Revised implementation and added more tests
This commit is contained in:
		
							parent
							
								
									88463aeb9e
								
							
						
					
					
						commit
						30e6b766d4
					
				| 
						 | 
				
			
			@ -204,13 +204,8 @@ py_test(
 | 
			
		|||
    ],
 | 
			
		||||
    tags = ["not_run:arm"],
 | 
			
		||||
    deps = [
 | 
			
		||||
        "//mediapipe/framework/formats:classification_py_pb2",
 | 
			
		||||
        "//mediapipe/framework/formats:landmark_py_pb2",
 | 
			
		||||
        "//mediapipe/tasks/cc/vision/holistic_landmarker/proto:holistic_result_py_pb2",
 | 
			
		||||
        "//mediapipe/python:_framework_bindings",
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:category",
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:landmark",
 | 
			
		||||
        "//mediapipe/tasks/python/components/containers:rect",
 | 
			
		||||
        "//mediapipe/tasks/python/core:base_options",
 | 
			
		||||
        "//mediapipe/tasks/python/test:test_utils",
 | 
			
		||||
        "//mediapipe/tasks/python/vision:holistic_landmarker",
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -14,7 +14,6 @@
 | 
			
		|||
"""Tests for holistic landmarker."""
 | 
			
		||||
 | 
			
		||||
import enum
 | 
			
		||||
from typing import List
 | 
			
		||||
from unittest import mock
 | 
			
		||||
 | 
			
		||||
from absl.testing import absltest
 | 
			
		||||
| 
						 | 
				
			
			@ -22,13 +21,8 @@ from absl.testing import parameterized
 | 
			
		|||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from google.protobuf import text_format
 | 
			
		||||
from mediapipe.framework.formats import classification_pb2
 | 
			
		||||
from mediapipe.framework.formats import landmark_pb2
 | 
			
		||||
from mediapipe.tasks.cc.vision.holistic_landmarker.proto import holistic_result_pb2
 | 
			
		||||
from mediapipe.python._framework_bindings import image as image_module
 | 
			
		||||
from mediapipe.tasks.python.components.containers import category as category_module
 | 
			
		||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
 | 
			
		||||
from mediapipe.tasks.python.components.containers import rect as rect_module
 | 
			
		||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
			
		||||
from mediapipe.tasks.python.test import test_utils
 | 
			
		||||
from mediapipe.tasks.python.vision import holistic_landmarker
 | 
			
		||||
| 
						 | 
				
			
			@ -39,10 +33,6 @@ from mediapipe.tasks.python.vision.core import vision_task_running_mode as runni
 | 
			
		|||
HolisticLandmarkerResult = holistic_landmarker.HolisticLandmarkerResult
 | 
			
		||||
_HolisticResultProto = holistic_result_pb2.HolisticResult
 | 
			
		||||
_BaseOptions = base_options_module.BaseOptions
 | 
			
		||||
_Category = category_module.Category
 | 
			
		||||
_Rect = rect_module.Rect
 | 
			
		||||
_Landmark = landmark_module.Landmark
 | 
			
		||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
 | 
			
		||||
_Image = image_module.Image
 | 
			
		||||
_HolisticLandmarker = holistic_landmarker.HolisticLandmarker
 | 
			
		||||
_HolisticLandmarkerOptions = holistic_landmarker.HolisticLandmarkerOptions
 | 
			
		||||
| 
						 | 
				
			
			@ -53,23 +43,27 @@ _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE = 'holistic_landmarker.task'
 | 
			
		|||
_POSE_IMAGE = 'male_full_height_hands.jpg'
 | 
			
		||||
_CAT_IMAGE = 'cat.jpg'
 | 
			
		||||
_EXPECTED_HOLISTIC_RESULT = "male_full_height_hands_result_cpu.pbtxt"
 | 
			
		||||
_IMAGE_WIDTH = 638
 | 
			
		||||
_IMAGE_HEIGHT = 1000
 | 
			
		||||
_LANDMARKS_MARGIN = 0.03
 | 
			
		||||
_BLENDSHAPES_MARGIN = 0.13
 | 
			
		||||
_VIDEO_LANDMARKS_MARGIN = 0.03
 | 
			
		||||
_VIDEO_BLENDSHAPES_MARGIN = 0.31
 | 
			
		||||
_LIVE_STREAM_LANDMARKS_MARGIN = 0.03
 | 
			
		||||
_LIVE_STREAM_BLENDSHAPES_MARGIN = 0.31
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_expected_holistic_landmarker_result(
 | 
			
		||||
    file_path: str,
 | 
			
		||||
) -> HolisticLandmarkerResult:
 | 
			
		||||
  holistic_result_file_path = test_utils.get_test_data_path(
 | 
			
		||||
    file_path
 | 
			
		||||
  )
 | 
			
		||||
  holistic_result_file_path = test_utils.get_test_data_path(file_path)
 | 
			
		||||
  with open(holistic_result_file_path, 'rb') as f:
 | 
			
		||||
    holistic_result_proto = _HolisticResultProto()
 | 
			
		||||
    # Use this if a .pb file is available.
 | 
			
		||||
    # holistic_result_proto.ParseFromString(f.read())
 | 
			
		||||
    text_format.Parse(f.read(), holistic_result_proto)
 | 
			
		||||
    holistic_landmarker_result = HolisticLandmarkerResult.create_from_pb2(
 | 
			
		||||
      holistic_result_proto
 | 
			
		||||
        holistic_result_proto
 | 
			
		||||
    )
 | 
			
		||||
  return holistic_landmarker_result
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -108,38 +102,70 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
			
		|||
 | 
			
		||||
    for i, elem in enumerate(actual_blendshapes):
 | 
			
		||||
      self.assertEqual(elem.index, expected_blendshapes[i].index)
 | 
			
		||||
      self.assertEqual(elem.category_name, expected_blendshapes[i].category_name)
 | 
			
		||||
      self.assertAlmostEqual(
 | 
			
		||||
        elem.score,
 | 
			
		||||
        expected_blendshapes[i].score,
 | 
			
		||||
        delta=margin,
 | 
			
		||||
          elem.score,
 | 
			
		||||
          expected_blendshapes[i].score,
 | 
			
		||||
          delta=margin,
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
  def _expect_holistic_landmarker_results_correct(
 | 
			
		||||
      self,
 | 
			
		||||
      actual_result: HolisticLandmarkerResult,
 | 
			
		||||
      expected_result: HolisticLandmarkerResult,
 | 
			
		||||
      output_segmentation_masks: bool,
 | 
			
		||||
      output_segmentation_mask: bool,
 | 
			
		||||
      landmarks_margin: float,
 | 
			
		||||
      blendshapes_margin: float,
 | 
			
		||||
  ):
 | 
			
		||||
    self._expect_landmarks_correct(
 | 
			
		||||
      actual_result.pose_landmarks, expected_result.pose_landmarks,
 | 
			
		||||
      landmarks_margin
 | 
			
		||||
        actual_result.pose_landmarks, expected_result.pose_landmarks,
 | 
			
		||||
        landmarks_margin
 | 
			
		||||
    )
 | 
			
		||||
    self._expect_landmarks_correct(
 | 
			
		||||
      actual_result.face_landmarks, expected_result.face_landmarks,
 | 
			
		||||
      landmarks_margin
 | 
			
		||||
        actual_result.face_landmarks, expected_result.face_landmarks,
 | 
			
		||||
        landmarks_margin
 | 
			
		||||
    )
 | 
			
		||||
    self._expect_blendshapes_correct(
 | 
			
		||||
      actual_result.face_blendshapes, expected_result.face_blendshapes,
 | 
			
		||||
      blendshapes_margin
 | 
			
		||||
        actual_result.face_blendshapes, expected_result.face_blendshapes,
 | 
			
		||||
        blendshapes_margin
 | 
			
		||||
    )
 | 
			
		||||
    if output_segmentation_masks:
 | 
			
		||||
      self.assertIsInstance(actual_result.segmentation_masks, List)
 | 
			
		||||
      for _, mask in enumerate(actual_result.segmentation_masks):
 | 
			
		||||
        self.assertIsInstance(mask, _Image)
 | 
			
		||||
    if output_segmentation_mask:
 | 
			
		||||
      self.assertIsInstance(actual_result.segmentation_mask, _Image)
 | 
			
		||||
      self.assertEqual(actual_result.segmentation_mask.width, _IMAGE_WIDTH)
 | 
			
		||||
      self.assertEqual(actual_result.segmentation_mask.height, _IMAGE_HEIGHT)
 | 
			
		||||
    else:
 | 
			
		||||
      self.assertIsNone(actual_result.segmentation_masks)
 | 
			
		||||
      self.assertIsNone(actual_result.segmentation_mask)
 | 
			
		||||
 | 
			
		||||
  def test_create_from_file_succeeds_with_valid_model_path(self):
 | 
			
		||||
    # Creates with default option and valid model file successfully.
 | 
			
		||||
    with _HolisticLandmarker.create_from_model_path(self.model_path) as landmarker:
 | 
			
		||||
      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
			
		||||
 | 
			
		||||
  def test_create_from_options_succeeds_with_valid_model_path(self):
 | 
			
		||||
    # Creates with options containing model file successfully.
 | 
			
		||||
    base_options = _BaseOptions(model_asset_path=self.model_path)
 | 
			
		||||
    options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
			
		||||
 | 
			
		||||
  def test_create_from_options_fails_with_invalid_model_path(self):
 | 
			
		||||
    # Invalid empty model path.
 | 
			
		||||
    with self.assertRaisesRegex(
 | 
			
		||||
        RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
 | 
			
		||||
    ):
 | 
			
		||||
      base_options = _BaseOptions(
 | 
			
		||||
        model_asset_path='/path/to/invalid/model.tflite'
 | 
			
		||||
      )
 | 
			
		||||
      options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
			
		||||
      _HolisticLandmarker.create_from_options(options)
 | 
			
		||||
 | 
			
		||||
  def test_create_from_options_succeeds_with_valid_model_content(self):
 | 
			
		||||
    # Creates with options containing model content successfully.
 | 
			
		||||
    with open(self.model_path, 'rb') as f:
 | 
			
		||||
      base_options = _BaseOptions(model_asset_buffer=f.read())
 | 
			
		||||
      options = _HolisticLandmarkerOptions(base_options=base_options)
 | 
			
		||||
      landmarker = _HolisticLandmarker.create_from_options(options)
 | 
			
		||||
      self.assertIsInstance(landmarker, _HolisticLandmarker)
 | 
			
		||||
 | 
			
		||||
  @parameterized.parameters(
 | 
			
		||||
      (
 | 
			
		||||
| 
						 | 
				
			
			@ -154,13 +180,25 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
			
		|||
          False,
 | 
			
		||||
          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
      ),
 | 
			
		||||
      (
 | 
			
		||||
          ModelFileType.FILE_NAME,
 | 
			
		||||
          _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
          True,
 | 
			
		||||
          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
      ),
 | 
			
		||||
      (
 | 
			
		||||
          ModelFileType.FILE_CONTENT,
 | 
			
		||||
          _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
          True,
 | 
			
		||||
          _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
      ),
 | 
			
		||||
  )
 | 
			
		||||
  def test_detect(
 | 
			
		||||
      self,
 | 
			
		||||
      model_file_type,
 | 
			
		||||
      model_name,
 | 
			
		||||
      output_segmentation_masks,
 | 
			
		||||
      expected_holistic_landmarker_result: HolisticLandmarkerResult
 | 
			
		||||
      output_segmentation_mask,
 | 
			
		||||
      expected_holistic_landmarker_result
 | 
			
		||||
  ):
 | 
			
		||||
    # Creates holistic landmarker.
 | 
			
		||||
    model_path = test_utils.get_test_data_path(model_name)
 | 
			
		||||
| 
						 | 
				
			
			@ -178,7 +216,7 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
			
		|||
        base_options=base_options,
 | 
			
		||||
        output_face_blendshapes=True
 | 
			
		||||
        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
			
		||||
        output_segmentation_masks=output_segmentation_masks,
 | 
			
		||||
        output_segmentation_mask=output_segmentation_mask,
 | 
			
		||||
    )
 | 
			
		||||
    landmarker = _HolisticLandmarker.create_from_options(options)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -186,12 +224,294 @@ class HolisticLandmarkerTest(parameterized.TestCase):
 | 
			
		|||
    detection_result = landmarker.detect(self.test_image)
 | 
			
		||||
    self._expect_holistic_landmarker_results_correct(
 | 
			
		||||
        detection_result, expected_holistic_landmarker_result,
 | 
			
		||||
        output_segmentation_masks, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
			
		||||
        output_segmentation_mask, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
			
		||||
    )
 | 
			
		||||
    # Closes the holistic landmarker explicitly when the holistic landmarker is
 | 
			
		||||
    # not used in a context.
 | 
			
		||||
    landmarker.close()
 | 
			
		||||
 | 
			
		||||
  @parameterized.parameters(
 | 
			
		||||
    (
 | 
			
		||||
        ModelFileType.FILE_NAME,
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        False,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
    (
 | 
			
		||||
        ModelFileType.FILE_CONTENT,
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        True,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
  )
 | 
			
		||||
  def test_detect_in_context(
 | 
			
		||||
      self,
 | 
			
		||||
      model_file_type,
 | 
			
		||||
      model_name,
 | 
			
		||||
      output_segmentation_mask,
 | 
			
		||||
      expected_holistic_landmarker_result
 | 
			
		||||
  ):
 | 
			
		||||
    # Creates holistic landmarker.
 | 
			
		||||
    model_path = test_utils.get_test_data_path(model_name)
 | 
			
		||||
    if model_file_type is ModelFileType.FILE_NAME:
 | 
			
		||||
      base_options = _BaseOptions(model_asset_path=model_path)
 | 
			
		||||
    elif model_file_type is ModelFileType.FILE_CONTENT:
 | 
			
		||||
      with open(model_path, 'rb') as f:
 | 
			
		||||
        model_content = f.read()
 | 
			
		||||
      base_options = _BaseOptions(model_asset_buffer=model_content)
 | 
			
		||||
    else:
 | 
			
		||||
      # Should never happen
 | 
			
		||||
      raise ValueError('model_file_type is invalid.')
 | 
			
		||||
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=base_options,
 | 
			
		||||
        output_face_blendshapes=True
 | 
			
		||||
        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
			
		||||
        output_segmentation_mask=output_segmentation_mask,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      # Performs holistic landmarks detection on the input.
 | 
			
		||||
      detection_result = landmarker.detect(self.test_image)
 | 
			
		||||
      self._expect_holistic_landmarker_results_correct(
 | 
			
		||||
          detection_result, expected_holistic_landmarker_result,
 | 
			
		||||
          output_segmentation_mask, _LANDMARKS_MARGIN, _BLENDSHAPES_MARGIN
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
  def test_empty_detection_outputs(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path)
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      # Load the cat image.
 | 
			
		||||
      cat_test_image = _Image.create_from_file(
 | 
			
		||||
        test_utils.get_test_data_path(_CAT_IMAGE)
 | 
			
		||||
      )
 | 
			
		||||
      # Performs holistic landmarks detection on the input.
 | 
			
		||||
      detection_result = landmarker.detect(cat_test_image)
 | 
			
		||||
      self.assertEmpty(detection_result.face_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.pose_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.pose_world_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.left_hand_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.left_hand_world_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.right_hand_landmarks)
 | 
			
		||||
      self.assertEmpty(detection_result.right_hand_world_landmarks)
 | 
			
		||||
      self.assertIsNone(detection_result.face_blendshapes)
 | 
			
		||||
      self.assertIsNone(detection_result.segmentation_mask)
 | 
			
		||||
 | 
			
		||||
  def test_missing_result_callback(self):
 | 
			
		||||
      options = _HolisticLandmarkerOptions(
 | 
			
		||||
          base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
          running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
			
		||||
      )
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'result callback must be provided'
 | 
			
		||||
      ):
 | 
			
		||||
        with _HolisticLandmarker.create_from_options(options) as unused_landmarker:
 | 
			
		||||
          pass
 | 
			
		||||
 | 
			
		||||
  @parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
 | 
			
		||||
  def test_illegal_result_callback(self, running_mode):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=running_mode,
 | 
			
		||||
        result_callback=mock.MagicMock(),
 | 
			
		||||
    )
 | 
			
		||||
    with self.assertRaisesRegex(
 | 
			
		||||
        ValueError, r'result callback should not be provided'
 | 
			
		||||
    ):
 | 
			
		||||
      with _HolisticLandmarker.create_from_options(options) as unused_landmarker:
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_for_video_in_image_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.IMAGE,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the video mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_for_video(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_async_in_image_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.IMAGE,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the live stream mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_async(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_in_video_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.VIDEO,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the image mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect(self.test_image)
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_async_in_video_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.VIDEO,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the live stream mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_async(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  def test_detect_for_video_with_out_of_order_timestamp(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.VIDEO,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      unused_result = landmarker.detect_for_video(self.test_image, 1)
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'Input timestamp must be monotonically increasing'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_for_video(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  @parameterized.parameters(
 | 
			
		||||
    (
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        False,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
    (
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        True,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
  )
 | 
			
		||||
  def test_detect_for_video(
 | 
			
		||||
      self,
 | 
			
		||||
      model_name,
 | 
			
		||||
      output_segmentation_mask,
 | 
			
		||||
      expected_holistic_landmarker_result
 | 
			
		||||
  ):
 | 
			
		||||
    # Creates holistic landmarker.
 | 
			
		||||
    model_path = test_utils.get_test_data_path(model_name)
 | 
			
		||||
    base_options = _BaseOptions(model_asset_path=model_path)
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=base_options,
 | 
			
		||||
        running_mode=_RUNNING_MODE.VIDEO,
 | 
			
		||||
        output_face_blendshapes=True
 | 
			
		||||
        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
			
		||||
        output_segmentation_mask=output_segmentation_mask,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      for timestamp in range(0, 300, 30):
 | 
			
		||||
        # Performs holistic landmarks detection on the input.
 | 
			
		||||
        detection_result = landmarker.detect_for_video(
 | 
			
		||||
            self.test_image, timestamp
 | 
			
		||||
        )
 | 
			
		||||
        # Comparing results.
 | 
			
		||||
        self._expect_holistic_landmarker_results_correct(
 | 
			
		||||
            detection_result, expected_holistic_landmarker_result,
 | 
			
		||||
            output_segmentation_mask,
 | 
			
		||||
            _VIDEO_LANDMARKS_MARGIN, _VIDEO_BLENDSHAPES_MARGIN
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_in_live_stream_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
			
		||||
      result_callback=mock.MagicMock(),
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the image mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect(self.test_image)
 | 
			
		||||
 | 
			
		||||
  def test_calling_detect_for_video_in_live_stream_mode(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
      base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
      running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
			
		||||
      result_callback=mock.MagicMock(),
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'not initialized with the video mode'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_for_video(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  def test_detect_async_calls_with_illegal_timestamp(self):
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=self.model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
			
		||||
        result_callback=mock.MagicMock(),
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      landmarker.detect_async(self.test_image, 100)
 | 
			
		||||
      with self.assertRaisesRegex(
 | 
			
		||||
          ValueError, r'Input timestamp must be monotonically increasing'
 | 
			
		||||
      ):
 | 
			
		||||
        landmarker.detect_async(self.test_image, 0)
 | 
			
		||||
 | 
			
		||||
  @parameterized.parameters(
 | 
			
		||||
    (
 | 
			
		||||
        _POSE_IMAGE,
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        False,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
    (
 | 
			
		||||
        _POSE_IMAGE,
 | 
			
		||||
        _HOLISTIC_LANDMARKER_BUNDLE_ASSET_FILE,
 | 
			
		||||
        True,
 | 
			
		||||
        _get_expected_holistic_landmarker_result(_EXPECTED_HOLISTIC_RESULT)
 | 
			
		||||
    ),
 | 
			
		||||
  )
 | 
			
		||||
  def test_detect_async_calls(
 | 
			
		||||
      self,
 | 
			
		||||
      image_path,
 | 
			
		||||
      model_name,
 | 
			
		||||
      output_segmentation_mask,
 | 
			
		||||
      expected_holistic_landmarker_result
 | 
			
		||||
  ):
 | 
			
		||||
    test_image = _Image.create_from_file(
 | 
			
		||||
        test_utils.get_test_data_path(image_path)
 | 
			
		||||
    )
 | 
			
		||||
    observed_timestamp_ms = -1
 | 
			
		||||
 | 
			
		||||
    def check_result(
 | 
			
		||||
        result: HolisticLandmarkerResult, output_image: _Image, timestamp_ms: int
 | 
			
		||||
    ):
 | 
			
		||||
      # Comparing results.
 | 
			
		||||
      self._expect_holistic_landmarker_results_correct(
 | 
			
		||||
          result, expected_holistic_landmarker_result,
 | 
			
		||||
          output_segmentation_mask,
 | 
			
		||||
          _LIVE_STREAM_LANDMARKS_MARGIN, _LIVE_STREAM_BLENDSHAPES_MARGIN
 | 
			
		||||
      )
 | 
			
		||||
      self.assertTrue(
 | 
			
		||||
          np.array_equal(output_image.numpy_view(), test_image.numpy_view())
 | 
			
		||||
      )
 | 
			
		||||
      self.assertLess(observed_timestamp_ms, timestamp_ms)
 | 
			
		||||
      self.observed_timestamp_ms = timestamp_ms
 | 
			
		||||
 | 
			
		||||
    model_path = test_utils.get_test_data_path(model_name)
 | 
			
		||||
    options = _HolisticLandmarkerOptions(
 | 
			
		||||
        base_options=_BaseOptions(model_asset_path=model_path),
 | 
			
		||||
        running_mode=_RUNNING_MODE.LIVE_STREAM,
 | 
			
		||||
        output_face_blendshapes=True
 | 
			
		||||
        if expected_holistic_landmarker_result.face_blendshapes else False,
 | 
			
		||||
        output_segmentation_mask=output_segmentation_mask,
 | 
			
		||||
        result_callback=check_result,
 | 
			
		||||
    )
 | 
			
		||||
    with _HolisticLandmarker.create_from_options(options) as landmarker:
 | 
			
		||||
      for timestamp in range(0, 300, 30):
 | 
			
		||||
        landmarker.detect_async(test_image, timestamp)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  absltest.main()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -51,7 +51,7 @@ _POSE_LANDMARKS_TAG_NAME = "POSE_LANDMARKS"
 | 
			
		|||
_POSE_WORLD_LANDMARKS_STREAM_NAME = "pose_world_landmarks"
 | 
			
		||||
_POSE_WORLD_LANDMARKS_TAG = "POSE_WORLD_LANDMARKS"
 | 
			
		||||
_POSE_SEGMENTATION_MASK_STREAM_NAME = "pose_segmentation_mask"
 | 
			
		||||
_POSE_SEGMENTATION_MASK_TAG = "pose_segmentation_mask"
 | 
			
		||||
_POSE_SEGMENTATION_MASK_TAG = "POSE_SEGMENTATION_MASK"
 | 
			
		||||
_FACE_LANDMARKS_STREAM_NAME = "face_landmarks"
 | 
			
		||||
_FACE_LANDMARKS_TAG = "FACE_LANDMARKS"
 | 
			
		||||
_FACE_BLENDSHAPES_STREAM_NAME = "extra_blendshapes"
 | 
			
		||||
| 
						 | 
				
			
			@ -84,7 +84,7 @@ class HolisticLandmarkerResult:
 | 
			
		|||
  right_hand_landmarks: List[landmark_module.NormalizedLandmark]
 | 
			
		||||
  right_hand_world_landmarks: List[landmark_module.Landmark]
 | 
			
		||||
  face_blendshapes: Optional[List[category_module.Category]] = None
 | 
			
		||||
  segmentation_masks: Optional[List[image_module.Image]] = None
 | 
			
		||||
  segmentation_mask: Optional[image_module.Image] = None
 | 
			
		||||
 | 
			
		||||
  @classmethod
 | 
			
		||||
  @doc_controls.do_not_generate_docs
 | 
			
		||||
| 
						 | 
				
			
			@ -96,41 +96,41 @@ class HolisticLandmarkerResult:
 | 
			
		|||
    object."""
 | 
			
		||||
    return HolisticLandmarkerResult(
 | 
			
		||||
      face_landmarks=[
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.face_landmarks.landmark
 | 
			
		||||
          landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.face_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'face_landmarks') else None,
 | 
			
		||||
      pose_landmarks=[
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.pose_landmarks.landmark
 | 
			
		||||
          landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.pose_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'pose_landmarks') else None,
 | 
			
		||||
      pose_world_landmarks=[
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.pose_world_landmarks.landmark
 | 
			
		||||
          landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.pose_world_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'pose_world_landmarks') else None,
 | 
			
		||||
      left_hand_landmarks=[
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.left_hand_landmarks.landmark
 | 
			
		||||
          landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.left_hand_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'left_hand_landmarks') else None,
 | 
			
		||||
      left_hand_world_landmarks=[
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.left_hand_world_landmarks.landmark
 | 
			
		||||
          landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.left_hand_world_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'left_hand_world_landmarks') else None,
 | 
			
		||||
      right_hand_landmarks=[
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.right_hand_landmarks.landmark
 | 
			
		||||
          landmark_module.NormalizedLandmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.right_hand_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'right_hand_landmarks') else None,
 | 
			
		||||
      right_hand_world_landmarks=[
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
        for landmark in pb2_obj.right_hand_world_landmarks.landmark
 | 
			
		||||
          landmark_module.Landmark.create_from_pb2(landmark)
 | 
			
		||||
          for landmark in pb2_obj.right_hand_world_landmarks.landmark
 | 
			
		||||
      ] if hasattr(pb2_obj, 'right_hand_world_landmarks') else None,
 | 
			
		||||
      face_blendshapes=[
 | 
			
		||||
        category_module.Category(
 | 
			
		||||
          score=classification.score,
 | 
			
		||||
          index=classification.index,
 | 
			
		||||
          category_name=classification.label,
 | 
			
		||||
          display_name=classification.display_name
 | 
			
		||||
        )
 | 
			
		||||
        for classification in pb2_obj.face_blendshapes.classification
 | 
			
		||||
          category_module.Category(
 | 
			
		||||
              score=classification.score,
 | 
			
		||||
              index=classification.index,
 | 
			
		||||
              category_name=classification.label,
 | 
			
		||||
              display_name=classification.display_name
 | 
			
		||||
          )
 | 
			
		||||
          for classification in pb2_obj.face_blendshapes.classification
 | 
			
		||||
      ] if hasattr(pb2_obj, 'face_blendshapes') else None,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -147,98 +147,98 @@ def _build_landmarker_result(
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
  pose_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_POSE_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_POSE_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  pose_world_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_POSE_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_POSE_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  left_hand_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_LEFT_HAND_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_LEFT_HAND_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  left_hand_world_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  right_hand_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_RIGHT_HAND_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_RIGHT_HAND_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  right_hand_world_landmarks_proto_list = packet_getter.get_proto(
 | 
			
		||||
    output_packets[_RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      output_packets[_RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
  )
 | 
			
		||||
 | 
			
		||||
  face_landmarks = landmark_pb2.NormalizedLandmarkList()
 | 
			
		||||
  face_landmarks.MergeFrom(face_landmarks_proto_list)
 | 
			
		||||
  for face_landmark in face_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.face_landmarks.append(
 | 
			
		||||
      landmark_module.NormalizedLandmark.create_from_pb2(face_landmark)
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(face_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  pose_landmarks = landmark_pb2.NormalizedLandmarkList()
 | 
			
		||||
  pose_landmarks.MergeFrom(pose_landmarks_proto_list)
 | 
			
		||||
  for pose_landmark in pose_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.pose_landmarks.append(
 | 
			
		||||
      landmark_module.NormalizedLandmark.create_from_pb2(pose_landmark)
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(pose_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  pose_world_landmarks = landmark_pb2.LandmarkList()
 | 
			
		||||
  pose_world_landmarks.MergeFrom(pose_world_landmarks_proto_list)
 | 
			
		||||
  for pose_world_landmark in pose_world_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.pose_world_landmarks.append(
 | 
			
		||||
      landmark_module.Landmark.create_from_pb2(pose_world_landmark)
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(pose_world_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  left_hand_landmarks = landmark_pb2.NormalizedLandmarkList()
 | 
			
		||||
  left_hand_landmarks.MergeFrom(left_hand_landmarks_proto_list)
 | 
			
		||||
  for hand_landmark in left_hand_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.left_hand_landmarks.append(
 | 
			
		||||
      landmark_module.NormalizedLandmark.create_from_pb2(hand_landmark)
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(hand_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  left_hand_world_landmarks = landmark_pb2.LandmarkList()
 | 
			
		||||
  left_hand_world_landmarks.MergeFrom(left_hand_world_landmarks_proto_list)
 | 
			
		||||
  for left_hand_world_landmark in left_hand_world_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.left_hand_world_landmarks.append(
 | 
			
		||||
      landmark_module.Landmark.create_from_pb2(left_hand_world_landmark)
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(left_hand_world_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  right_hand_landmarks = landmark_pb2.NormalizedLandmarkList()
 | 
			
		||||
  right_hand_landmarks.MergeFrom(right_hand_landmarks_proto_list)
 | 
			
		||||
  for hand_landmark in right_hand_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.right_hand_landmarks.append(
 | 
			
		||||
      landmark_module.NormalizedLandmark.create_from_pb2(hand_landmark)
 | 
			
		||||
        landmark_module.NormalizedLandmark.create_from_pb2(hand_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  right_hand_world_landmarks = landmark_pb2.LandmarkList()
 | 
			
		||||
  right_hand_world_landmarks.MergeFrom(right_hand_world_landmarks_proto_list)
 | 
			
		||||
  for right_hand_world_landmark in right_hand_world_landmarks.landmark:
 | 
			
		||||
    holistic_landmarker_result.right_hand_world_landmarks.append(
 | 
			
		||||
      landmark_module.Landmark.create_from_pb2(right_hand_world_landmark)
 | 
			
		||||
        landmark_module.Landmark.create_from_pb2(right_hand_world_landmark)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  if _FACE_BLENDSHAPES_STREAM_NAME in output_packets:
 | 
			
		||||
    face_blendshapes_proto_list = packet_getter.get_proto(
 | 
			
		||||
      output_packets[_FACE_BLENDSHAPES_STREAM_NAME]
 | 
			
		||||
        output_packets[_FACE_BLENDSHAPES_STREAM_NAME]
 | 
			
		||||
    )
 | 
			
		||||
    face_blendshapes_classifications = classification_pb2.ClassificationList()
 | 
			
		||||
    face_blendshapes_classifications.MergeFrom(face_blendshapes_proto_list)
 | 
			
		||||
    holistic_landmarker_result.face_blendshapes = []
 | 
			
		||||
    for face_blendshapes in face_blendshapes_classifications.classification:
 | 
			
		||||
      holistic_landmarker_result.face_blendshapes.append(
 | 
			
		||||
        category_module.Category(
 | 
			
		||||
          index=face_blendshapes.index,
 | 
			
		||||
          score=face_blendshapes.score,
 | 
			
		||||
          display_name=face_blendshapes.display_name,
 | 
			
		||||
          category_name=face_blendshapes.label,
 | 
			
		||||
        )
 | 
			
		||||
          category_module.Category(
 | 
			
		||||
              index=face_blendshapes.index,
 | 
			
		||||
              score=face_blendshapes.score,
 | 
			
		||||
              display_name=face_blendshapes.display_name,
 | 
			
		||||
              category_name=face_blendshapes.label,
 | 
			
		||||
          )
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
  if _POSE_SEGMENTATION_MASK_STREAM_NAME in output_packets:
 | 
			
		||||
    holistic_landmarker_result.segmentation_masks = packet_getter.get_image_list(
 | 
			
		||||
      output_packets[_POSE_SEGMENTATION_MASK_STREAM_NAME]
 | 
			
		||||
    holistic_landmarker_result.segmentation_mask = packet_getter.get_image(
 | 
			
		||||
        output_packets[_POSE_SEGMENTATION_MASK_STREAM_NAME]
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  return holistic_landmarker_result
 | 
			
		||||
| 
						 | 
				
			
			@ -273,7 +273,7 @@ class HolisticLandmarkerOptions:
 | 
			
		|||
      landmark detection to be considered successful.
 | 
			
		||||
    output_face_blendshapes: Whether HolisticLandmarker outputs face blendshapes
 | 
			
		||||
      classification. Face blendshapes are used for rendering the 3D face model.
 | 
			
		||||
    output_segmentation_masks: whether to output segmentation masks.
 | 
			
		||||
    output_segmentation_mask: whether to output segmentation masks.
 | 
			
		||||
    result_callback: The user-defined result callback for processing live stream
 | 
			
		||||
      data. The result callback should only be specified when the running mode
 | 
			
		||||
      is set to the live stream mode.
 | 
			
		||||
| 
						 | 
				
			
			@ -290,7 +290,7 @@ class HolisticLandmarkerOptions:
 | 
			
		|||
  min_pose_landmarks_confidence: float = 0.5
 | 
			
		||||
  min_hand_landmarks_confidence: float = 0.5
 | 
			
		||||
  output_face_blendshapes: bool = False
 | 
			
		||||
  output_segmentation_masks: bool = False
 | 
			
		||||
  output_segmentation_mask: bool = False
 | 
			
		||||
  result_callback: Optional[
 | 
			
		||||
      Callable[[HolisticLandmarkerResult, image_module.Image, int], None]
 | 
			
		||||
  ] = None
 | 
			
		||||
| 
						 | 
				
			
			@ -319,17 +319,17 @@ class HolisticLandmarkerOptions:
 | 
			
		|||
    )
 | 
			
		||||
    # Configure pose detector and pose landmarks detector options.
 | 
			
		||||
    holistic_landmarker_options_proto.pose_detector_graph_options.min_detection_confidence = (
 | 
			
		||||
      self.min_pose_detection_confidence
 | 
			
		||||
        self.min_pose_detection_confidence
 | 
			
		||||
    )
 | 
			
		||||
    holistic_landmarker_options_proto.pose_detector_graph_options.min_suppression_threshold = (
 | 
			
		||||
      self.min_pose_suppression_threshold
 | 
			
		||||
        self.min_pose_suppression_threshold
 | 
			
		||||
    )
 | 
			
		||||
    holistic_landmarker_options_proto.face_landmarks_detector_graph_options.min_detection_confidence = (
 | 
			
		||||
      self.min_pose_landmarks_confidence
 | 
			
		||||
        self.min_pose_landmarks_confidence
 | 
			
		||||
    )
 | 
			
		||||
    # Configure hand landmarks detector options.
 | 
			
		||||
    holistic_landmarker_options_proto.hand_landmarks_detector_graph_options.min_detection_confidence = (
 | 
			
		||||
      self.min_hand_landmarks_confidence
 | 
			
		||||
        self.min_hand_landmarks_confidence
 | 
			
		||||
    )
 | 
			
		||||
    return holistic_landmarker_options_proto
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -404,30 +404,34 @@ class HolisticLandmarker(base_vision_task_api.BaseVisionTaskApi):
 | 
			
		|||
      )
 | 
			
		||||
 | 
			
		||||
    output_streams = [
 | 
			
		||||
      ':'.join([_FACE_LANDMARKS_TAG, _FACE_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
      ':'.join([_POSE_LANDMARKS_TAG_NAME, _POSE_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
      ':'.join(
 | 
			
		||||
        [_POSE_WORLD_LANDMARKS_TAG, _POSE_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      ),
 | 
			
		||||
      ':'.join([_LEFT_HAND_LANDMARKS_TAG, _LEFT_HAND_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
      ':'.join(
 | 
			
		||||
        [_LEFT_HAND_WORLD_LANDMARKS_TAG, _LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      ),
 | 
			
		||||
      ':'.join([_RIGHT_HAND_LANDMARKS_TAG, _RIGHT_HAND_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
      ':'.join(
 | 
			
		||||
        [_RIGHT_HAND_WORLD_LANDMARKS_TAG, _RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
      ),
 | 
			
		||||
      ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
 | 
			
		||||
        ':'.join([_FACE_LANDMARKS_TAG, _FACE_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
        ':'.join([_POSE_LANDMARKS_TAG_NAME, _POSE_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
        ':'.join(
 | 
			
		||||
            [_POSE_WORLD_LANDMARKS_TAG, _POSE_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
        ),
 | 
			
		||||
        ':'.join([_LEFT_HAND_LANDMARKS_TAG, _LEFT_HAND_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
        ':'.join(
 | 
			
		||||
            [_LEFT_HAND_WORLD_LANDMARKS_TAG,
 | 
			
		||||
             _LEFT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
        ),
 | 
			
		||||
        ':'.join([_RIGHT_HAND_LANDMARKS_TAG,
 | 
			
		||||
                  _RIGHT_HAND_LANDMARKS_STREAM_NAME]),
 | 
			
		||||
        ':'.join(
 | 
			
		||||
            [_RIGHT_HAND_WORLD_LANDMARKS_TAG,
 | 
			
		||||
             _RIGHT_HAND_WORLD_LANDMARKS_STREAM_NAME]
 | 
			
		||||
        ),
 | 
			
		||||
        ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    if options.output_segmentation_masks:
 | 
			
		||||
    if options.output_segmentation_mask:
 | 
			
		||||
      output_streams.append(
 | 
			
		||||
        ':'.join([_POSE_SEGMENTATION_MASK_TAG, _POSE_SEGMENTATION_MASK_STREAM_NAME])
 | 
			
		||||
          ':'.join([_POSE_SEGMENTATION_MASK_TAG,
 | 
			
		||||
                    _POSE_SEGMENTATION_MASK_STREAM_NAME])
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
    if options.output_face_blendshapes:
 | 
			
		||||
      output_streams.append(
 | 
			
		||||
        ':'.join([_FACE_BLENDSHAPES_TAG, _FACE_BLENDSHAPES_STREAM_NAME])
 | 
			
		||||
          ':'.join([_FACE_BLENDSHAPES_TAG, _FACE_BLENDSHAPES_STREAM_NAME])
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
    task_info = _TaskInfo(
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user