Internal change

PiperOrigin-RevId: 521911790
This commit is contained in:
MediaPipe Team 2023-04-04 17:41:58 -07:00 committed by Copybara-Service
parent f8b2aa0633
commit 190be2e1bd
2 changed files with 262 additions and 111 deletions

View File

@ -22,7 +22,21 @@ using mediapipe::kBasicVertexShader;
using ::mediapipe::tasks::vision::Shape;
using ::mediapipe::tasks::vision::image_segmenter::proto::SegmenterOptions;
// TODO: This part of the setup code is so common, we should really
// refactor to a helper utility.
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
const GLint attr_location[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
const GLchar* attr_name[NUM_ATTRIBUTES] = {
"position",
"texture_coordinate",
};
// We assume ES3.0+ for some of our shaders here so we can make liberal use of
// MRT easily.
static constexpr char kEs30RequirementHeader[] = "#version 300 es\n";
static constexpr char kActivationFragmentShader[] = R"(
DEFAULT_PRECISION(mediump, float)
@ -140,55 +154,93 @@ void main() {
gl_FragColor = vec4(out_value, out_value, out_value, out_value);
})";
// Quick softmax shader hardcoded to max of N=12 classes. Performs softmax
// calculations, but renders to one chunk at a time.
// TODO: For more efficiency, should at least use MRT to render all
// chunks simultaneously.
static constexpr char kSoftmaxShader[] = R"(
// Softmax is in 3 steps:
// - First we find max over all masks
// - Then we transform all masks to be exp(val - maxval), and also add to
// cumulative-sum image with MRT
// - Then we normalize all masks by cumulative-sum image
// Part one: max shader
// To start with, we just do this chunk by chunk, using GL_MAX blend mode so we
// don't need to tap into the max-so-far texture.
static constexpr char kMaxShader[] = R"(
DEFAULT_PRECISION(mediump, float)
in vec2 sample_coordinate;
uniform sampler2D input_texture0;
uniform sampler2D input_texture1;
uniform sampler2D input_texture2;
uniform int chunk_select;
uniform sampler2D current_chunk;
uniform int num_channels; // how many channels from current chunk to use (1-4)
float max4(vec4 vec) {
return max(max(vec.x, vec.y), max(vec.z, vec.w));
}
vec4 expTransform(vec4 vec, float maxval) {
return exp(vec - maxval);
float max3(vec4 vec) {
return max(max(vec.x, vec.y), vec.z);
}
float max2(vec4 vec) {
return max(vec.x, vec.y);
}
void main() {
vec4 chunk_pixel = texture2D(current_chunk, sample_coordinate);
float new_max;
if (num_channels == 1) {
new_max = chunk_pixel.x;
} else if (num_channels == 2) {
new_max = max2(chunk_pixel);
} else if (num_channels == 3) {
new_max = max3(chunk_pixel);
} else {
new_max = max4(chunk_pixel);
}
gl_FragColor = vec4(new_max, 0.0, 0.0, 1.0);
})";
// Part two: transform-and-sum shader
// We use GL blending so we can more easily render a cumulative sum texture, and
// this only costs us a glClear for the output chunk (needed since using MRT).
static constexpr char kTransformAndSumShader[] = R"(
DEFAULT_PRECISION(highp, float)
in vec2 sample_coordinate;
uniform sampler2D max_value_texture;
uniform sampler2D current_chunk;
uniform int num_channels; // how many channels from current chunk to use (1-4)
layout(location = 0) out vec4 cumulative_sum_texture;
layout(location = 1) out vec4 out_chunk_texture;
void main() {
// Grab all vecs
vec4 pixel0 = texture2D(input_texture0, sample_coordinate);
vec4 pixel1 = texture2D(input_texture1, sample_coordinate);
vec4 pixel2 = texture2D(input_texture2, sample_coordinate);
float max_pixel = texture(max_value_texture, sample_coordinate).r;
vec4 chunk_pixel = texture(current_chunk, sample_coordinate);
vec4 new_chunk_pixel = exp(chunk_pixel - max_pixel);
// Find maxval amongst all vectors
float max0 = max4(pixel0);
float max1 = max4(pixel1);
float max2 = max4(pixel2);
float maxval = max(max(max0, max1), max2);
vec4 outPixel0 = expTransform(pixel0, maxval);
vec4 outPixel1 = expTransform(pixel1, maxval);
vec4 outPixel2 = expTransform(pixel2, maxval);
// Quick hack to sum all components in vec4: dot with <1, 1, 1, 1>
vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float weightSum = dot(ones, outPixel0) + dot(ones, outPixel1) + dot(ones, outPixel2);
vec4 outPixel;
if (chunk_select == 0) {
outPixel = outPixel0 / weightSum;
} else if (chunk_select == 1) {
outPixel = outPixel1 / weightSum;
float sum_so_far;
if (num_channels == 1) {
sum_so_far = new_chunk_pixel.x;
} else if (num_channels == 2) {
sum_so_far = dot(vec2(1.0, 1.0), new_chunk_pixel.xy);
} else if (num_channels == 3) {
sum_so_far = dot(vec3(1.0, 1.0, 1.0), new_chunk_pixel.xyz);
} else {
outPixel = outPixel2 / weightSum;
sum_so_far = dot(vec4(1.0, 1.0, 1.0, 1.0), new_chunk_pixel);
}
gl_FragColor = outPixel;
cumulative_sum_texture = vec4(sum_so_far, 0.0, 0.0, 1.0);
out_chunk_texture = new_chunk_pixel;
})";
// Part three: normalization shader
static constexpr char kNormalizationShader[] = R"(
DEFAULT_PRECISION(mediump, float)
in vec2 sample_coordinate;
uniform sampler2D sum_texture; // cumulative summation value (to normalize by)
uniform sampler2D current_chunk; // current chunk
void main() {
float sum_pixel = texture2D(sum_texture, sample_coordinate).r;
vec4 chunk_pixel = texture2D(current_chunk, sample_coordinate);
// NOTE: We assume non-zero sum_pixel here, which is a safe assumption for
// result of an exp transform, but not if this shader is extended to other
// uses.
gl_FragColor = chunk_pixel / sum_pixel;
})";
} // namespace
@ -208,19 +260,38 @@ absl::Status SegmentationPostprocessorGl::Initialize(
return absl::OkStatus();
}
absl::Status SegmentationPostprocessorGl::CreateBasicFragmentShaderProgram(
std::string const& program_name, std::string const& fragment_shader_source,
std::vector<std::string> const& uniform_names, GlShader* shader_struct_ptr,
bool is_es30_only = false) {
// Format source and create basic ES3.0+ fragment-shader-only program
const std::string frag_shader_source =
absl::StrCat(is_es30_only ? std::string(kEs30RequirementHeader) : "",
std::string(mediapipe::kMediaPipeFragmentShaderPreamble),
std::string(fragment_shader_source));
const std::string vert_shader_source =
absl::StrCat(is_es30_only ? std::string(kEs30RequirementHeader) : "",
std::string(kBasicVertexShader));
mediapipe::GlhCreateProgram(
vert_shader_source.c_str(), frag_shader_source.c_str(), NUM_ATTRIBUTES,
&attr_name[0], attr_location, &shader_struct_ptr->program,
/* force_log_errors */ true);
RET_CHECK(shader_struct_ptr->program)
<< "Problem initializing the " << program_name << " program.";
// Hook up all desired uniforms
for (const auto& uniform_name : uniform_names) {
shader_struct_ptr->uniforms[uniform_name] =
glGetUniformLocation(shader_struct_ptr->program, uniform_name.c_str());
RET_CHECK(shader_struct_ptr->uniforms[uniform_name] > 0)
<< uniform_name << " uniform not found for " << program_name
<< " program";
}
return absl::OkStatus();
}
absl::Status SegmentationPostprocessorGl::GlInit() {
return helper_.RunInGlContext([this]() -> absl::Status {
// TODO: This part of the setup code is so common, we should really
// refactor to a helper utility.
const GLint attr_location[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
const GLchar* attr_name[NUM_ATTRIBUTES] = {
"position",
"texture_coordinate",
};
// Default to passthrough/NONE
std::string activation_fn = "vec4 out_value = in_value;";
switch (options_.segmenter_options().activation()) {
@ -263,9 +334,17 @@ absl::Status SegmentationPostprocessorGl::GlInit() {
absl::StrCat(std::string(mediapipe::kMediaPipeFragmentShaderPreamble),
std::string(kArgmaxShader));
const std::string softmax_shader_source =
absl::StrCat(std::string(mediapipe::kMediaPipeFragmentShaderPreamble),
std::string(kSoftmaxShader));
// Softmax shaders (Max, Transform+Sum, and Normalization)
MP_RETURN_IF_ERROR(CreateBasicFragmentShaderProgram(
"softmax max", kMaxShader, {"current_chunk", "num_channels"},
&softmax_max_shader_));
MP_RETURN_IF_ERROR(CreateBasicFragmentShaderProgram(
"softmax transform-and-sum", kTransformAndSumShader,
{"max_value_texture", "current_chunk", "num_channels"},
&softmax_transform_and_sum_shader_, true /* is_es30_only */));
MP_RETURN_IF_ERROR(CreateBasicFragmentShaderProgram(
"softmax normalization", kNormalizationShader,
{"sum_texture", "current_chunk"}, &softmax_normalization_shader_));
// Compile all our shader programs.
// Note: we enable `force_log_errors` so that we get full debugging error
@ -299,12 +378,6 @@ absl::Status SegmentationPostprocessorGl::GlInit() {
/* force_log_errors */ true);
RET_CHECK(argmax_program_) << "Problem initializing the argmax program.";
mediapipe::GlhCreateProgram(kBasicVertexShader,
softmax_shader_source.c_str(), NUM_ATTRIBUTES,
&attr_name[0], attr_location, &softmax_program_,
/* force_log_errors */ true);
RET_CHECK(softmax_program_) << "Problem initializing the softmax program.";
// Get uniform locations.
activation_texture_uniform_ =
glGetUniformLocation(activation_program_, "input_texture");
@ -341,23 +414,6 @@ absl::Status SegmentationPostprocessorGl::GlInit() {
RET_CHECK(argmax_texture2_uniform_ > 0)
<< "argmax input_texture2 uniform not found.";
softmax_texture0_uniform_ =
glGetUniformLocation(softmax_program_, "input_texture0");
RET_CHECK(softmax_texture0_uniform_ > 0)
<< "softmax input_texture0 uniform not found.";
softmax_texture1_uniform_ =
glGetUniformLocation(softmax_program_, "input_texture1");
RET_CHECK(softmax_texture1_uniform_ > 0)
<< "softmax input_texture1 uniform not found.";
softmax_texture2_uniform_ =
glGetUniformLocation(softmax_program_, "input_texture2");
RET_CHECK(softmax_texture2_uniform_ > 0)
<< "softmax input_texture2 uniform not found.";
softmax_chunk_select_uniform_ =
glGetUniformLocation(softmax_program_, "chunk_select");
RET_CHECK(softmax_chunk_select_uniform_ > 0)
<< "softmax chunk select uniform not found.";
// TODO: If ES3.0+ only, switch to VAO for handling attributes.
glGenBuffers(1, &square_vertices_);
glBindBuffer(GL_ARRAY_BUFFER, square_vertices_);
@ -408,6 +464,9 @@ SegmentationPostprocessorGl::GetSegmentationResultGpu(const Shape& input_shape,
// Uint8 pipeline and conversions are lacking, so for now we just use F32
// textures even for category masks.
// TODO: Also, some platforms (like certain iOS devices) do not
// allow for rendering to RGBAF32 textures, so we should switch to using
// F16 textures in those instances.
const GpuBufferFormat final_output_format = GpuBufferFormat::kGrayFloat32;
const Tensor::OpenGlTexture2dView read_view =
tensor.GetOpenGlTexture2dReadView();
@ -467,7 +526,7 @@ SegmentationPostprocessorGl::GetSegmentationResultGpu(const Shape& input_shape,
((float)i + tex_offset) / (float)(input_width));
// Technically duplicated, but fine for now; we want this after the bind
glBindTexture(GL_TEXTURE_2D, activated_texture.name());
// Disable HW interpolation
// Disable hardware GPU interpolation
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Render
@ -477,45 +536,126 @@ SegmentationPostprocessorGl::GetSegmentationResultGpu(const Shape& input_shape,
std::vector<GlTexture> softmax_chunks;
if (is_softmax) {
// Step 2.5: For SOFTMAX, apply softmax shader with up to 3 textures to
// create softmax-transformed chunks before channel extraction.
RET_CHECK(num_chunks <= 3)
<< "Cannot handle more than 12 classes in softmax shader.";
// Step 2.5: For SOFTMAX, apply softmax shaders (max, transformAndSum, and
// normalization) to create softmax-transformed chunks before channel
// extraction.
// NOTE: exp(x-C) / sum_over_x(exp(x-C)) = exp(x) / sum_over_x(exp(x)). So
// theoretically we can skip the max shader step entirely. However,
// applying it does bring all our values into a nice (0, 1] range, so it
// will likely be better for precision, especially when dealing with an
// exponential function on arbitrary values. Therefore, we keep it, but
// this is potentially a skippable step for known "good" models, if we
// ever want to provide that as an option.
// TODO: For a tiny bit more efficiency, could combine channel
// extraction into last step of this via MRT.
glUseProgram(softmax_program_);
glUniform1i(softmax_texture0_uniform_, 1);
glUniform1i(softmax_texture1_uniform_, 2);
glUniform1i(softmax_texture2_uniform_, 3);
// Max
glUseProgram(softmax_max_shader_.program);
glUniform1i(softmax_max_shader_.uniforms["current_chunk"], 1);
// We just need one channel, so format will match final output confidence
// masks
auto max_texture =
helper_.CreateDestinationTexture(width, height, final_output_format);
helper_.BindFramebuffer(max_texture);
// We clear our newly-created destination texture to a reasonable minimum.
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
// We will use hardware GPU blending to apply max to all our writes.
glEnable(GL_BLEND);
glBlendEquation(GL_MAX);
glActiveTexture(GL_TEXTURE1);
for (int i = 0; i < num_chunks; i++) {
int num_channels = 4;
if ((i + 1) * 4 > num_outputs) num_channels = num_outputs % 4;
glUniform1i(softmax_max_shader_.uniforms["num_channels"], num_channels);
glBindTexture(GL_TEXTURE_2D, chunks[i].name());
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
// Transform & Sum
std::vector<GlTexture> unnormalized_softmax_chunks;
glUseProgram(softmax_transform_and_sum_shader_.program);
glUniform1i(softmax_transform_and_sum_shader_.uniforms["current_chunk"],
1);
glUniform1i(
softmax_transform_and_sum_shader_.uniforms["max_value_texture"], 2);
auto sum_texture =
helper_.CreateDestinationTexture(width, height, final_output_format);
helper_.BindFramebuffer(sum_texture);
glClear(GL_COLOR_BUFFER_BIT);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, max_texture.name());
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE);
glActiveTexture(GL_TEXTURE1);
// We use glDrawBuffers to clear only the new texture, then again to
// draw to both textures simultaneously for rendering.
GLuint both_attachments[2] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1};
GLuint one_attachment[2] = {GL_NONE, GL_COLOR_ATTACHMENT1};
for (int i = 0; i < num_chunks; i++) {
int num_channels = 4;
if ((i + 1) * 4 > num_outputs) num_channels = num_outputs % 4;
glUniform1i(softmax_transform_and_sum_shader_.uniforms["num_channels"],
num_channels);
unnormalized_softmax_chunks.push_back(helper_.CreateDestinationTexture(
width, height, chunk_output_format));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,
GL_TEXTURE_2D,
unnormalized_softmax_chunks.back().name(), 0);
// Note that we must bind AFTER the CreateDestinationTexture, or else we
// end up with (0, 0, 0, 1) data being read from an unbound texture
// unit.
glBindTexture(GL_TEXTURE_2D, chunks[i].name());
// Clear *only* the new chunk
glDrawBuffers(2, one_attachment);
glClear(GL_COLOR_BUFFER_BIT);
// Then draw into both
glDrawBuffers(2, both_attachments);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
// Turn off MRT and blending, and unbind second color attachment
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,
GL_TEXTURE_2D, 0, 0);
glDrawBuffers(1, both_attachments);
glDisable(GL_BLEND);
// Normalize each chunk into a new chunk as our final step
glUseProgram(softmax_normalization_shader_.program);
glUniform1i(softmax_normalization_shader_.uniforms["current_chunk"], 1);
glUniform1i(softmax_normalization_shader_.uniforms["sum_texture"], 2);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, sum_texture.name());
glActiveTexture(GL_TEXTURE1);
for (int i = 0; i < num_chunks; i++) {
glUniform1i(softmax_chunk_select_uniform_, i);
softmax_chunks.push_back(helper_.CreateDestinationTexture(
output_width, output_height, chunk_output_format));
width, height, chunk_output_format));
helper_.BindFramebuffer(softmax_chunks.back());
// Bind however many chunks we have
for (int j = 0; j < num_chunks; ++j) {
glActiveTexture(GL_TEXTURE1 + j);
glBindTexture(GL_TEXTURE_2D, chunks[j].name());
}
for (int j = num_chunks; j < 3; ++j) { // 3 is hard-coded max chunks
glActiveTexture(GL_TEXTURE1 + j);
// If texture is unbound, sampling from it should always give zeros.
// This is not ideal, but is ok for now for not polluting the argmax
// shader results too much.
glBindTexture(GL_TEXTURE_2D, 0);
}
glBindTexture(GL_TEXTURE_2D, unnormalized_softmax_chunks[i].name());
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
// Unbind the extra textures here.
for (int i = 0; i < num_chunks; ++i) {
glActiveTexture(GL_TEXTURE1 + i);
// Unbind textures here
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
// We make sure to switch back to texture unit 1, since our confidence
// mask extraction code assumes that's our default.
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
std::vector<GlTexture> outputs;
@ -607,17 +747,19 @@ SegmentationPostprocessorGl::~SegmentationPostprocessorGl() {
glDeleteProgram(activation_program_);
glDeleteProgram(argmax_program_);
glDeleteProgram(channel_select_program_);
glDeleteProgram(softmax_program_);
glDeleteProgram(split_program_);
glDeleteBuffers(1, &square_vertices_);
glDeleteBuffers(1, &texture_vertices_);
activation_program_ = 0;
argmax_program_ = 0;
channel_select_program_ = 0;
softmax_program_ = 0;
split_program_ = 0;
square_vertices_ = 0;
texture_vertices_ = 0;
glDeleteProgram(softmax_max_shader_.program);
glDeleteProgram(softmax_transform_and_sum_shader_.program);
glDeleteProgram(softmax_normalization_shader_.program);
});
}

View File

@ -38,7 +38,17 @@ class SegmentationPostprocessorGl {
const Tensor& tensor);
private:
struct GlShader {
GLuint program = 0;
absl::flat_hash_map<std::string, GLint> uniforms;
};
absl::Status GlInit();
absl::Status CreateBasicFragmentShaderProgram(
std::string const& program_name,
std::string const& fragment_shader_source,
std::vector<std::string> const& uniform_names,
GlShader* shader_struct_ptr, bool is_es30_only);
TensorsToSegmentationCalculatorOptions options_;
GlCalculatorHelper helper_;
@ -47,7 +57,6 @@ class SegmentationPostprocessorGl {
GLuint activation_program_ = 0;
GLuint argmax_program_ = 0;
GLuint channel_select_program_ = 0;
GLuint softmax_program_ = 0;
GLuint split_program_ = 0;
GLuint square_vertices_ = 0;
GLuint texture_vertices_ = 0;
@ -57,12 +66,12 @@ class SegmentationPostprocessorGl {
GLint argmax_texture2_uniform_;
GLint channel_select_texture_uniform_;
GLint channel_select_index_uniform_;
GLint softmax_texture0_uniform_;
GLint softmax_texture1_uniform_;
GLint softmax_texture2_uniform_;
GLint softmax_chunk_select_uniform_;
GLint split_texture_uniform_;
GLint split_x_offset_uniform_;
GlShader softmax_max_shader_;
GlShader softmax_transform_and_sum_shader_;
GlShader softmax_normalization_shader_;
};
} // namespace tasks