Internal change - migration

PiperOrigin-RevId: 486853689
This commit is contained in:
MediaPipe Team 2022-11-07 22:34:41 -08:00 committed by Copybara-Service
parent 0a08e4768b
commit 24d03451c7
2 changed files with 16 additions and 19 deletions

View File

@ -19,7 +19,7 @@ from __future__ import print_function
import os
import tempfile
from typing import Any, Callable, Dict, List, Optional, Text, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
# Dependency imports
@ -34,6 +34,19 @@ DEFAULT_SCALE, DEFAULT_ZERO_POINT = 0, 0
ESTIMITED_STEPS_PER_EPOCH = 1000
def get_default_callbacks(
export_dir: str) -> Sequence[tf.keras.callbacks.Callback]:
"""Gets default callbacks."""
summary_dir = os.path.join(export_dir, 'summaries')
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
# Save checkpoint every 20 epochs.
checkpoint_path = os.path.join(export_dir, 'checkpoint')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
checkpoint_path, save_weights_only=True, period=20)
return [summary_callback, checkpoint_callback]
def load_keras_model(model_path: str,
compile_on_load: bool = False) -> tf.keras.Model:
"""Loads a tensorflow Keras model from file and returns the Keras model.
@ -174,7 +187,7 @@ class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
lambda: self.decay_schedule_fn(step),
name=name)
def get_config(self) -> Dict[Text, Any]:
def get_config(self) -> Dict[str, Any]:
return {
'initial_learning_rate': self.initial_learning_rate,
'decay_schedule_fn': self.decay_schedule_fn,

View File

@ -13,9 +13,6 @@
# limitations under the License.
"""Library to train model."""
import os
from typing import List
import tensorflow as tf
from mediapipe.model_maker.python.core.utils import model_util
@ -49,19 +46,6 @@ def _create_optimizer(init_lr: float, decay_steps: int,
return optimizer
def _get_default_callbacks(
export_dir: str) -> List[tf.keras.callbacks.Callback]:
"""Gets default callbacks."""
summary_dir = os.path.join(export_dir, 'summaries')
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
# Save checkpoint every 20 epochs.
checkpoint_path = os.path.join(export_dir, 'checkpoint')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
checkpoint_path, save_weights_only=True, period=20)
return [summary_callback, checkpoint_callback]
def train_model(model: tf.keras.Model, hparams: hp.HParams,
train_ds: tf.data.Dataset,
validation_ds: tf.data.Dataset) -> tf.keras.callbacks.History:
@ -94,7 +78,7 @@ def train_model(model: tf.keras.Model, hparams: hp.HParams,
loss = tf.keras.losses.CategoricalCrossentropy(
label_smoothing=hparams.label_smoothing)
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
callbacks = _get_default_callbacks(export_dir=hparams.export_dir)
callbacks = model_util.get_default_callbacks(export_dir=hparams.export_dir)
# Train the model.
return model.fit(