Revised face landmarker implementation and tests
This commit is contained in:
parent
4a7489cd3a
commit
23681cde0d
|
@ -17,6 +17,7 @@ import dataclasses
|
|||
import enum
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from mediapipe.framework.formats import matrix_data_pb2
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
|
@ -32,7 +33,7 @@ class MatrixData:
|
|||
Attributes:
|
||||
rows: The number of rows in the matrix.
|
||||
cols: The number of columns in the matrix.
|
||||
data: The data stored in the matrix.
|
||||
data: The data stored in the matrix as a NumPy array.
|
||||
layout: The order in which the data are stored. Defaults to COLUMN_MAJOR.
|
||||
"""
|
||||
|
||||
|
@ -40,10 +41,10 @@ class MatrixData:
|
|||
COLUMN_MAJOR = 0
|
||||
ROW_MAJOR = 1
|
||||
|
||||
rows: Optional[int] = None
|
||||
cols: Optional[int] = None
|
||||
data: Optional[float] = None
|
||||
layout: Optional[Layout] = None
|
||||
rows: int = None
|
||||
cols: int = None
|
||||
data: np.ndarray = None
|
||||
layout: Optional[Layout] = Layout.COLUMN_MAJOR
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _MatrixDataProto:
|
||||
|
@ -51,7 +52,7 @@ class MatrixData:
|
|||
return _MatrixDataProto(
|
||||
rows=self.rows,
|
||||
cols=self.cols,
|
||||
data=self.data,
|
||||
data=self.data.tolist(),
|
||||
layout=self.layout)
|
||||
|
||||
@classmethod
|
||||
|
@ -61,7 +62,7 @@ class MatrixData:
|
|||
return MatrixData(
|
||||
rows=pb2_obj.rows,
|
||||
cols=pb2_obj.cols,
|
||||
data=pb2_obj.data,
|
||||
data=np.array(pb2_obj.data),
|
||||
layout=pb2_obj.layout)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
|
|
|
@ -126,10 +126,10 @@ py_test(
|
|||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/framework/formats:landmark_py_pb2",
|
||||
"//mediapipe/framework/formats:classification_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:category",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/components/containers:classification_result",
|
||||
"//mediapipe/tasks/python/components/containers:matrix_data",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
|
|
|
@ -22,11 +22,12 @@ import numpy as np
|
|||
|
||||
from google.protobuf import text_format
|
||||
from mediapipe.framework.formats import landmark_pb2
|
||||
from mediapipe.framework.formats import classification_pb2
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.python.components.containers import category as category_module
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.components.containers import matrix_data as matrix_data_module
|
||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||
from mediapipe.tasks.python.components.containers import classification_result as classification_result_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import face_landmarker
|
||||
|
@ -38,6 +39,7 @@ _BaseOptions = base_options_module.BaseOptions
|
|||
_Category = category_module.Category
|
||||
_Rect = rect_module.Rect
|
||||
_Landmark = landmark_module.Landmark
|
||||
_MatrixData = matrix_data_module.MatrixData
|
||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
|
||||
_Image = image_module.Image
|
||||
_FaceLandmarker = face_landmarker.FaceLandmarker
|
||||
|
@ -51,6 +53,7 @@ _PORTRAIT_IMAGE = 'portrait.jpg'
|
|||
_PORTRAIT_EXPECTED_FACE_LANDMARKS = 'portrait_expected_face_landmarks.pbtxt'
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION = 'portrait_expected_face_landmarks_with_attention.pbtxt'
|
||||
_PORTRAIT_EXPECTED_BLENDSHAPES = 'portrait_expected_blendshapes_with_attention.pbtxt'
|
||||
_PORTRAIT_EXPECTED_FACE_GEOMETRY = 'portrait_expected_face_geometry_with_attention.pbtxt'
|
||||
_LANDMARKS_DIFF_MARGIN = 0.03
|
||||
_BLENDSHAPES_DIFF_MARGIN = 0.1
|
||||
_FACIAL_TRANSFORMATION_MATRIX_DIFF_MARGIN = 0.02
|
||||
|
@ -61,10 +64,40 @@ def _get_expected_face_landmarks(file_path: str):
|
|||
with open(proto_file_path, 'rb') as f:
|
||||
proto = landmark_pb2.NormalizedLandmarkList()
|
||||
text_format.Parse(f.read(), proto)
|
||||
landmarks = []
|
||||
face_landmarks = []
|
||||
for landmark in proto.landmark:
|
||||
landmarks.append(_NormalizedLandmark.create_from_pb2(landmark))
|
||||
return landmarks
|
||||
face_landmarks.append(_NormalizedLandmark.create_from_pb2(landmark))
|
||||
return face_landmarks
|
||||
|
||||
|
||||
def _get_expected_face_blendshapes(file_path: str):
|
||||
proto_file_path = test_utils.get_test_data_path(file_path)
|
||||
with open(proto_file_path, 'rb') as f:
|
||||
proto = classification_pb2.ClassificationList()
|
||||
text_format.Parse(f.read(), proto)
|
||||
face_blendshapes_categories = []
|
||||
face_blendshapes_classifications = classification_pb2.ClassificationList()
|
||||
face_blendshapes_classifications.MergeFrom(proto)
|
||||
for face_blendshapes in face_blendshapes_classifications.classification:
|
||||
face_blendshapes_categories.append(
|
||||
category_module.Category(
|
||||
index=face_blendshapes.index,
|
||||
score=face_blendshapes.score,
|
||||
display_name=face_blendshapes.display_name,
|
||||
category_name=face_blendshapes.label))
|
||||
return face_blendshapes_categories
|
||||
|
||||
|
||||
def _make_expected_facial_transformation_matrixes():
|
||||
data = np.array([[0.9995292, -0.005092691, 0.030254554, -0.37340546],
|
||||
[0.0072318087, 0.99744856, -0.07102106, 22.212194],
|
||||
[-0.029815676, 0.07120642, 0.9970159, -64.76358],
|
||||
[0, 0, 0, 1]])
|
||||
rows, cols = len(data), len(data[0])
|
||||
facial_transformation_matrixes_results = []
|
||||
facial_transformation_matrix = _MatrixData(rows, cols, data)
|
||||
facial_transformation_matrixes_results.append(facial_transformation_matrix)
|
||||
return facial_transformation_matrixes_results
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
|
@ -148,30 +181,82 @@ class HandLandmarkerTest(parameterized.TestCase):
|
|||
self.assertIsInstance(landmarker, _FaceLandmarker)
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME, _FACE_LANDMARKER_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS), None, None),
|
||||
(ModelFileType.FILE_CONTENT, _FACE_LANDMARKER_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS), None, None),
|
||||
(ModelFileType.FILE_NAME,
|
||||
_get_expected_face_landmarks(_PORTRAIT_EXPECTED_FACE_LANDMARKS)),
|
||||
_FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION), None, None),
|
||||
(ModelFileType.FILE_CONTENT,
|
||||
_get_expected_face_landmarks(_PORTRAIT_EXPECTED_FACE_LANDMARKS)))
|
||||
def test_detect(self, model_file_type, expected_face_landmarks):
|
||||
_FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION), None, None),
|
||||
(ModelFileType.FILE_NAME,
|
||||
_FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION),
|
||||
_get_expected_face_blendshapes(
|
||||
_PORTRAIT_EXPECTED_BLENDSHAPES), None),
|
||||
(ModelFileType.FILE_CONTENT,
|
||||
_FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
_get_expected_face_landmarks(
|
||||
_PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION),
|
||||
_get_expected_face_blendshapes(
|
||||
_PORTRAIT_EXPECTED_BLENDSHAPES), None),
|
||||
# (ModelFileType.FILE_NAME,
|
||||
# _FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
# _get_expected_face_landmarks(
|
||||
# _PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION),
|
||||
# _get_expected_face_blendshapes(
|
||||
# _PORTRAIT_EXPECTED_BLENDSHAPES),
|
||||
# _make_expected_facial_transformation_matrixes()),
|
||||
# (ModelFileType.FILE_CONTENT,
|
||||
# _FACE_LANDMARKER_WITH_BLENDSHAPES_BUNDLE_ASSET_FILE,
|
||||
# _get_expected_face_landmarks(
|
||||
# _PORTRAIT_EXPECTED_FACE_LANDMARKS_WITH_ATTENTION),
|
||||
# _get_expected_face_blendshapes(
|
||||
# _PORTRAIT_EXPECTED_BLENDSHAPES),
|
||||
# _make_expected_facial_transformation_matrixes())
|
||||
)
|
||||
def test_detect(self, model_file_type, model_name, expected_face_landmarks,
|
||||
expected_face_blendshapes, expected_facial_transformation_matrix):
|
||||
# Creates face landmarker.
|
||||
model_path = test_utils.get_test_data_path(model_name)
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
base_options = _BaseOptions(model_asset_path=self.model_path)
|
||||
base_options = _BaseOptions(model_asset_path=model_path)
|
||||
elif model_file_type is ModelFileType.FILE_CONTENT:
|
||||
with open(self.model_path, 'rb') as f:
|
||||
with open(model_path, 'rb') as f:
|
||||
model_content = f.read()
|
||||
base_options = _BaseOptions(model_asset_buffer=model_content)
|
||||
else:
|
||||
# Should never happen
|
||||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _FaceLandmarkerOptions(base_options=base_options)
|
||||
options = _FaceLandmarkerOptions(
|
||||
base_options=base_options,
|
||||
output_face_blendshapes=True if expected_face_blendshapes else False,
|
||||
output_facial_transformation_matrixes=True
|
||||
if expected_facial_transformation_matrix else False)
|
||||
landmarker = _FaceLandmarker.create_from_options(options)
|
||||
|
||||
# Performs face landmarks detection on the input.
|
||||
detection_result = landmarker.detect(self.test_image)
|
||||
# Comparing results.
|
||||
self._expect_landmarks_correct(detection_result.face_landmarks[0],
|
||||
expected_face_landmarks)
|
||||
if expected_face_landmarks is not None:
|
||||
self._expect_landmarks_correct(detection_result.face_landmarks[0],
|
||||
expected_face_landmarks)
|
||||
if expected_face_blendshapes is not None:
|
||||
self._expect_blendshapes_correct(detection_result.face_blendshapes[0],
|
||||
expected_face_blendshapes)
|
||||
if expected_facial_transformation_matrix is not None:
|
||||
self._expect_facial_transformation_matrix_correct(
|
||||
detection_result.facial_transformation_matrixes[0],
|
||||
expected_facial_transformation_matrix)
|
||||
|
||||
# Closes the face landmarker explicitly when the face landmarker is not used
|
||||
# in a context.
|
||||
landmarker.close()
|
||||
|
|
|
@ -162,6 +162,7 @@ def _build_landmarker_result(
|
|||
|
||||
facial_transformation_matrixes_results = []
|
||||
if _FACE_GEOMETRY_STREAM_NAME in output_packets:
|
||||
print(output_packets[_FACE_GEOMETRY_STREAM_NAME])
|
||||
facial_transformation_matrixes_proto_list = packet_getter.get_proto_list(
|
||||
output_packets[_FACE_GEOMETRY_STREAM_NAME])
|
||||
for proto in facial_transformation_matrixes_proto_list:
|
||||
|
|
2
mediapipe/tasks/testdata/vision/BUILD
vendored
2
mediapipe/tasks/testdata/vision/BUILD
vendored
|
@ -156,6 +156,7 @@ filegroup(
|
|||
"face_landmark.tflite",
|
||||
"face_landmark_with_attention.tflite",
|
||||
"face_landmarker.task",
|
||||
"face_landmarker_with_blendshapes.task",
|
||||
"hair_segmentation.tflite",
|
||||
"hand_landmark_full.tflite",
|
||||
"hand_landmark_lite.tflite",
|
||||
|
@ -191,6 +192,7 @@ filegroup(
|
|||
"pointing_up_landmarks.pbtxt",
|
||||
"pointing_up_rotated_landmarks.pbtxt",
|
||||
"portrait_expected_detection.pbtxt",
|
||||
"portrait_expected_blendshapes_with_attention.pbtxt",
|
||||
"portrait_expected_face_geometry_with_attention.pbtxt",
|
||||
"portrait_expected_face_landmarks.pbtxt",
|
||||
"portrait_expected_face_landmarks_with_attention.pbtxt",
|
||||
|
|
Loading…
Reference in New Issue
Block a user