Merge branch 'master' into ios-text-cocoapods-force-load
This commit is contained in:
commit
24bd7a6b9f
|
@ -175,11 +175,7 @@ py_test(
|
|||
data = [":testdata"],
|
||||
tags = ["requires-net:external"],
|
||||
deps = [
|
||||
":dataset",
|
||||
":hyperparameters",
|
||||
":model_spec",
|
||||
":object_detector",
|
||||
":object_detector_options",
|
||||
":object_detector_import",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -19,11 +19,7 @@ from unittest import mock as unittest_mock
|
|||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
|
||||
from mediapipe.model_maker.python.vision.object_detector import dataset
|
||||
from mediapipe.model_maker.python.vision.object_detector import hyperparameters
|
||||
from mediapipe.model_maker.python.vision.object_detector import model_spec as ms
|
||||
from mediapipe.model_maker.python.vision.object_detector import object_detector
|
||||
from mediapipe.model_maker.python.vision.object_detector import object_detector_options
|
||||
from mediapipe.model_maker.python.vision import object_detector
|
||||
from mediapipe.tasks.python.test import test_utils as task_test_utils
|
||||
|
||||
|
||||
|
@ -33,7 +29,7 @@ class ObjectDetectorTest(tf.test.TestCase, parameterized.TestCase):
|
|||
super().setUp()
|
||||
dataset_folder = task_test_utils.get_test_data_path('coco_data')
|
||||
cache_dir = self.create_tempdir()
|
||||
self.data = dataset.Dataset.from_coco_folder(
|
||||
self.data = object_detector.Dataset.from_coco_folder(
|
||||
dataset_folder, cache_dir=cache_dir
|
||||
)
|
||||
# Mock tempfile.gettempdir() to be unique for each test to avoid race
|
||||
|
@ -48,15 +44,16 @@ class ObjectDetectorTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.addCleanup(mock_gettempdir.stop)
|
||||
|
||||
def test_object_detector(self):
|
||||
hparams = hyperparameters.HParams(
|
||||
hparams = object_detector.HParams(
|
||||
epochs=1,
|
||||
batch_size=2,
|
||||
learning_rate=0.9,
|
||||
shuffle=False,
|
||||
export_dir=self.create_tempdir(),
|
||||
)
|
||||
options = object_detector_options.ObjectDetectorOptions(
|
||||
supported_model=ms.SupportedModels.MOBILENET_V2, hparams=hparams
|
||||
options = object_detector.ObjectDetectorOptions(
|
||||
supported_model=object_detector.SupportedModels.MOBILENET_V2,
|
||||
hparams=hparams,
|
||||
)
|
||||
# Test `create``
|
||||
model = object_detector.ObjectDetector.create(
|
||||
|
@ -79,7 +76,7 @@ class ObjectDetectorTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.assertGreater(os.path.getsize(output_metadata_file), 0)
|
||||
|
||||
# Test `quantization_aware_training`
|
||||
qat_hparams = hyperparameters.QATHParams(
|
||||
qat_hparams = object_detector.QATHParams(
|
||||
learning_rate=0.9,
|
||||
batch_size=2,
|
||||
epochs=1,
|
||||
|
|
|
@ -32,6 +32,7 @@ _TextEmbedderOptions = text_embedder.TextEmbedderOptions
|
|||
|
||||
_BERT_MODEL_FILE = 'mobilebert_embedding_with_metadata.tflite'
|
||||
_REGEX_MODEL_FILE = 'regex_one_embedding_with_metadata.tflite'
|
||||
_USE_MODEL_FILE = 'universal_sentence_encoder_qa_with_metadata.tflite'
|
||||
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/text'
|
||||
# Tolerance for embedding vector coordinate values.
|
||||
_EPSILON = 1e-4
|
||||
|
@ -138,6 +139,24 @@ class TextEmbedderTest(parameterized.TestCase):
|
|||
16,
|
||||
(0.549632, 0.552879),
|
||||
),
|
||||
(
|
||||
False,
|
||||
False,
|
||||
_USE_MODEL_FILE,
|
||||
ModelFileType.FILE_NAME,
|
||||
0.851961,
|
||||
100,
|
||||
(1.422951, 1.404664),
|
||||
),
|
||||
(
|
||||
True,
|
||||
False,
|
||||
_USE_MODEL_FILE,
|
||||
ModelFileType.FILE_CONTENT,
|
||||
0.851961,
|
||||
100,
|
||||
(0.127049, 0.125416),
|
||||
),
|
||||
)
|
||||
def test_embed(self, l2_normalize, quantize, model_name, model_file_type,
|
||||
expected_similarity, expected_size, expected_first_values):
|
||||
|
@ -213,6 +232,24 @@ class TextEmbedderTest(parameterized.TestCase):
|
|||
16,
|
||||
(0.549632, 0.552879),
|
||||
),
|
||||
(
|
||||
False,
|
||||
False,
|
||||
_USE_MODEL_FILE,
|
||||
ModelFileType.FILE_NAME,
|
||||
0.851961,
|
||||
100,
|
||||
(1.422951, 1.404664),
|
||||
),
|
||||
(
|
||||
True,
|
||||
False,
|
||||
_USE_MODEL_FILE,
|
||||
ModelFileType.FILE_CONTENT,
|
||||
0.851961,
|
||||
100,
|
||||
(0.127049, 0.125416),
|
||||
),
|
||||
)
|
||||
def test_embed_in_context(self, l2_normalize, quantize, model_name,
|
||||
model_file_type, expected_similarity, expected_size,
|
||||
|
@ -251,6 +288,7 @@ class TextEmbedderTest(parameterized.TestCase):
|
|||
@parameterized.parameters(
|
||||
# TODO: The similarity should likely be lower
|
||||
(_BERT_MODEL_FILE, 0.980880),
|
||||
(_USE_MODEL_FILE, 0.780334),
|
||||
)
|
||||
def test_embed_with_different_themes(self, model_file, expected_similarity):
|
||||
# Creates embedder.
|
||||
|
|
Loading…
Reference in New Issue
Block a user