Merge branch 'google:master' into gesture-recognizer-python
This commit is contained in:
commit
1aaaca1e12
|
@ -222,10 +222,10 @@ cc_library(
|
|||
"//mediapipe/framework:calculator_contract",
|
||||
"//mediapipe/framework:calculator_framework",
|
||||
"//mediapipe/framework:collection_item_id",
|
||||
"//mediapipe/framework:packet",
|
||||
"//mediapipe/framework/formats:classification_cc_proto",
|
||||
"//mediapipe/framework/formats:detection_cc_proto",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/formats:matrix",
|
||||
"//mediapipe/framework/formats:rect_cc_proto",
|
||||
"//mediapipe/framework/port:integral_types",
|
||||
"//mediapipe/framework/port:ret_check",
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include "mediapipe/framework/formats/classification.pb.h"
|
||||
#include "mediapipe/framework/formats/detection.pb.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/formats/matrix.h"
|
||||
#include "mediapipe/framework/formats/rect.pb.h"
|
||||
#include "mediapipe/util/render_data.pb.h"
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
|
@ -58,4 +59,7 @@ typedef EndLoopCalculator<std::vector<::mediapipe::Detection>>
|
|||
EndLoopDetectionCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopDetectionCalculator);
|
||||
|
||||
typedef EndLoopCalculator<std::vector<Matrix>> EndLoopMatrixCalculator;
|
||||
REGISTER_CALCULATOR(EndLoopMatrixCalculator);
|
||||
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -141,6 +141,7 @@ cc_library(
|
|||
"//mediapipe/tasks/cc:common",
|
||||
"//mediapipe/tasks/cc/components:image_preprocessing",
|
||||
"//mediapipe/tasks/cc/components/containers:gesture_recognition_result",
|
||||
"//mediapipe/tasks/cc/components/processors:classifier_options",
|
||||
"//mediapipe/tasks/cc/components/processors/proto:classifier_options_cc_proto",
|
||||
"//mediapipe/tasks/cc/core:base_options",
|
||||
"//mediapipe/tasks/cc/core:base_task_api",
|
||||
|
|
|
@ -141,16 +141,22 @@ ConvertGestureRecognizerGraphOptionsProto(GestureRecognizerOptions* options) {
|
|||
// Configure hand gesture recognizer options.
|
||||
auto* hand_gesture_recognizer_graph_options =
|
||||
options_proto->mutable_hand_gesture_recognizer_graph_options();
|
||||
if (options->min_gesture_confidence >= 0) {
|
||||
hand_gesture_recognizer_graph_options
|
||||
->mutable_canned_gesture_classifier_graph_options()
|
||||
->mutable_classifier_options()
|
||||
->set_score_threshold(options->min_gesture_confidence);
|
||||
hand_gesture_recognizer_graph_options
|
||||
->mutable_custom_gesture_classifier_graph_options()
|
||||
->mutable_classifier_options()
|
||||
->set_score_threshold(options->min_gesture_confidence);
|
||||
}
|
||||
auto canned_gestures_classifier_options_proto =
|
||||
std::make_unique<components::processors::proto::ClassifierOptions>(
|
||||
components::processors::ConvertClassifierOptionsToProto(
|
||||
&(options->canned_gestures_classifier_options)));
|
||||
hand_gesture_recognizer_graph_options
|
||||
->mutable_canned_gesture_classifier_graph_options()
|
||||
->mutable_classifier_options()
|
||||
->Swap(canned_gestures_classifier_options_proto.get());
|
||||
auto custom_gestures_classifier_options_proto =
|
||||
std::make_unique<components::processors::proto::ClassifierOptions>(
|
||||
components::processors::ConvertClassifierOptionsToProto(
|
||||
&(options->canned_gestures_classifier_options)));
|
||||
hand_gesture_recognizer_graph_options
|
||||
->mutable_custom_gesture_classifier_graph_options()
|
||||
->mutable_classifier_options()
|
||||
->Swap(canned_gestures_classifier_options_proto.get());
|
||||
return options_proto;
|
||||
}
|
||||
|
||||
|
|
|
@ -18,12 +18,14 @@ limitations under the License.
|
|||
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/status/statusor.h"
|
||||
#include "mediapipe/framework/formats/classification.pb.h"
|
||||
#include "mediapipe/framework/formats/image.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/tasks/cc/components/containers/gesture_recognition_result.h"
|
||||
#include "mediapipe/tasks/cc/components/processors/classifier_options.h"
|
||||
#include "mediapipe/tasks/cc/core/base_options.h"
|
||||
#include "mediapipe/tasks/cc/vision/core/base_vision_task_api.h"
|
||||
#include "mediapipe/tasks/cc/vision/core/image_processing_options.h"
|
||||
|
@ -64,12 +66,17 @@ struct GestureRecognizerOptions {
|
|||
// successful.
|
||||
float min_tracking_confidence = 0.5;
|
||||
|
||||
// The minimum confidence score for the gestures to be considered
|
||||
// successful. If < 0, the gesture confidence thresholds in the model
|
||||
// metadata are used.
|
||||
// TODO Note this option is subject to change, after scoring
|
||||
// merging calculator is implemented.
|
||||
float min_gesture_confidence = -1;
|
||||
// TODO Note this option is subject to change.
|
||||
// Options for configuring the canned gestures classifier, such as score
|
||||
// threshold, allow list and deny list of gestures. The categories for canned
|
||||
// gesture classifiers are: ["None", "Closed_Fist", "Open_Palm",
|
||||
// "Pointing_Up", "Thumb_Down", "Thumb_Up", "Victory", "ILoveYou"]
|
||||
components::processors::ClassifierOptions canned_gestures_classifier_options;
|
||||
|
||||
// TODO Note this option is subject to change.
|
||||
// Options for configuring the custom gestures classifier, such as score
|
||||
// threshold, allow list and deny list of gestures.
|
||||
components::processors::ClassifierOptions custom_gestures_classifier_options;
|
||||
|
||||
// The user-defined result callback for processing live stream data.
|
||||
// The result callback should only be specified when the running mode is set
|
||||
|
|
|
@ -403,11 +403,11 @@ class SingleHandGestureRecognizerGraph : public core::ModelTaskGraph {
|
|||
const core::ModelResources* model_resources,
|
||||
const proto::GestureClassifierGraphOptions& options,
|
||||
Source<Tensor>& embedding_tensors, Graph& graph) {
|
||||
auto& custom_gesture_classifier_inference = AddInference(
|
||||
auto& gesture_classifier_inference = AddInference(
|
||||
*model_resources, options.base_options().acceleration(), graph);
|
||||
embedding_tensors >> custom_gesture_classifier_inference.In(kTensorsTag);
|
||||
auto custom_gesture_inference_out_tensors =
|
||||
custom_gesture_classifier_inference.Out(kTensorsTag);
|
||||
embedding_tensors >> gesture_classifier_inference.In(kTensorsTag);
|
||||
auto gesture_inference_out_tensors =
|
||||
gesture_classifier_inference.Out(kTensorsTag);
|
||||
auto& tensors_to_classification =
|
||||
graph.AddNode("TensorsToClassificationCalculator");
|
||||
MP_RETURN_IF_ERROR(ConfigureTensorsToClassificationCalculator(
|
||||
|
@ -415,8 +415,7 @@ class SingleHandGestureRecognizerGraph : public core::ModelTaskGraph {
|
|||
0,
|
||||
&tensors_to_classification.GetOptions<
|
||||
mediapipe::TensorsToClassificationCalculatorOptions>()));
|
||||
custom_gesture_inference_out_tensors >>
|
||||
tensors_to_classification.In(kTensorsTag);
|
||||
gesture_inference_out_tensors >> tensors_to_classification.In(kTensorsTag);
|
||||
return tensors_to_classification.Out("CLASSIFICATIONS")
|
||||
.Cast<ClassificationList>();
|
||||
}
|
||||
|
|
|
@ -137,6 +137,7 @@ android_library(
|
|||
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarks_detector_graph_options_java_proto_lite",
|
||||
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:category",
|
||||
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:landmark",
|
||||
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/processors:classifieroptions",
|
||||
"//mediapipe/tasks/java/com/google/mediapipe/tasks/core",
|
||||
"//third_party:autovalue",
|
||||
"@maven//:com_google_guava_guava",
|
||||
|
|
|
@ -26,7 +26,7 @@ import com.google.mediapipe.framework.Packet;
|
|||
import com.google.mediapipe.framework.PacketGetter;
|
||||
import com.google.mediapipe.framework.image.BitmapImageBuilder;
|
||||
import com.google.mediapipe.framework.image.MPImage;
|
||||
import com.google.mediapipe.tasks.components.processors.proto.ClassifierOptionsProto;
|
||||
import com.google.mediapipe.tasks.components.processors.ClassifierOptions;
|
||||
import com.google.mediapipe.tasks.core.BaseOptions;
|
||||
import com.google.mediapipe.tasks.core.ErrorListener;
|
||||
import com.google.mediapipe.tasks.core.OutputHandler;
|
||||
|
@ -398,13 +398,26 @@ public final class GestureRecognizer extends BaseVisionTaskApi {
|
|||
public abstract Builder setMinTrackingConfidence(Float value);
|
||||
|
||||
/**
|
||||
* Sets the minimum confidence score for the gestures to be considered successful. If < 0, the
|
||||
* gesture confidence threshold=0.5 for the model is used.
|
||||
* Sets the optional {@link ClassifierOptions} controling the canned gestures classifier, such
|
||||
* as score threshold, allow list and deny list of gestures. The categories for canned gesture
|
||||
* classifiers are: ["None", "Closed_Fist", "Open_Palm", "Pointing_Up", "Thumb_Down",
|
||||
* "Thumb_Up", "Victory", "ILoveYou"]
|
||||
*
|
||||
* <p>TODO Note this option is subject to change, after scoring merging
|
||||
* calculator is implemented.
|
||||
*/
|
||||
public abstract Builder setMinGestureConfidence(Float value);
|
||||
public abstract Builder setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions classifierOptions);
|
||||
|
||||
/**
|
||||
* Sets the optional {@link ClassifierOptions} controling the custom gestures classifier, such
|
||||
* as score threshold, allow list and deny list of gestures.
|
||||
*
|
||||
* <p>TODO Note this option is subject to change, after scoring merging
|
||||
* calculator is implemented.
|
||||
*/
|
||||
public abstract Builder setCustomGesturesClassifierOptions(
|
||||
ClassifierOptions classifierOptions);
|
||||
|
||||
/**
|
||||
* Sets the result listener to receive the detection results asynchronously when the gesture
|
||||
|
@ -454,8 +467,9 @@ public final class GestureRecognizer extends BaseVisionTaskApi {
|
|||
|
||||
abstract Optional<Float> minTrackingConfidence();
|
||||
|
||||
// TODO update gesture confidence options after score merging calculator is ready.
|
||||
abstract Optional<Float> minGestureConfidence();
|
||||
abstract Optional<ClassifierOptions> cannedGesturesClassifierOptions();
|
||||
|
||||
abstract Optional<ClassifierOptions> customGesturesClassifierOptions();
|
||||
|
||||
abstract Optional<ResultListener<GestureRecognitionResult, MPImage>> resultListener();
|
||||
|
||||
|
@ -467,8 +481,7 @@ public final class GestureRecognizer extends BaseVisionTaskApi {
|
|||
.setNumHands(1)
|
||||
.setMinHandDetectionConfidence(0.5f)
|
||||
.setMinHandPresenceConfidence(0.5f)
|
||||
.setMinTrackingConfidence(0.5f)
|
||||
.setMinGestureConfidence(-1f);
|
||||
.setMinTrackingConfidence(0.5f);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -511,13 +524,22 @@ public final class GestureRecognizer extends BaseVisionTaskApi {
|
|||
HandGestureRecognizerGraphOptionsProto.HandGestureRecognizerGraphOptions.Builder
|
||||
handGestureRecognizerGraphOptionsBuilder =
|
||||
HandGestureRecognizerGraphOptionsProto.HandGestureRecognizerGraphOptions.newBuilder();
|
||||
ClassifierOptionsProto.ClassifierOptions.Builder classifierOptionsBuilder =
|
||||
ClassifierOptionsProto.ClassifierOptions.newBuilder();
|
||||
minGestureConfidence().ifPresent(classifierOptionsBuilder::setScoreThreshold);
|
||||
handGestureRecognizerGraphOptionsBuilder.setCannedGestureClassifierGraphOptions(
|
||||
GestureClassifierGraphOptionsProto.GestureClassifierGraphOptions.newBuilder()
|
||||
.setClassifierOptions(classifierOptionsBuilder.build()));
|
||||
|
||||
cannedGesturesClassifierOptions()
|
||||
.ifPresent(
|
||||
classifierOptions -> {
|
||||
handGestureRecognizerGraphOptionsBuilder.setCannedGestureClassifierGraphOptions(
|
||||
GestureClassifierGraphOptionsProto.GestureClassifierGraphOptions.newBuilder()
|
||||
.setClassifierOptions(classifierOptions.convertToProto())
|
||||
.build());
|
||||
});
|
||||
customGesturesClassifierOptions()
|
||||
.ifPresent(
|
||||
classifierOptions -> {
|
||||
handGestureRecognizerGraphOptionsBuilder.setCustomGestureClassifierGraphOptions(
|
||||
GestureClassifierGraphOptionsProto.GestureClassifierGraphOptions.newBuilder()
|
||||
.setClassifierOptions(classifierOptions.convertToProto())
|
||||
.build());
|
||||
});
|
||||
taskOptionsBuilder
|
||||
.setHandLandmarkerGraphOptions(handLandmarkerGraphOptionsBuilder.build())
|
||||
.setHandGestureRecognizerGraphOptions(handGestureRecognizerGraphOptionsBuilder.build());
|
||||
|
|
|
@ -30,6 +30,7 @@ import com.google.mediapipe.framework.image.MPImage;
|
|||
import com.google.mediapipe.tasks.components.containers.Category;
|
||||
import com.google.mediapipe.tasks.components.containers.Landmark;
|
||||
import com.google.mediapipe.tasks.components.containers.proto.LandmarksDetectionResultProto.LandmarksDetectionResult;
|
||||
import com.google.mediapipe.tasks.components.processors.ClassifierOptions;
|
||||
import com.google.mediapipe.tasks.core.BaseOptions;
|
||||
import com.google.mediapipe.tasks.vision.core.ImageProcessingOptions;
|
||||
import com.google.mediapipe.tasks.vision.core.RunningMode;
|
||||
|
@ -106,14 +107,15 @@ public class GestureRecognizerTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void recognize_successWithMinGestureConfidence() throws Exception {
|
||||
public void recognize_successWithScoreThreshold() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
GestureRecognizerOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder()
|
||||
.setModelAssetPath(GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
|
||||
.build())
|
||||
.setMinGestureConfidence(0.5f)
|
||||
.setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions.builder().setScoreThreshold(0.5f).build())
|
||||
.build();
|
||||
GestureRecognizer gestureRecognizer =
|
||||
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
|
@ -204,6 +206,113 @@ public class GestureRecognizerTest {
|
|||
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void recognize_successWithAllowGestureFist() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
GestureRecognizerOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder()
|
||||
.setModelAssetPath(GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
|
||||
.build())
|
||||
.setNumHands(1)
|
||||
.setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions.builder()
|
||||
.setScoreThreshold(0.5f)
|
||||
.setCategoryAllowlist(Arrays.asList("Closed_Fist"))
|
||||
.build())
|
||||
.build();
|
||||
GestureRecognizer gestureRecognizer =
|
||||
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
GestureRecognitionResult actualResult =
|
||||
gestureRecognizer.recognize(getImageFromAsset(FIST_IMAGE));
|
||||
GestureRecognitionResult expectedResult =
|
||||
getExpectedGestureRecognitionResult(FIST_LANDMARKS, FIST_LABEL);
|
||||
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void recognize_successWithDenyGestureFist() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
GestureRecognizerOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder()
|
||||
.setModelAssetPath(GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
|
||||
.build())
|
||||
.setNumHands(1)
|
||||
.setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions.builder()
|
||||
.setScoreThreshold(0.5f)
|
||||
.setCategoryDenylist(Arrays.asList("Closed_Fist"))
|
||||
.build())
|
||||
.build();
|
||||
GestureRecognizer gestureRecognizer =
|
||||
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
GestureRecognitionResult actualResult =
|
||||
gestureRecognizer.recognize(getImageFromAsset(FIST_IMAGE));
|
||||
assertThat(actualResult.landmarks()).isEmpty();
|
||||
assertThat(actualResult.worldLandmarks()).isEmpty();
|
||||
assertThat(actualResult.handednesses()).isEmpty();
|
||||
assertThat(actualResult.gestures()).isEmpty();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void recognize_successWithAllowAllGestureExceptFist() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
GestureRecognizerOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder()
|
||||
.setModelAssetPath(GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
|
||||
.build())
|
||||
.setNumHands(1)
|
||||
.setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions.builder()
|
||||
.setScoreThreshold(0.5f)
|
||||
.setCategoryAllowlist(
|
||||
Arrays.asList(
|
||||
"None",
|
||||
"Open_Palm",
|
||||
"Pointing_Up",
|
||||
"Thumb_Down",
|
||||
"Thumb_Up",
|
||||
"Victory",
|
||||
"ILoveYou"))
|
||||
.build())
|
||||
.build();
|
||||
GestureRecognizer gestureRecognizer =
|
||||
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
GestureRecognitionResult actualResult =
|
||||
gestureRecognizer.recognize(getImageFromAsset(FIST_IMAGE));
|
||||
assertThat(actualResult.landmarks()).isEmpty();
|
||||
assertThat(actualResult.worldLandmarks()).isEmpty();
|
||||
assertThat(actualResult.handednesses()).isEmpty();
|
||||
assertThat(actualResult.gestures()).isEmpty();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void recognize_successWithPreferAlowListThanDenyList() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
GestureRecognizerOptions.builder()
|
||||
.setBaseOptions(
|
||||
BaseOptions.builder()
|
||||
.setModelAssetPath(GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
|
||||
.build())
|
||||
.setNumHands(1)
|
||||
.setCannedGesturesClassifierOptions(
|
||||
ClassifierOptions.builder()
|
||||
.setScoreThreshold(0.5f)
|
||||
.setCategoryAllowlist(Arrays.asList("Closed_Fist"))
|
||||
.setCategoryDenylist(Arrays.asList("Closed_Fist"))
|
||||
.build())
|
||||
.build();
|
||||
GestureRecognizer gestureRecognizer =
|
||||
GestureRecognizer.createFromOptions(ApplicationProvider.getApplicationContext(), options);
|
||||
GestureRecognitionResult actualResult =
|
||||
gestureRecognizer.recognize(getImageFromAsset(FIST_IMAGE));
|
||||
GestureRecognitionResult expectedResult =
|
||||
getExpectedGestureRecognitionResult(FIST_LANDMARKS, FIST_LABEL);
|
||||
assertActualResultApproximatelyEqualsToExpectedResult(actualResult, expectedResult);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void recognize_failsWithRegionOfInterest() throws Exception {
|
||||
GestureRecognizerOptions options =
|
||||
|
|
|
@ -21,7 +21,6 @@ from mediapipe.python import packet_getter
|
|||
# TODO: Import MPImage directly one we have an alias
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet
|
||||
from mediapipe.python._framework_bindings import task_runner
|
||||
from mediapipe.tasks.cc.components.containers.proto import classifications_pb2
|
||||
from mediapipe.tasks.cc.vision.image_classifier.proto import image_classifier_graph_options_pb2
|
||||
from mediapipe.tasks.python.components.containers import classifications
|
||||
|
@ -39,7 +38,6 @@ _ImageClassifierGraphOptionsProto = image_classifier_graph_options_pb2.ImageClas
|
|||
_ClassifierOptions = classifier_options.ClassifierOptions
|
||||
_RunningMode = vision_task_running_mode.VisionTaskRunningMode
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
_TaskRunner = task_runner.TaskRunner
|
||||
|
||||
_CLASSIFICATION_RESULT_OUT_STREAM_NAME = 'classification_result_out'
|
||||
_CLASSIFICATION_RESULT_TAG = 'CLASSIFICATION_RESULT'
|
||||
|
|
|
@ -21,7 +21,6 @@ from mediapipe.python import packet_creator
|
|||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet
|
||||
from mediapipe.python._framework_bindings import task_runner
|
||||
from mediapipe.tasks.cc.components.proto import segmenter_options_pb2
|
||||
from mediapipe.tasks.cc.vision.image_segmenter.proto import image_segmenter_options_pb2
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
|
@ -35,7 +34,6 @@ _SegmenterOptionsProto = segmenter_options_pb2.SegmenterOptions
|
|||
_ImageSegmenterOptionsProto = image_segmenter_options_pb2.ImageSegmenterOptions
|
||||
_RunningMode = vision_task_running_mode.VisionTaskRunningMode
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
_TaskRunner = task_runner.TaskRunner
|
||||
|
||||
_SEGMENTATION_OUT_STREAM_NAME = 'segmented_mask_out'
|
||||
_SEGMENTATION_TAG = 'GROUPED_SEGMENTATION'
|
||||
|
|
|
@ -20,7 +20,6 @@ from mediapipe.python import packet_creator
|
|||
from mediapipe.python import packet_getter
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.python._framework_bindings import packet as packet_module
|
||||
from mediapipe.python._framework_bindings import task_runner as task_runner_module
|
||||
from mediapipe.tasks.cc.vision.object_detector.proto import object_detector_options_pb2
|
||||
from mediapipe.tasks.python.components.containers import detections as detections_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
|
@ -33,7 +32,6 @@ _BaseOptions = base_options_module.BaseOptions
|
|||
_ObjectDetectorOptionsProto = object_detector_options_pb2.ObjectDetectorOptions
|
||||
_RunningMode = running_mode_module.VisionTaskRunningMode
|
||||
_TaskInfo = task_info_module.TaskInfo
|
||||
_TaskRunner = task_runner_module.TaskRunner
|
||||
|
||||
_DETECTIONS_OUT_STREAM_NAME = 'detections_out'
|
||||
_DETECTIONS_TAG = 'DETECTIONS'
|
||||
|
|
Loading…
Reference in New Issue
Block a user