Internal MediaPipe Tasks change.
PiperOrigin-RevId: 524942203
This commit is contained in:
parent
b147002b7e
commit
2564fec44c
|
@ -78,6 +78,7 @@ cc_library(
|
|||
hdrs = ["mediapipe_builtin_op_resolver.h"],
|
||||
deps = [
|
||||
"//mediapipe/tasks/cc/text/custom_ops/ragged:ragged_tensor_to_tensor_tflite",
|
||||
"//mediapipe/tasks/cc/text/custom_ops/sentencepiece:sentencepiece_tokenizer_tflite",
|
||||
"//mediapipe/tasks/cc/text/language_detector/custom_ops:kmeans_embedding_lookup",
|
||||
"//mediapipe/tasks/cc/text/language_detector/custom_ops:ngram_hash",
|
||||
"//mediapipe/util/tflite/operations:landmarks_to_transform_matrix",
|
||||
|
|
|
@ -16,6 +16,7 @@ limitations under the License.
|
|||
#include "mediapipe/tasks/cc/core/mediapipe_builtin_op_resolver.h"
|
||||
|
||||
#include "mediapipe/tasks/cc/text/custom_ops/ragged/ragged_tensor_to_tensor_tflite.h"
|
||||
#include "mediapipe/tasks/cc/text/custom_ops/sentencepiece/sentencepiece_tokenizer_tflite.h"
|
||||
#include "mediapipe/tasks/cc/text/language_detector/custom_ops/kmeans_embedding_lookup.h"
|
||||
#include "mediapipe/tasks/cc/text/language_detector/custom_ops/ngram_hash.h"
|
||||
#include "mediapipe/util/tflite/operations/landmarks_to_transform_matrix.h"
|
||||
|
@ -51,6 +52,8 @@ MediaPipeBuiltinOpResolver::MediaPipeBuiltinOpResolver() {
|
|||
AddCustom("KmeansEmbeddingLookup",
|
||||
mediapipe::tflite_operations::Register_KmeansEmbeddingLookup());
|
||||
// For the UniversalSentenceEncoder model.
|
||||
AddCustom("TFSentencepieceTokenizeOp",
|
||||
mediapipe::tflite_operations::Register_SENTENCEPIECE_TOKENIZER());
|
||||
AddCustom("RaggedTensorToTensor",
|
||||
mediapipe::tflite_operations::Register_RAGGED_TENSOR_TO_TENSOR());
|
||||
}
|
||||
|
|
|
@ -127,6 +127,26 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "sentencepiece_tokenizer_tflite",
|
||||
srcs = ["sentencepiece_tokenizer_tflite.cc"],
|
||||
hdrs = ["sentencepiece_tokenizer_tflite.h"],
|
||||
visibility = [
|
||||
"//visibility:public",
|
||||
],
|
||||
deps =
|
||||
[
|
||||
":optimized_encoder",
|
||||
"@flatbuffers",
|
||||
"@org_tensorflow//tensorflow/lite:framework",
|
||||
"@org_tensorflow//tensorflow/lite:string_util",
|
||||
"@org_tensorflow//tensorflow/lite/c:common",
|
||||
"@org_tensorflow//tensorflow/lite/kernels:builtin_ops",
|
||||
"@org_tensorflow//tensorflow/lite/kernels:kernel_util",
|
||||
"@org_tensorflow//tensorflow/lite/kernels/internal:tensor",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "optimized_encoder_test",
|
||||
srcs = [
|
||||
|
|
|
@ -0,0 +1,129 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "mediapipe/tasks/cc/text/custom_ops/sentencepiece/sentencepiece_tokenizer_tflite.h"
|
||||
|
||||
#include "flatbuffers/flexbuffers.h"
|
||||
#include "mediapipe/tasks/cc/text/custom_ops/sentencepiece/optimized_encoder.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/context.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/string_util.h"
|
||||
|
||||
namespace mediapipe::tflite_operations {
|
||||
namespace sentencepiece::tokenizer {
|
||||
namespace {
|
||||
|
||||
using ::tflite::SetTensorToDynamic;
|
||||
|
||||
constexpr int kSPModelIndex = 0;
|
||||
constexpr int kInputIndex = 1;
|
||||
constexpr int kAddBOSInput = 4;
|
||||
constexpr int kAddEOSInput = 5;
|
||||
constexpr int kReverseInput = 6;
|
||||
|
||||
constexpr int kOutputValuesInd = 0;
|
||||
constexpr int kOutputSplitsInd = 1;
|
||||
|
||||
TfLiteIntArray* CreateSizeArray(const std::initializer_list<int>& sizes) {
|
||||
TfLiteIntArray* array_size = TfLiteIntArrayCreate(sizes.size());
|
||||
int index = 0;
|
||||
for (const int size : sizes) {
|
||||
array_size->data[index++] = size;
|
||||
}
|
||||
return array_size;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
// Initializes text encoder object from serialized parameters.
|
||||
void* Initialize(TfLiteContext* /*context*/, const char* /*buffer*/,
|
||||
size_t /*length*/) {
|
||||
return nullptr;
|
||||
}
|
||||
void Free(TfLiteContext* /*context*/, void* /*buffer*/) {}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
// TODO: Add checks for input and output tensors.
|
||||
TfLiteTensor& output_values =
|
||||
context->tensors[node->outputs->data[kOutputValuesInd]];
|
||||
SetTensorToDynamic(&output_values);
|
||||
|
||||
TfLiteTensor& output_splits =
|
||||
context->tensors[node->outputs->data[kOutputSplitsInd]];
|
||||
SetTensorToDynamic(&output_splits);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor& model_tensor =
|
||||
context->tensors[node->inputs->data[kSPModelIndex]];
|
||||
const auto model_buffer_data = model_tensor.data.data;
|
||||
const TfLiteTensor& input_text =
|
||||
context->tensors[node->inputs->data[kInputIndex]];
|
||||
|
||||
const TfLiteTensor add_bos_tensor =
|
||||
context->tensors[node->inputs->data[kAddBOSInput]];
|
||||
const bool add_bos = add_bos_tensor.data.b[0];
|
||||
const TfLiteTensor add_eos_tensor =
|
||||
context->tensors[node->inputs->data[kAddEOSInput]];
|
||||
const bool add_eos = add_eos_tensor.data.b[0];
|
||||
const TfLiteTensor reverse_tensor =
|
||||
context->tensors[node->inputs->data[kReverseInput]];
|
||||
const bool reverse = reverse_tensor.data.b[0];
|
||||
|
||||
std::vector<int32> encoded;
|
||||
std::vector<int32> splits;
|
||||
const int num_strings = tflite::GetStringCount(&input_text);
|
||||
for (int i = 0; i < num_strings; ++i) {
|
||||
const auto strref = tflite::GetString(&input_text, i);
|
||||
const auto res = EncodeString(std::string(strref.str, strref.len),
|
||||
model_buffer_data, add_bos, add_eos, reverse);
|
||||
TF_LITE_ENSURE_MSG(context, res.type == EncoderResultType::SUCCESS,
|
||||
"Sentencepiece conversion failed");
|
||||
std::copy(res.codes.begin(), res.codes.end(), std::back_inserter(encoded));
|
||||
splits.emplace_back(encoded.size());
|
||||
}
|
||||
|
||||
TfLiteTensor& output_values =
|
||||
context->tensors[node->outputs->data[kOutputValuesInd]];
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
context->ResizeTensor(
|
||||
context, &output_values,
|
||||
CreateSizeArray({static_cast<int>(encoded.size())})));
|
||||
int32_t* output_values_flat = output_values.data.i32;
|
||||
std::copy(encoded.begin(), encoded.end(), output_values_flat);
|
||||
TfLiteTensor& output_splits =
|
||||
context->tensors[node->outputs->data[kOutputSplitsInd]];
|
||||
TF_LITE_ENSURE_OK(
|
||||
context, context->ResizeTensor(
|
||||
context, &output_splits,
|
||||
CreateSizeArray({static_cast<int>(splits.size() + 1)})));
|
||||
int32_t* output_splits_flat = output_splits.data.i32;
|
||||
*output_splits_flat = 0;
|
||||
std::copy(splits.begin(), splits.end(), output_splits_flat + 1);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace sentencepiece::tokenizer
|
||||
|
||||
TfLiteRegistration* Register_SENTENCEPIECE_TOKENIZER() {
|
||||
static TfLiteRegistration r = {
|
||||
sentencepiece::tokenizer::Initialize, sentencepiece::tokenizer::Free,
|
||||
sentencepiece::tokenizer::Prepare, sentencepiece::tokenizer::Eval};
|
||||
return &r;
|
||||
}
|
||||
|
||||
} // namespace mediapipe::tflite_operations
|
|
@ -0,0 +1,27 @@
|
|||
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef MEDIAPIPE_TASKS_CC_TEXT_CUSTOM_OPS_SENTENCEPIECE_SENTENCEPIECE_TOKENIZER_TFLITE_H_
|
||||
#define MEDIAPIPE_TASKS_CC_TEXT_CUSTOM_OPS_SENTENCEPIECE_SENTENCEPIECE_TOKENIZER_TFLITE_H_
|
||||
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
|
||||
namespace mediapipe::tflite_operations {
|
||||
|
||||
TfLiteRegistration* Register_SENTENCEPIECE_TOKENIZER();
|
||||
|
||||
} // namespace mediapipe::tflite_operations
|
||||
|
||||
#endif // MEDIAPIPE_TASKS_CC_TEXT_CUSTOM_OPS_SENTENCEPIECE_SENTENCEPIECE_TOKENIZER_TFLITE_H_
|
|
@ -39,6 +39,8 @@ constexpr char kMobileBert[] = "mobilebert_embedding_with_metadata.tflite";
|
|||
// Embedding model with regex preprocessing.
|
||||
constexpr char kRegexOneEmbeddingModel[] =
|
||||
"regex_one_embedding_with_metadata.tflite";
|
||||
constexpr char kUniversalSentenceEncoderModel[] =
|
||||
"universal_sentence_encoder_qa_with_metadata.tflite";
|
||||
|
||||
// Tolerance for embedding vector coordinate values.
|
||||
constexpr float kEpsilon = 1e-4;
|
||||
|
@ -147,6 +149,35 @@ TEST_F(EmbedderTest, SucceedsWithQuantization) {
|
|||
MP_ASSERT_OK(text_embedder->Close());
|
||||
}
|
||||
|
||||
TEST(EmbedTest, SucceedsWithUniversalSentenceEncoderModel) {
|
||||
auto options = std::make_unique<TextEmbedderOptions>();
|
||||
options->base_options.model_asset_path =
|
||||
JoinPath("./", kTestDataDirectory, kUniversalSentenceEncoderModel);
|
||||
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TextEmbedder> text_embedder,
|
||||
TextEmbedder::Create(std::move(options)));
|
||||
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
auto result0,
|
||||
text_embedder->Embed("it's a charming and often affecting journey"));
|
||||
ASSERT_EQ(result0.embeddings.size(), 1);
|
||||
ASSERT_EQ(result0.embeddings[0].float_embedding.size(), 100);
|
||||
ASSERT_NEAR(result0.embeddings[0].float_embedding[0], 1.422951f, kEpsilon);
|
||||
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
auto result1, text_embedder->Embed("what a great and fantastic trip"));
|
||||
ASSERT_EQ(result1.embeddings.size(), 1);
|
||||
ASSERT_EQ(result1.embeddings[0].float_embedding.size(), 100);
|
||||
ASSERT_NEAR(result1.embeddings[0].float_embedding[0], 1.404664f, kEpsilon);
|
||||
|
||||
// Check cosine similarity.
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
double similarity, TextEmbedder::CosineSimilarity(result0.embeddings[0],
|
||||
result1.embeddings[0]));
|
||||
ASSERT_NEAR(similarity, 0.851961, kSimilarityTolerancy);
|
||||
|
||||
MP_ASSERT_OK(text_embedder->Close());
|
||||
}
|
||||
|
||||
TEST_F(EmbedderTest, SucceedsWithMobileBertAndDifferentThemes) {
|
||||
auto options = std::make_unique<TextEmbedderOptions>();
|
||||
options->base_options.model_asset_path =
|
||||
|
@ -178,5 +209,31 @@ TEST_F(EmbedderTest, SucceedsWithMobileBertAndDifferentThemes) {
|
|||
MP_ASSERT_OK(text_embedder->Close());
|
||||
}
|
||||
|
||||
TEST_F(EmbedderTest, SucceedsWithUSEAndDifferentThemes) {
|
||||
auto options = std::make_unique<TextEmbedderOptions>();
|
||||
options->base_options.model_asset_path =
|
||||
JoinPath("./", kTestDataDirectory, kUniversalSentenceEncoderModel);
|
||||
MP_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TextEmbedder> text_embedder,
|
||||
TextEmbedder::Create(std::move(options)));
|
||||
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
TextEmbedderResult result0,
|
||||
text_embedder->Embed("When you go to this restaurant, they hold the "
|
||||
"pancake upside-down before they hand it "
|
||||
"to you. It's a great gimmick."));
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
TextEmbedderResult result1,
|
||||
text_embedder->Embed(
|
||||
"Let's make a plan to steal the declaration of independence."));
|
||||
|
||||
// Check cosine similarity.
|
||||
MP_ASSERT_OK_AND_ASSIGN(
|
||||
double similarity, TextEmbedder::CosineSimilarity(result0.embeddings[0],
|
||||
result1.embeddings[0]));
|
||||
EXPECT_NEAR(similarity, 0.780334, kSimilarityTolerancy);
|
||||
|
||||
MP_ASSERT_OK(text_embedder->Close());
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace mediapipe::tasks::text::text_embedder
|
||||
|
|
Loading…
Reference in New Issue
Block a user