(test_image, timestamp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
  absltest.main()
 | 
					  absltest.main()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -51,7 +51,7 @@ _POSE_LANDMARKS_TAG_NAME = "POSE_LANDMARKS"
 | 
				
			||||||
_POSE_WORLD_LANDMARKS_STREAM_NAME = "pose_world_landmarks"
 | 
					_POSE_WORLD_LANDMARKS_STREAM_NAME = "pose_world_landmarks"
 | 
				
			||||||
_POSE_WORLD_LANDMARKS_TAG = "POSE_WORLD_LANDMARKS"
 | 
					_POSE_WORLD_LANDMARKS_TAG = "POSE_WORLD_LANDMARKS"
 | 
				
			||||||
_POSE_SEGMENTATION_MASK_STREAM_NAME = "pose_segmentation_mask"
 | 
					_POSE_SEGMENTATION_MASK_STREAM_NAME = "pose_segmentation_mask"
 | 
				
			||||||
_POSE_SEGMENTATION_MASK_TAG = "pose_segmentation_mask"
 | 
					_POSE_SEGMENTATION_MASK_TAG = "POSE_SEGMENTATION_MASK"
 | 
				
			||||||
_FACE_LANDMARKS_STREAM_NAME = "face_landmarks"
 | 
					_FACE_LANDMARKS_STREAM_NAME = "face_landmarks"
 | 
				
			||||||
_FACE_LANDMARKS_TAG = "FACE_LANDMARKS"
 | 
					_FACE_LANDMARKS_TAG = "FACE_LANDMARKS"
 | 
				
			||||||
_FACE_BLENDSHAPES_STREAM_NAME = "extra_blendshapes"
 | 
					_FACE_BLENDSHAPES_STREAM_NAME = "extra_blendshapes"
 | 
				
			||||||
| 
						 | 
					@ -84,7 +84,7 @@ class HolisticLandmarkerResult:
 | 
				
			||||||
  right_hand_landmarks: List[landmark_module.NormalizedLandmark]
 | 
					  right_hand_landmarks: List[landmark_module.NormalizedLandmark]
 | 
				
			||||||
  right_hand_world_landmarks: List[landmark_module.Landmark]
 | 
					  right_hand_world_landmarks: List[landmark_module.Landmark]
 | 
				
			||||||
  face_blendshapes: Optional[List[category_module.Category]] = None
 | 
					  face_blendshapes: Optional[List[category_module.Category]] = None
 | 
				
			||||||
  segmentation_masks: Optional[List[image_module.Image]] = None
 | 
					  segmentation_mask: Optional[image_module.Image] = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @classmethod
 | 
					  @classmethod
 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					  @doc_controls.do_not_generate_docs
 | 
				
			||||||
| 
						 | 
					@ -237,7 +237,7 @@ def _build_landmarker_result(
 | 
				
			||||||
      )
 | 
					      )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if _POSE_SEGMENTATION_MASK_STREAM_NAME in output_packets:
 | 
					  if _POSE_SEGMENTATION_MASK_STREAM_NAME in output_packets:
 | 
				
			||||||
    holistic_landmarker_result.segmentation_masks = packet_getter.get_image_list(
 | 
					    holistic_landmarker_result.segmentation_mask = packet_getter.get_image(
 | 
				
			||||||
        output_packets[_POSE_SEGMENTATION_MASK_STREAM_NAME]
 | 
					        output_packets[_POSE_SEGMENTATION_MASK_STREAM_NAME]
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -273,7 +273,7 @@ class HolisticLandmarkerOptions:
 | 
				
			||||||
      landmark detection to be considered successful.
 | 
					      landmark detection to be considered successful.
 | 
				
			||||||
    output_face_blendshapes: Whether HolisticLandmarker outputs face blendshapes
 | 
					    output_face_blendshapes: Whether HolisticLandmarker outputs face blendshapes
 | 
				
			||||||
      classification. Face blendshapes are used for rendering the 3D face model.
 | 
					      classification. Face blendshapes are used for rendering the 3D face model.
 | 
				
			||||||
    output_segmentation_masks: whether to output segmentation masks.
 | 
					    output_segmentation_mask: whether to output segmentation masks.
 | 
				
			||||||
    result_callback: The user-defined result callback for processing live stream
 | 
					    result_callback: The user-defined result callback for processing live stream
 | 
				
			||||||
      data. The result callback should only be specified when the running mode
 | 
					      data. The result callback should only be specified when the running mode
 | 
				
			||||||
      is set to the live stream mode.
 | 
					      is set to the live stream mode.
 | 
				
			||||||
| 
						 | 
					@ -290,7 +290,7 @@ class HolisticLandmarkerOptions:
 | 
				
			||||||
  min_pose_landmarks_confidence: float = 0.5
 | 
					  min_pose_landmarks_confidence: float = 0.5
 | 
				
			||||||
  min_hand_landmarks_confidence: float = 0.5
 | 
					  min_hand_landmarks_confidence: float = 0.5
 | 
				
			||||||
  output_face_blendshapes: bool = False
 | 
					  output_face_blendshapes: bool = False
 | 
				
			||||||
  output_segmentation_masks: bool = False
 | 
					  output_segmentation_mask: bool = False
 | 
				
			||||||
  result_callback: Optional[
 | 
					  result_callback: Optional[
 | 
				
			||||||
      Callable[[HolisticLandmarkerResult, image_module.Image, int], None]
 | 
					      Callable[[HolisticLandmarkerResult, image_module.Image, int], None]
 | 
				
			||||||
  ] = None
 | 
					  ] = None
 | 
				
			||||||
| 
						 | 
					@ -411,18 +411,22 @@ class HolisticLandmarker(base_vision_task_api.BaseVisionTaskApi):
 | 
				
			||||||
        ),
 | 
					        ),
 | 
				
			||||||
        ':'.join([_LEFT_HAND_LANDMARKS_TAG, _LEFT_HAND_LANDMARKS_STREAM_NAME]),
 | 
					        ':'.join([_LEFT_HAND_LANDMARKS_TAG, _LEFT_HAND_LANDMARKS_STREAM_NAME]),
 | 
				
			||||||
        ':'.join(
 | 
					        ':'.join(
 | 
				
			||||||
        [_LEFT_HAND_WORLD_LANDMARKS_TAG, _LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
					            [_LEFT_HAND_WORLD_LANDMARKS_TAG,
 | 
				
			||||||
 | 
					             _LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
				
			||||||
        ),
 | 
					        ),
 | 
				
			||||||
      ':'.join([_RIGHT_HAND_LANDMARKS_TAG, _RIGHT_HAND_LANDMARKS_STREAM_NAME]),
 | 
					        ':'.join([_RIGHT_HAND_LANDMARKS_TAG,
 | 
				
			||||||
 | 
					                  _RIGHT_HAND_LANDMARKS_STREAM_NAME]),
 | 
				
			||||||
        ':'.join(
 | 
					        ':'.join(
 | 
				
			||||||
        [_RIGHT_HAND_WORLD_LANDMARKS_TAG, _RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
					            [_RIGHT_HAND_WORLD_LANDMARKS_TAG,
 | 
				
			||||||
 | 
					             _RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
				
			||||||
        ),
 | 
					        ),
 | 
				
			||||||
        ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
 | 
					        ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
 | 
				
			||||||
    ]
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if options.output_segmentation_masks:
 | 
					    if options.output_segmentation_mask:
 | 
				
			||||||
      output_streams.append(
 | 
					      output_streams.append(
 | 
				
			||||||
        ':'.join([_POSE_SEGMENTATION_MASK_TAG, _POSE_SEGMENTATION_MASK_STREAM_NAME])
 | 
					          ':'.join([_POSE_SEGMENTATION_MASK_TAG,
 | 
				
			||||||
 | 
					                    _POSE_SEGMENTATION_MASK_STREAM_NAME])
 | 
				
			||||||
      )
 | 
					      )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if options.output_face_blendshapes:
 | 
					    if options.output_face_blendshapes:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user