Added a simple test to verify gesture recognition results
This commit is contained in:
parent
9a1a9d4c13
commit
18eb089d39
|
@ -55,11 +55,13 @@ py_library(
|
|||
)
|
||||
|
||||
py_library(
|
||||
name = "gesture",
|
||||
srcs = ["gesture.py"],
|
||||
name = "landmark_detection_result",
|
||||
srcs = ["landmark_detection_result.py"],
|
||||
deps = [
|
||||
":rect",
|
||||
":classification",
|
||||
":landmark",
|
||||
"//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
|
||||
"//mediapipe/tasks/python/core:optional_dependencies",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -14,14 +14,13 @@
|
|||
"""Classification data class."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Any, List
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from mediapipe.framework.formats import classification_pb2
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
_ClassificationProto = classification_pb2.Classification
|
||||
_ClassificationListProto = classification_pb2.ClassificationList
|
||||
_ClassificationListCollectionProto = classification_pb2.ClassificationListCollection
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
|
@ -35,10 +34,10 @@ class Classification:
|
|||
display_name: Optional human-readable string for display purposes.
|
||||
"""
|
||||
|
||||
index: int
|
||||
score: float
|
||||
label_name: str
|
||||
display_name: str
|
||||
index: Optional[int] = None
|
||||
score: Optional[float] = None
|
||||
label: Optional[str] = None
|
||||
display_name: Optional[str] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _ClassificationProto:
|
||||
|
@ -46,7 +45,7 @@ class Classification:
|
|||
return _ClassificationProto(
|
||||
index=self.index,
|
||||
score=self.score,
|
||||
label_name=self.label_name,
|
||||
label=self.label,
|
||||
display_name=self.display_name)
|
||||
|
||||
@classmethod
|
||||
|
@ -56,7 +55,7 @@ class Classification:
|
|||
return Classification(
|
||||
index=pb2_obj.index,
|
||||
score=pb2_obj.score,
|
||||
label_name=pb2_obj.label_name,
|
||||
label=pb2_obj.label,
|
||||
display_name=pb2_obj.display_name)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
|
@ -86,8 +85,8 @@ class ClassificationList:
|
|||
"""
|
||||
|
||||
classifications: List[Classification]
|
||||
tensor_index: int
|
||||
tensor_name: str
|
||||
tensor_index: Optional[int] = None
|
||||
tensor_name: Optional[str] = None
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _ClassificationListProto:
|
||||
|
|
|
@ -1,138 +0,0 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Gesture data class."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Any, List
|
||||
|
||||
from mediapipe.tasks.python.components.containers import classification
|
||||
from mediapipe.tasks.python.components.containers import landmark
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class GestureRecognitionResult:
|
||||
""" The gesture recognition result from GestureRecognizer, where each vector
|
||||
element represents a single hand detected in the image.
|
||||
|
||||
Attributes:
|
||||
gestures: Recognized hand gestures with sorted order such that the
|
||||
winning label is the first item in the list.
|
||||
handedness: Classification of handedness.
|
||||
hand_landmarks: Detected hand landmarks in normalized image coordinates.
|
||||
hand_world_landmarks: Detected hand landmarks in world coordinates.
|
||||
"""
|
||||
|
||||
gestures: List[classification.ClassificationList]
|
||||
handedness: List[classification.ClassificationList]
|
||||
hand_landmarks: List[landmark.NormalizedLandmarkList]
|
||||
hand_world_landmarks: List[landmark.LandmarkList]
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _DetectionProto:
|
||||
"""Generates a Detection protobuf object."""
|
||||
labels = []
|
||||
label_ids = []
|
||||
scores = []
|
||||
display_names = []
|
||||
for category in self.categories:
|
||||
scores.append(category.score)
|
||||
if category.index:
|
||||
label_ids.append(category.index)
|
||||
if category.category_name:
|
||||
labels.append(category.category_name)
|
||||
if category.display_name:
|
||||
display_names.append(category.display_name)
|
||||
return _DetectionProto(
|
||||
label=labels,
|
||||
label_id=label_ids,
|
||||
score=scores,
|
||||
display_name=display_names,
|
||||
location_data=_LocationDataProto(
|
||||
format=_LocationDataProto.Format.BOUNDING_BOX,
|
||||
bounding_box=self.bounding_box.to_pb2()))
|
||||
|
||||
@classmethod
|
||||
@doc_controls.do_not_generate_docs
|
||||
def create_from_pb2(cls, pb2_obj: _DetectionProto) -> 'Detection':
|
||||
"""Creates a `Detection` object from the given protobuf object."""
|
||||
categories = []
|
||||
for idx, score in enumerate(pb2_obj.score):
|
||||
categories.append(
|
||||
category_module.Category(
|
||||
score=score,
|
||||
index=pb2_obj.label_id[idx]
|
||||
if idx < len(pb2_obj.label_id) else None,
|
||||
category_name=pb2_obj.label[idx]
|
||||
if idx < len(pb2_obj.label) else None,
|
||||
display_name=pb2_obj.display_name[idx]
|
||||
if idx < len(pb2_obj.display_name) else None))
|
||||
|
||||
return Detection(
|
||||
bounding_box=bounding_box_module.BoundingBox.create_from_pb2(
|
||||
pb2_obj.location_data.bounding_box),
|
||||
categories=categories)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Checks if this object is equal to the given object.
|
||||
|
||||
Args:
|
||||
other: The object to be compared with.
|
||||
|
||||
Returns:
|
||||
True if the objects are equal.
|
||||
"""
|
||||
if not isinstance(other, Detection):
|
||||
return False
|
||||
|
||||
return self.to_pb2().__eq__(other.to_pb2())
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class DetectionResult:
|
||||
"""Represents the list of detected objects.
|
||||
|
||||
Attributes:
|
||||
detections: A list of `Detection` objects.
|
||||
"""
|
||||
|
||||
detections: List[Detection]
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _DetectionListProto:
|
||||
"""Generates a DetectionList protobuf object."""
|
||||
return _DetectionListProto(
|
||||
detection=[detection.to_pb2() for detection in self.detections])
|
||||
|
||||
@classmethod
|
||||
@doc_controls.do_not_generate_docs
|
||||
def create_from_pb2(cls, pb2_obj: _DetectionListProto) -> 'DetectionResult':
|
||||
"""Creates a `DetectionResult` object from the given protobuf object."""
|
||||
return DetectionResult(detections=[
|
||||
Detection.create_from_pb2(detection) for detection in pb2_obj.detection
|
||||
])
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Checks if this object is equal to the given object.
|
||||
|
||||
Args:
|
||||
other: The object to be compared with.
|
||||
|
||||
Returns:
|
||||
True if the objects are equal.
|
||||
"""
|
||||
if not isinstance(other, DetectionResult):
|
||||
return False
|
||||
|
||||
return self.to_pb2().__eq__(other.to_pb2())
|
|
@ -0,0 +1,82 @@
|
|||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Landmark Detection Result data class."""
|
||||
|
||||
import dataclasses
|
||||
from typing import Any, Optional
|
||||
|
||||
from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
|
||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||
from mediapipe.tasks.python.components.containers import classification as classification_module
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
||||
|
||||
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
|
||||
_NormalizedRect = rect_module.NormalizedRect
|
||||
_ClassificationList = classification_module.ClassificationList
|
||||
_NormalizedLandmarkList = landmark_module.NormalizedLandmarkList
|
||||
_LandmarkList = landmark_module.LandmarkList
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LandmarksDetectionResult:
|
||||
"""Represents the landmarks detection result.
|
||||
|
||||
Attributes:
|
||||
landmarks : A `NormalizedLandmarkList` object.
|
||||
classifications : A `ClassificationList` object.
|
||||
world_landmarks : A `LandmarkList` object.
|
||||
rect : A `NormalizedRect` object.
|
||||
"""
|
||||
|
||||
landmarks: Optional[_NormalizedLandmarkList]
|
||||
classifications: Optional[_ClassificationList]
|
||||
world_landmarks: Optional[_LandmarkList]
|
||||
rect: _NormalizedRect
|
||||
|
||||
@doc_controls.do_not_generate_docs
|
||||
def to_pb2(self) -> _LandmarksDetectionResultProto:
|
||||
"""Generates a LandmarksDetectionResult protobuf object."""
|
||||
return _LandmarksDetectionResultProto(
|
||||
landmarks=self.landmarks.to_pb2(),
|
||||
classifications=self.classifications.to_pb2(),
|
||||
world_landmarks=self.world_landmarks.to_pb2(),
|
||||
rect=self.rect.to_pb2())
|
||||
|
||||
@classmethod
|
||||
@doc_controls.do_not_generate_docs
|
||||
def create_from_pb2(
|
||||
cls,
|
||||
pb2_obj: _LandmarksDetectionResultProto
|
||||
) -> 'LandmarksDetectionResult':
|
||||
"""Creates a `LandmarksDetectionResult` object from the given protobuf
|
||||
object."""
|
||||
return LandmarksDetectionResult(
|
||||
landmarks=_NormalizedLandmarkList.create_from_pb2(pb2_obj.landmarks),
|
||||
classifications=_ClassificationList.create_from_pb2(
|
||||
pb2_obj.classifications),
|
||||
world_landmarks=_LandmarkList.create_from_pb2(pb2_obj.world_landmarks),
|
||||
rect=_NormalizedRect.create_from_pb2(pb2_obj.rect))
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Checks if this object is equal to the given object.
|
||||
Args:
|
||||
other: The object to be compared with.
|
||||
Returns:
|
||||
True if the objects are equal.
|
||||
"""
|
||||
if not isinstance(other, LandmarksDetectionResult):
|
||||
return False
|
||||
|
||||
return self.to_pb2().__eq__(other.to_pb2())
|
|
@ -43,15 +43,19 @@ py_test(
|
|||
data = [
|
||||
"//mediapipe/tasks/testdata/vision:test_images",
|
||||
"//mediapipe/tasks/testdata/vision:test_models",
|
||||
"//mediapipe/tasks/testdata/vision:test_protos",
|
||||
],
|
||||
deps = [
|
||||
"//mediapipe/python:_framework_bindings",
|
||||
"//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/components/containers:classification",
|
||||
"//mediapipe/tasks/python/components/containers:landmark",
|
||||
"//mediapipe/tasks/python/components/containers:rect",
|
||||
"//mediapipe/tasks/python/components/containers:landmark_detection_result",
|
||||
"//mediapipe/tasks/python/core:base_options",
|
||||
"//mediapipe/tasks/python/test:test_utils",
|
||||
"//mediapipe/tasks/python/vision:gesture_recognizer",
|
||||
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
|
||||
"@com_google_protobuf//:protobuf_python"
|
||||
],
|
||||
)
|
||||
|
|
|
@ -15,23 +15,31 @@
|
|||
|
||||
import enum
|
||||
|
||||
from google.protobuf import text_format
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
from mediapipe.python._framework_bindings import image as image_module
|
||||
from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
|
||||
from mediapipe.tasks.python.components.containers import rect as rect_module
|
||||
from mediapipe.tasks.python.components.containers import classification as classification_module
|
||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
||||
from mediapipe.tasks.python.components.containers import landmark_detection_result as landmark_detection_result_module
|
||||
from mediapipe.tasks.python.core import base_options as base_options_module
|
||||
from mediapipe.tasks.python.test import test_utils
|
||||
from mediapipe.tasks.python.vision import gesture_recognizer
|
||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
||||
|
||||
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
|
||||
_BaseOptions = base_options_module.BaseOptions
|
||||
_NormalizedRect = rect_module.NormalizedRect
|
||||
_Classification = classification_module.Classification
|
||||
_ClassificationList = classification_module.ClassificationList
|
||||
_Landmark = landmark_module.Landmark
|
||||
_LandmarkList = landmark_module.LandmarkList
|
||||
_NormalizedLandmark = landmark_module.NormalizedLandmark
|
||||
_NormalizedLandmarkList = landmark_module.NormalizedLandmarkList
|
||||
_LandmarksDetectionResult = landmark_detection_result_module.LandmarksDetectionResult
|
||||
_Image = image_module.Image
|
||||
_GestureRecognizer = gesture_recognizer.GestureRecognizer
|
||||
_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
|
||||
|
@ -39,8 +47,35 @@ _GestureRecognitionResult = gesture_recognizer.GestureRecognitionResult
|
|||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
|
||||
|
||||
_GESTURE_RECOGNIZER_MODEL_FILE = 'gesture_recognizer.task'
|
||||
_IMAGE_FILE = 'right_hands.jpg'
|
||||
_EXPECTED_DETECTION_RESULT = _GestureRecognitionResult([], [], [], [])
|
||||
_THUMB_UP_IMAGE = 'thumb_up.jpg'
|
||||
_THUMB_UP_LANDMARKS = "thumb_up_landmarks.pbtxt"
|
||||
_THUMB_UP_LABEL = "Thumb_Up"
|
||||
_THUMB_UP_INDEX = 5
|
||||
_LANDMARKS_ERROR_TOLERANCE = 0.03
|
||||
|
||||
|
||||
def _get_expected_gesture_recognition_result(
|
||||
file_path: str, gesture_label: str, gesture_index: int
|
||||
) -> _GestureRecognitionResult:
|
||||
landmarks_detection_result_file_path = test_utils.get_test_data_path(
|
||||
file_path)
|
||||
with open(landmarks_detection_result_file_path, "rb") as f:
|
||||
landmarks_detection_result_proto = _LandmarksDetectionResultProto()
|
||||
# # Use this if a .pb file is available.
|
||||
# landmarks_detection_result_proto.ParseFromString(f.read())
|
||||
text_format.Parse(f.read(), landmarks_detection_result_proto)
|
||||
landmarks_detection_result = _LandmarksDetectionResult.create_from_pb2(
|
||||
landmarks_detection_result_proto)
|
||||
gesture = _ClassificationList(
|
||||
classifications=[
|
||||
_Classification(label=gesture_label, index=gesture_index,
|
||||
display_name='')
|
||||
], tensor_index=0, tensor_name='')
|
||||
return _GestureRecognitionResult(
|
||||
gestures=[gesture],
|
||||
handedness=[landmarks_detection_result.classifications],
|
||||
hand_landmarks=[landmarks_detection_result.landmarks],
|
||||
hand_world_landmarks=[landmarks_detection_result.world_landmarks])
|
||||
|
||||
|
||||
class ModelFileType(enum.Enum):
|
||||
|
@ -53,14 +88,45 @@ class GestureRecognizerTest(parameterized.TestCase):
|
|||
def setUp(self):
|
||||
super().setUp()
|
||||
self.test_image = _Image.create_from_file(
|
||||
test_utils.get_test_data_path(_IMAGE_FILE))
|
||||
test_utils.get_test_data_path(_THUMB_UP_IMAGE))
|
||||
self.gesture_recognizer_model_path = test_utils.get_test_data_path(
|
||||
_GESTURE_RECOGNIZER_MODEL_FILE)
|
||||
|
||||
def _assert_actual_result_approximately_matches_expected_result(
|
||||
self,
|
||||
actual_result: _GestureRecognitionResult,
|
||||
expected_result: _GestureRecognitionResult
|
||||
):
|
||||
# Expects to have the same number of hands detected.
|
||||
self.assertLen(actual_result.hand_landmarks,
|
||||
len(expected_result.hand_landmarks))
|
||||
self.assertLen(actual_result.hand_world_landmarks,
|
||||
len(expected_result.hand_world_landmarks))
|
||||
self.assertLen(actual_result.handedness, len(expected_result.handedness))
|
||||
self.assertLen(actual_result.gestures, len(expected_result.gestures))
|
||||
# Actual landmarks match expected landmarks.
|
||||
self.assertEqual(actual_result.hand_landmarks,
|
||||
expected_result.hand_landmarks)
|
||||
# Actual handedness matches expected handedness.
|
||||
actual_top_handedness = actual_result.handedness[0].classifications[0]
|
||||
expected_top_handedness = expected_result.handedness[0].classifications[0]
|
||||
self.assertEqual(actual_top_handedness.index, expected_top_handedness.index)
|
||||
self.assertEqual(actual_top_handedness.label, expected_top_handedness.label)
|
||||
# Actual gesture with top score matches expected gesture.
|
||||
actual_top_gesture = actual_result.gestures[0].classifications[0]
|
||||
expected_top_gesture = expected_result.gestures[0].classifications[0]
|
||||
self.assertEqual(actual_top_gesture.index, expected_top_gesture.index)
|
||||
self.assertEqual(actual_top_gesture.label, expected_top_gesture.label)
|
||||
|
||||
@parameterized.parameters(
|
||||
(ModelFileType.FILE_NAME, _EXPECTED_DETECTION_RESULT),
|
||||
(ModelFileType.FILE_CONTENT, _EXPECTED_DETECTION_RESULT))
|
||||
def test_recognize(self, model_file_type, expected_recognition_result):
|
||||
(ModelFileType.FILE_NAME, 0.3, _get_expected_gesture_recognition_result(
|
||||
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||
)),
|
||||
(ModelFileType.FILE_CONTENT, 0.3, _get_expected_gesture_recognition_result(
|
||||
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
|
||||
)))
|
||||
def test_recognize(self, model_file_type, min_gesture_confidence,
|
||||
expected_recognition_result):
|
||||
# Creates gesture recognizer.
|
||||
if model_file_type is ModelFileType.FILE_NAME:
|
||||
gesture_recognizer_base_options = _BaseOptions(
|
||||
|
@ -75,13 +141,16 @@ class GestureRecognizerTest(parameterized.TestCase):
|
|||
raise ValueError('model_file_type is invalid.')
|
||||
|
||||
options = _GestureRecognizerOptions(
|
||||
base_options=gesture_recognizer_base_options)
|
||||
base_options=gesture_recognizer_base_options,
|
||||
min_gesture_confidence=min_gesture_confidence
|
||||
)
|
||||
recognizer = _GestureRecognizer.create_from_options(options)
|
||||
|
||||
# Performs hand gesture recognition on the input.
|
||||
recognition_result = recognizer.recognize(self.test_image)
|
||||
# Comparing results.
|
||||
self.assertEqual(recognition_result, expected_recognition_result)
|
||||
self._assert_actual_result_approximately_matches_expected_result(
|
||||
recognition_result, expected_recognition_result)
|
||||
# Closes the gesture recognizer explicitly when the detector is not used in
|
||||
# a context.
|
||||
recognizer.close()
|
||||
|
|
|
@ -136,8 +136,6 @@ class GestureRecognizerOptions:
|
|||
"""Generates an GestureRecognizerOptions protobuf object."""
|
||||
base_options_proto = self.base_options.to_pb2()
|
||||
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||
# hand_landmark_detector_base_options_proto = self.hand_landmark_detector_base_options.to_pb2()
|
||||
# hand_landmark_detector_base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
|
||||
|
||||
# Configure hand detector options.
|
||||
hand_detector_options_proto = _HandDetectorGraphOptionsProto(
|
||||
|
@ -153,13 +151,12 @@ class GestureRecognizerOptions:
|
|||
min_tracking_confidence=self.min_tracking_confidence)
|
||||
|
||||
# Configure hand gesture recognizer options.
|
||||
hand_gesture_recognizer_options_proto = _HandGestureRecognizerGraphOptionsProto()
|
||||
if self.min_gesture_confidence >= 0:
|
||||
classifier_options = _ClassifierOptions(
|
||||
score_threshold=self.min_gesture_confidence)
|
||||
hand_gesture_recognizer_options_proto.canned_gesture_classifier_graph_options = \
|
||||
_GestureClassifierGraphOptionsProto(
|
||||
gesture_classifier_options = _GestureClassifierGraphOptionsProto(
|
||||
classifier_options=classifier_options.to_pb2())
|
||||
hand_gesture_recognizer_options_proto = _HandGestureRecognizerGraphOptionsProto(
|
||||
canned_gesture_classifier_graph_options=gesture_classifier_options)
|
||||
|
||||
return _GestureRecognizerGraphOptionsProto(
|
||||
base_options=base_options_proto,
|
||||
|
|
1
mediapipe/tasks/testdata/vision/BUILD
vendored
1
mediapipe/tasks/testdata/vision/BUILD
vendored
|
@ -121,6 +121,7 @@ filegroup(
|
|||
"hand_landmark_full.tflite",
|
||||
"hand_landmark_lite.tflite",
|
||||
"hand_landmarker.task",
|
||||
"gesture_recognizer.task",
|
||||
"mobilenet_v1_0.25_192_quantized_1_default_1.tflite",
|
||||
"mobilenet_v1_0.25_224_1_default_1.tflite",
|
||||
"mobilenet_v1_0.25_224_1_metadata_1.tflite",
|
||||
|
|
Loading…
Reference in New Issue
Block a user